
PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019) 1

PyDDA: A new Pythonic Wind Retrieval Package

Robert Jackson‡∗, Scott Collis‡, Timothy Lang§, Corey Potvin¶‖, Todd Munson‡

F

Abstract—PyDDA is a new community framework aimed at wind retrievals that
depends only upon utilities in the SciPy ecosystem such as scipy, numpy, and
dask. It can support retrievals of winds using information from weather radar
networks constrained by high resolution forecast models over grids that cover
thousands of kilometers at kilometer-scale resolution. Unlike past wind retrieval
packages, this package can be installed using anaconda for easy installation
and, with a focus on ease of use can retrieve winds from gridded radar and
model data with just a few lines of code. The package is currently available for
download at https://github.com/openradar/PyDDA.

Index Terms—wind, retrieval, hurricane, tornado, radar

Introduction

Three dimensional wind retrievals are important for examining
the dynamics that drive severe weather such as tornadoes and
hurricanes. In addition, spatial wind retrievals inside severe con-
vection are important for assessing the wind damage they cause.
Scanning radars provide the best opportunity for providing three
dimensional volumes of winds inside severe weather. However,
the retrieval of three dimensional winds from weather radars is
a nontrivial task. Given that the radar measures the speed of
scatterers in the direction of the radar beam rather than the full
wind velocity, retrieving these winds requires more information
than the Doppler velocities measured by a single weather radar.
Typically, the 3D wind field is retrieved based on constraints with
regards to physical laws such as conservation of mass or wind data
from other sources such as model reanalyses, wind profilers, and
rawinsondes. In particular, atmospheric scientists use two methods
to retrieve winds from scanning weather radars. The first method
prescribes a strong constraint on the wind field according to the
mass continuity equation. The second method is a variational
technique that places weak constraints on the wind field by finding
the wind field that minimizes a cost function according to deviance
from physical laws or from observations ([SPG09], [PSX12]).

Currently existing software for wind retrievals includes soft-
ware based off of the strong constraint technique such as CEDRIC
[MF98] as well as software based off of the weak variational
technique such as MultiDop [LSKJ17]. Since CEDRIC uses a
strong constraint from mass continuity equation to retrieve winds,

* Corresponding author: rjackson@anl.gov
‡ Argonne National Laboratory, Argonne, IL, USA
§ NASA Marshall Space Flight Center, Huntsville, AL, USA
¶ NOAA/OAR National Severe Storms Laboratory, Norman, OK, USA
|| School of Meteorology, University of Oklahoma, Norman, OK, USA

Copyright © 2019 Robert Jackson et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

the addition of constraints from other data sources is not possible
with CEDRIC. Also, while CEDRIC was revolutionary for its
time, it is difficult to use as a separate scripting language is the
input for the retrieval. While MultiDop is based off of the more
customizable 3D variational technique, it is fixed to 2 or 3 radars
and is not scalable. Also, Multidop does not support the addition of
3D wind fields from models or other retrievals. Finally, Multidop
is a wrapper around a program written in C which introduces
issues related to packaging and scalability due to the non-thread-
safe nature of the wrapper.

The limitations in current wind retrieval software moti-
vated development of Pythonic Direct Data Assimilation (Py-
DDA).PyDDA is currently available for download at https:
//openradarscience.org/PyDDA. PyDDA is entirely written in
Python and uses only tools in the Scientific Python ecosystem such
as NumPy [vdWCV11], SciPy [JOP+01], and Cartopy [Off15].
This therefore permits the easy installation of PyDDA using pip
or anaconda. Given that installation is a major hurdle to using
currently existing retrieval software, this makes it easier for those
who are not radar scientists to be able to use the software. Unlike
currently existing software, a suite of unit tests are built into
PyDDA that are executed whenever a user make a contribution to
PyDDA, ensuring that the package will function for the user. With
regards to ease of use, PyDDA can retrieve winds from multiple
radars combined with data from model reanalyses with just a few
lines of code. In addition, PyDDA is built upon the Python ARM
Radar Toolkit (Py-ART) [HC16]. Since Py-ART is already used
by hundreds of users in the radar meteorology community, these
users would be able to learn how to use PyDDA easily. Moreover,
the open source nature of PyDDA encourages contributions by
users for further enhancement. In essence, PyDDA was created
with a goal in mind: to make radar wind retrievals more accessible
to the scientific community through both ease of installation and
use.

This paper will first show the implementation of the variational
technique used in PyDDA. After that, this paper shows examples
of retrieving and visualizing gridded radar data with PyDDA.
Finally, several use cases in severe convection such as Hurricane
Florence and a tornado in Sydney, Australia are shown in order
to provide examples on how this software can be used by those
interested in validating severe weather forecasts and assessing
wind damage.

Three dimensional variational (3DVAR) technique

The wind retrieval used by PyDDA is the three dimensional
variational technique (3DVAR). 3DVAR retrieves winds by finding
the wind vector field ~V that minimizes the cost function J(V). This

https://github.com/openradar/PyDDA
mailto:rjackson@anl.gov
https://openradarscience.org/PyDDA
https://openradarscience.org/PyDDA

2 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Cost function Basis of constraint

Jo(~V) Radar observations
Jc(~V) Mass continuity equation
Jv(~V) Vertical vorticity equation
Jm(~V) Model field constraint
Jb(~V) Background constraint (raw-

insonde data)
Js(~V) Smoothness constraint

TABLE 1: List of cost functions implemented in PyDDA.

cost function is the weighted sum of many different cost functions
related to various constraints. The detailed formulas behind these
cost functions can be found in [SPG09], [PSX12] as well as in the
source code of the cost_functions module of PyDDA. The
details behind constructing the model constraint are provided in
the next section.

The cost function ~V is then typically expressed as:

J(~V) = Jo(~V)+ Jc(~V)+ Jv(~V)+ Jm(~V)+ Jb(~V)+ Js(~V)

where each addend is as in Table 1.
The evaluation of J(V) can be done entirely using calls from

NumPy and SciPy. For example, evaluating Jc(~V) = ∇ ·~V with an
optional anelastic term be reduced to a few NumPy calls. The code
that executes these NumPy calls can be found in the Appendix.

Since NumPy can be configured to take advantage of open
source mathematics libraries that parallelize the calculation, this
also extends the capability of the retrieval to use the available
cores on the machine in addition to simplifying the code. Each cost
function and its gradient can be expressed in an analytical form
using variational calculus, so the addition of more cost functions
is possible due to the modular nature of each constraint.

These calculations are then done in order to find the ~V
that minimizes ~J(V). A common technique to minimize J(V)
calculates:

~Vn = ~Vn−1−α(∇~V)

for an α > 0 until there is convergence to a solution, given that
an initial guess ~V0 is provided. This is called the gradient descent
method that finds the minimum by decrementing ~V in the direction
of steepest descent along J. Multidop uses a variant of the gradient
descent method, the conjugate gradient descent method, in order
to minimize the cost function ~J(V).

However, convergence can be slow for certain cost func-
tions. Therefore, in order to ensure faster convergence, PyDDA
uses the limited memory Broyden–Fletcher–Goldfarb–Shanno (L-
BGFS) technique that optimizes the gradient descent method by
approximating the Hessian from previous iterations. The inverse
of the approximate Hessian is then used to find the optimal search
direction and α for each retrieval [BLNZ95]. Since there are
physically realistic constraints to ~V, the L-BFGS box (L-BFGS-
B) variant of this technique can take advantage of this by only
using L-BFGS on what the algorithm identifies as free variables,
optimizing the retrieval further. In PyDDA, we constrain the
solution to ensure that each individual component of ~V is within a
range of (−100 m s−1,100 m s−1).

The L-BFGS-B algorithm is implemented in SciPy. After
the initial wind field is provided, PyDDA calls 10 iterations of
L-BFGS-B using scipy.optimize.fmin_l_bfgs_b. Py-
DDA will then then test for convergence of a solution by either

Data source Routine in initialization module

Weather
Research and
Forecasting
(WRF)

make_background_from_wrf

High Resolution
Rapid Refresh
(HRRR)

make_initialization_from_hrrr

ERA Interim make_initialization_from
_era_interim

Rawinsonde make_wind_field_from_profile

Constant field make_constant_wind_field

TABLE 2: The differing initializations PyDDA can provide to the
user. These initializations are constructed by interpolating the model
J(~V) to the analysis grid coordinates.

detecting whether the maximum change in vertical velocity be-
tween the current solution and the previous 10 iterations is less
than 0.02 m s−1 or if

∥∥∥~V∥∥∥< 10−3, signifying that we have reached

a local minimum in ~V. In addition, in order to reduce noise in the
retrieved ~V, there are options for the user to use a low pass filter
on the retrieval as well as to adjust the smoothness constraint.

Executing the 3DVAR technique with just a few lines of code

With one line of code, one can use the
3DVAR technique to retrieve winds using the
pydda.retrieval.get_dd_wind_field procedure.
If one has a list of Py-ART grids list_of_grids that they
have loaded and provide ~V0 into arrays called u_init, v_init,
and w_init, retrieval of winds is as easy as
winds = pydda.retrieval.get_dd_wind_field(

list_of_grids, ui, vi, wi)

PyDDA even includes an initialization module that will generate
example ui, vi, and wi for the user. For example, in order to
generate a simple initial wind field of ~V =~0 in the shape of any
one of the grids in list_of_grids, simply do
import pydda.initialization as init

ui, vi, wi = init.make_constant_wind_field(
list_of_grids[0], wind=(0.0, 0.0, 0.0))

The user can add their own custom con-
straints and initializations into PyDDA. Since
pydda.retrieval.get_dd_wind_field has 3D NumPy
arrays as inputs for the initialization, this allows the user to enter
in an arbitrary NumPy array with the same shape as the analysis
grid as the initialization field.

In addition, PyDDA includes four different initialization rou-
tines that will create this field for you from various data sources
such as ERA-Interim. Similar to when the constraints are created,
the initialization is created by interpolating the original model data
from its coordinates to the analysis grid coordinates using nearest-
neighbor interpolation. This initialization is then entered in as ~V0
in the optimization loop.

A similar set of routines exist in in the constraintsmodule
for creating constraints from model fields. These routines are
listed in Table 3. In order to create these constraints, PyDDA
will first interpolate the model wind field ~Vm from the data’s
original coordinates data into the analysis grid’s coordinates using

PYDDA: A NEW PYTHONIC WIND RETRIEVAL PACKAGE 3

Data source Routine in constraints module

Weather
Research and
Forecasting
(WRF)

make_constraint_from_wrf

High Resolution
Rapid Refresh
(HRRR)

add_hrrr_constraint_to_grid

ERA Interim make_constraint_from_era_interim

TABLE 3: The differing model constraints PyDDA can provide to
the user. These constraints are constructed by interpolating the model
J(~V) to the analysis grid coordinates.

Fig. 1: An example streamline plot of winds in Hurricane Florence
overlaid over radar estimated rainfall rate. The LKTX and KMHX
NEXt Generation Radars (NEXRADs) were used to retrieve the winds
and rainfall rates. The blue contour represents the region containing
gale force winds, while the red contour represents the regions where
hurricane force winds are present.

nearest-neighbor interpolation. After that, for each model, an extra
term is added to J(~V) in the optimization technique. This term
corresponds to the sum of the squared error between the ~V and
~Vm:

Jm(~V) = cm ∑
(i, j,k) ∈ domain

(vi jk− vm,i jk)
2

cm is the weight given to this constraint by the user. The code
snippet below will interpolate an HRRR model run to a Py-ART
grid called mygrid. The get_dd_wind_field will then look
for the name of the model inside mygridwhen calculating Jm(~V).
import pydda.constraints as const

Add HRRR GRIB file
hrrr_path = 'my_hrrr_file.grib'
mygrid = const.add_hrrr_constraint_to_grid(

mygrid, hrrr_path)

The model constraints and retrieval initializations are based off of
any 3D field with the same array size and grid specification as
the input radar grids. Therefore, these lists can be easily expanded
with user routines that interpolate the model or other observational
data to the analysis grid.

Visualization module

In addition, PyDDA also supports 3 types of basic visualizations:
wind barb plots, quiver plots, and streamline plots. These plots
are created using matplotlib and return a matplotlib axis handle so

that the user can use matplotlib to make further customizations to
the plots. For example, creating a plot of winds on a geographical
map with contours overlaid on it such as what is shown in Figure
1 is as simple as:

import pyart
import pydda
import cartopy.crs as ccrs

Load Grids
ltx_grid = pyart.io.read_grid('ltx_grid.nc')
mhx_grid = pyart.io.read_grid('mtx_grid.nc')

Set up projection and plot of winds
ax = plt.axes(projection=ccrs.PlateCarree())
ax = pydda.vis.plot_horiz_xsection_streamlines_map(

[ltx_grid, mhx_grid], ax=ax,
background_field='rainfall_rate', bg_grid_no=-1,
level=2, vmin=0, vmax=50, show_lobes=False)

You can add more layers of data that you wish
wind_speed = np.sqrt(ltx_grid.fields["u"]["data"]**2
wind_speed += ltx_grid.fields["v"]["data"]**2)
wind_speed = wind_speed.filled(np.nan)
lons = ltx_grid.point_longitude["data"]
lats = ltx_grid.point_latitude["data"]
cs = ax.contour(

lons[2], lats[2], wind_speed[2], levels=[28, 32],
linewidths=8, colors=['b', 'r', 'k'])

plt.clabel(cs, ax=ax, inline=1, fontsize=15)

Adjust axes properties
ax.set_xticks(np.arange(-80, -75, 0.5))
ax.set_yticks(np.arange(33, 35.8, 0.5))
ax.set_title(ltx_grid.time["units"][-20:])

This therefore makes it very easy to create quicklook plots
from the data. In addition to horizontal cross sections, PyDDA
can also plot wind cross sections in the x-z and y-z planes so
that one can view a vertical cross section of winds. Since the
pydda.vis.plot_horiz_xsection_streamlines_map
returns a matplotlib axes handle, it is then possible for the user to
customize the plot further to add features such as wind contours
as well as adjust the axes limits as shown in the code above.

In addition to streamline plots, PyDDA also supports visual-
ization through quiver plots. Creating a quiver plot from a dataset
that looks like Figure 2, in this case a single Doppler retrieval, is
as easy as:

import pyart
import pydda

Grids = [pyart.io.read_grid('mywinds.nc')]
plt.figure(figsize=(7,7))
pydda.vis.plot_horiz_xsection_quiver(

Grids, None, 'reflectivity', level=6,
quiver_spacing_x_km=10.0,
quiver_spacing_y_km=10.0)

In a similar regard, one can also make wind barb plots like the one
in Figure 3 using a similar code snippet:

import pyart
import pydda

Grids = [pyart.io.read_grid('mywinds.nc')]
plt.figure(figsize=(7,7))
pydda.vis.plot_horiz_xsection_barbs(

Grids, None, 'reflectivity', level=6,
barb_spacing_x_km=15.0, barb_spacing_y_km=15.0)

More detailed examples on how to visualize wind fields using
PyDDA are available at the PyDDA example gallery at https://
openradarscience.org/PyDDA/source/auto_examples/index.html.

https://openradarscience.org/PyDDA/source/auto_examples/index.html
https://openradarscience.org/PyDDA/source/auto_examples/index.html

4 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Fig. 2: An example wind quiver plot from a retrieval from the C-
band Polarization Radar, Berrimah radar, and a weather balloon over
Darwin on 20 Jan 2006. The background colors represent the radar
reflectivity.

Fig. 3: As Figure 2, but using wind barbs.

Fig. 4: A wind barb plot showing the winds retrieved by PyDDA from
6 NEXRADs, the HRRR and the ERA-Interim. The locations of the
6 NEXRADs are marked by their location code. Contours are as in
Figure 1.

Hurricane Florence winds using NEXRAD and HRRR

Another example of the power of PyDDA is its ability to retrieve
winds from networks of radars over areas spanning thousands of
kilometers with ease. An example retrieval in Hurricane Florence
using 2 NEXRAD radars and HRRR was shown in Figure 1. For
this grid, the horizontal domain is 300 by 400 km with 1 km
grid spacing. While there is already hundreds of kilometers in
coverage, not all of the hurricane is covered within the retrieval
domain. This therefore motivated a feature in PyDDA to use dask
[Das16] to manage retrievals that are too large to execute on
one single machine. Figure 4 shows an example of a retrieval
from PyDDA using 6 NEXRAD radars combined with the HRRR
and ERA-Interim. The total horizontal coverage of the domain in
Figure 4 is 1200 km by 1200 km with 1 km spacing. Using a
multigrid method that first retrieves the wind field on a coarse
grid and then splits the fine grid retrieval into chunks, this
technique can use dask to retrieve the wind field in Figure 4
about 30 minutes on 4 nodes with 36-core Intel Broadwell CPUs.
The code to retrieve the wind field from many radars and both
models is as simple as passing the dask Client instance to the
pydda.get_dd_wind_field_nested technique. The data
and source code for the 2 radar example can be downloaded
from https://openradarscience.org/PyDDA/source/auto_examples/
index.html.

Given that hurricanes can span hundreds of kilometers and
yet have kilometer scale variations in wind speed, having the
ability to create such high resolution retrievals is important for
those using high resolution wind data for forecast validation and
damage assessment. In this example, the coverage of both the
tropical storm force and damaging hurricane force winds are
examined. Figures 1 and 4 both show kilometer-scale regions of
hurricane force winds that may otherwise not have been forecast
to occur simply because they are outside of the primary region of
damaging winds. This therefore shows the importance of having a
high resolution, three dimensional wind retrieval when examining
the effects of storm wind damage.

https://openradarscience.org/PyDDA/source/auto_examples/index.html
https://openradarscience.org/PyDDA/source/auto_examples/index.html

PYDDA: A NEW PYTHONIC WIND RETRIEVAL PACKAGE 5

Fig. 5: The locations of the four operational radars operated by the
Bureau of Meteorology in the vicinity of Sydney, Australia. The circles
represent the maximum unambiguous range of each radar.

Fig. 6: A quiver plot inside a supercell that spawned a tornado in
the vicinity of Sydney, Australia. The area inside the hatched contour
represents regions where the updraft velocity is greater than 1 m/s to
highlight regions where updrafts are present.

Tornado in Sydney, Australia using 4 radars

In addition to retrieving winds in hurricanes PyDDA can also
integrate data from radar networks in order to retrieve the winds
inside tornadoes. For example, a network of four scanning radars
in the vicinity of Sydney, Australia captured a supercell within
the vicinity of Sydney as shown in Figure 5. In this retrieval, a
horizontal domain of 350 km by 550 km with 1 km grid spacing
was used.

Figure 6 shows the winds retrieved by PyDDA inside this
supercell. Using data from the radars, PyDDA is able to provide
a complete picture of the rotation inside the supercell and even
resolves the updraft in the vicinty of the mesocyclone. Such
datasets can be of use for estimating the winds inside a tornado
at altitudes as low as 500 m above ground level. This therefore

Fig. 7: The locations of the two X-band Scanning Precipitation Radars
(XSAPRs) I5 and I6 as well as the KVNX NEXRAD. The two circles
represent the maximum unambiguous range of the XSAPR radars. The
maximum unambiguous range of KVNX covers the entire figure.

is capable of providing wind datasets that can be used to both
provide an estimated wind speed for wind damage assessments
as well as for verification of supercell simulations from weather
forecasting models. The data and source code for this example
is also available at https://openradarscience.org/PyDDA/source/
auto_examples/index.html.

Combining winds from 3 scanning radars with HRRR in Okla-
homa

A final example shows how easily data from multiple radars and
models can be combined together. In this case, we integrate data
from three scanning radars whose locations are shown in Figure 7
in the vicinity of the Atmospheric Radiation Measurement (ARM)
Southern Great Plains (SGP) site. In this example, the 2 XSAPR
radars are at X-band and therefore have lower coverage but greater
resolution than the S-band KVNX radar. In addition, the High
Resolution Rapid Refresh was used as an additional constraint,
with the constraint stronger in regions without radar coverage.
The horizontal domain for the retrieval was 100 km by 100 km
with 1 km spacing.

Figure 8 shows the resulting wind field of such a retrieval
during a case of stratiform rain with embedded convection that
occurred over the SGP site on 04 October 2017. Generally,
weaker winds and a less organized structure is seen compared
to the previous two examples. This would be expected in such
conditions. However, this also demonstrates the success in inte-
grating radar data from 3 radars and a high resolution reanalysis
to provide the most complete wind retrieval possible. The data
and source code for this example is also available at https:
//openradarscience.org/PyDDA/source/auto_examples/index.html.

Validation

PyDDA utilizes a series of unit tests in order to ensure that
quality results are produced with each build of PyDDA.
These tests are implemented using pytest. In total, PyDDA
currently has 27 tests on the software that test all aspects
of the software including the cost functions, optimization
loop, and visualizations. For each pull request to the master
branch of PyDDA, Travis CI runs this suite of unit tests on

https://openradarscience.org/PyDDA/source/auto_examples/index.html
https://openradarscience.org/PyDDA/source/auto_examples/index.html
https://openradarscience.org/PyDDA/source/auto_examples/index.html
https://openradarscience.org/PyDDA/source/auto_examples/index.html

6 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Fig. 8: A quiver plot of a wind retrieval from 2 XSAPR radars and
the KVNX NEXRAD radar in Oklahoma. In addition, the HRRR was
used as a constraint. The wind barbs are plotted over the reflectivity
derived from the maximum of the reflectivity from the 3 radars.

the program in order to ensure functionality of the program.
Examples of unit tests that are executed by PyDDA are based
on expected results from theoretical considerations regarding
each cost function. For example, in order to evaluate whether
pydda.cost_functions.calculate_mass_continuity
is working correctly, the tests evaluate this function using a wind
field with surface convergence in the center. If the cost function is
negative as would be expected, then the unit test passes. Another
example evaluates whether the model cost function is working
by checking to see if the wind field from the optimization loop
converges to the model input if no other data or constraints are
specified. In addition, the visualization modules are tested by
comparing their results against baseline images to ensure that they
are functioning correctly.

Contributor Information

We are currently welcoming contributions from the community
into PyDDA. A PyDDA road map demonstrates what kinds of
contributions to PyDDA would be useful. As of the writing of this
paper, the road map states that the current goals of PyDDA are to
implement:

• Support for a greater number of high resolution (LES)
models such as CM1 [BF02]

• Support for integrating in data from the Rapid Refresh
• Coarser resolution reanalyses such as the NCEP reanalysis

as initializations and constraints.
• Support for individual point analyses, such as those from

wind profilers and METARs
• Support for radar data in antenna coordinates
• Improvements in visualizations

• Documentation improvements, including better descrip-
tions in the current English version of the documentation
and versions of the documentation in non-English lan-
guages.

All contributions to PyDDA will have to be submitted by a
pull request to the master branch on https://github.com/openradar/
PyDDA. From there, the main developers will examine the pull
request to see if unit tests are needed and if the contribution both
helps contribute to the goals of the road map and if it passes a
suite of unit tests in order to ensure the functionality of PyDDA.
In addition, we also require that the user provide documentation
for the code they contribute. For the full information on how
to make a contribution, go to the contributor’s guide at https:
//openradarscience.org/PyDDA/contributors_guide/index.html.

In addition, for further information about how to use PyDDA,
please consult the documentation at https://openradarscience.org/
PyDDA.

Acknowledgments

The HRRR data were downloaded from the University of Utah
archive [BHL17]. In addition, the authors would like to thank
Alain Protat for providing the Sydney tornado wind data. PyDDA
was partially supported by the Climate Model Development and
Validation Activity of the Department of Energy Office of Science.
Dr. Tsengdar Lee of the NASA Weather program provided funds
that supported the development of MultiDop, a critical intermedi-
ate step toward the development of PyDDA.

Appendix: Mass continuity cost function in Python

This appendix shows an example cost function from PyDDA. The
code snippet below shows how the mass continuity cost function
can be implemented using NumPy.
import numpy as np

def calculate_mass_continuity(
u, v, w, z, dx, dy, dz, coeff=1500.0, anel=1):
"""
Calculates the mass continuity cost function by
taking the divergence
of the wind field.

All arrays in the given lists must have the same
dimensions and represent the same spatial
coordinates.

Parameters

u: Float array

Float array with u component of wind field
v: Float array

Float array with v component of wind field
w: Float array

Float array with w component of wind field
dx: float

Grid spacing in x direction.
dy: float

Grid spacing in y direction.
dz: float

Grid spacing in z direction.
z: Float array (1D)

1D Float array with heights of grid
coeff: float

Constant controlling contribution of mass
continuity to cost function

anel: int
= 1 use anelastic approximation, 0=don't

https://github.com/openradar/PyDDA
https://github.com/openradar/PyDDA
https://openradarscience.org/PyDDA/contributors_guide/index.html
https://openradarscience.org/PyDDA/contributors_guide/index.html
https://openradarscience.org/PyDDA
https://openradarscience.org/PyDDA

PYDDA: A NEW PYTHONIC WIND RETRIEVAL PACKAGE 7

Returns

J: float

value of mass continuity cost function
"""
dudx = np.gradient(u, dx, axis=2)
dvdy = np.gradient(v, dy, axis=1)
dwdz = np.gradient(w, dz, axis=0)

if(anel == 1):
rho = np.exp(-z/10000.0)
drho_dz = np.gradient(rho, dz, axis=0)
anel = w/rho*drho_dz

else:
anel = np.zeros(w.shape)

return coeff*np.sum(
np.square(dudx + dvdy + dwdz + anel))/2.0

REFERENCES

[BF02] George H. Bryan and J. Michael Fritsch. A benchmark
simulation for moist nonhydrostatic numerical models.
Monthly Weather Review, 130(12):2917–2928, 2002. URL:
https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>
2.0.CO;2, arXiv:https://doi.org/10.1175/1520-
0493(2002)130<2917:ABSFMN>2.0.CO;2,
doi:10.1175/1520-0493(2002)130<2917:
ABSFMN>2.0.CO;2.

[BHL17] Brian K. Blaylock, John D. Horel, and Samuel T. Liston. Cloud
archiving and data mining of high-resolution rapid refresh fore-
cast model output. Computers and Geosciences, 109:43 – 50,
2017. URL: http://www.sciencedirect.com/science/article/pii/
S0098300417305083, doi:https://doi.org/10.1016/
j.cageo.2017.08.005.

[BLNZ95] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu.
A limited memory algorithm for bound constrained optimization.
SIAM J. Sci. Comput., 16(5):1190–1208, September 1995. URL:
http://dx.doi.org/10.1137/0916069, doi:10.1137/0916069.

[Das16] Dask Development Team. Dask: Library for dynamic task
scheduling, 2016. URL: http://dask.pydata.org.

[HC16] Jonathan Helmus and Scott Collis. The Python ARM
Radar Toolkit (Py-ART), a Library for Working with
Weather Radar Data in the Python Programming Lan-
guage. Journal of Open Research Software, 4(1), July 2016.
URL: http://openresearchsoftware.metajnl.com/articles/10.5334/
jors.119/, doi:10.5334/jors.119.

[JOP+01] Eric Jones, Travis Oliphant, Pearu Peterson, et al. Scipy: Open
source scientific tools for python, 2001. [Online; accessed
<today>]. URL: "http://www.scipy.org/".

[LSKJ17] Timothy Lang, Mario Souto, Shahin Khobahi, and Bobby Jack-
son. nasa/multidop: Multidop v0.3, October 2017. URL: https:
//doi.org/10.5281/zenodo.1035904, doi:10.5281/zenodo.
1035904.

[MF98] L. Jay Miller and Sherrie M. Fredrick. Custom editing and
display of reduced information in cartesian space (cedric) man-
ual. Technical report, National Center for Atmospheric Research,
Mesoscale and Microscale Meteorology Division, Boulder, CO.,
1998.

[Off15] Met Office. Cartopy: a cartographic python library with a
matplotlib interface. Exeter, Devon, 2010 - 2015. URL:
http://scitools.org.uk/cartopy.

[PSX12] Corey K. Potvin, Alan Shapiro, and Ming Xue. Impact
of a vertical vorticity constraint in variational dual-doppler
wind analysis: Tests with real and simulated supercell data.
Journal of Atmospheric and Oceanic Technology, 29(1):32–
49, 2012. URL: https://doi.org/10.1175/JTECH-D-11-00019.
1, arXiv:https://doi.org/10.1175/JTECH-D-11-
00019.1, doi:10.1175/JTECH-D-11-00019.1.

[SPG09] Alan Shapiro, Corey K. Potvin, and Jidong Gao. Use
of a vertical vorticity equation in variational dual-
doppler wind analysis. Journal of Atmospheric and
Oceanic Technology, 26(10):2089–2106, 2009. URL:
https://doi.org/10.1175/2009JTECHA1256.1, arXiv:
https://doi.org/10.1175/2009JTECHA1256.1,
doi:10.1175/2009JTECHA1256.1.

[vdWCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux. The
numpy array: A structure for efficient numerical computation.
Computing in Science Engineering, 13(2):22–30, March 2011.
doi:10.1109/MCSE.2011.37.

https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
http://arxiv.org/abs/https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
http://arxiv.org/abs/https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
http://www.sciencedirect.com/science/article/pii/S0098300417305083
http://www.sciencedirect.com/science/article/pii/S0098300417305083
http://dx.doi.org/https://doi.org/10.1016/j.cageo.2017.08.005
http://dx.doi.org/https://doi.org/10.1016/j.cageo.2017.08.005
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1137/0916069
http://dask.pydata.org
http://openresearchsoftware.metajnl.com/articles/10.5334/jors.119/
http://openresearchsoftware.metajnl.com/articles/10.5334/jors.119/
http://dx.doi.org/10.5334/jors.119
"http://www.scipy.org/"
https://doi.org/10.5281/zenodo.1035904
https://doi.org/10.5281/zenodo.1035904
http://dx.doi.org/10.5281/zenodo.1035904
http://dx.doi.org/10.5281/zenodo.1035904
http://scitools.org.uk/cartopy
https://doi.org/10.1175/JTECH-D-11-00019.1
https://doi.org/10.1175/JTECH-D-11-00019.1
http://arxiv.org/abs/https://doi.org/10.1175/JTECH-D-11-00019.1
http://arxiv.org/abs/https://doi.org/10.1175/JTECH-D-11-00019.1
http://dx.doi.org/10.1175/JTECH-D-11-00019.1
https://doi.org/10.1175/2009JTECHA1256.1
http://arxiv.org/abs/https://doi.org/10.1175/2009JTECHA1256.1
http://arxiv.org/abs/https://doi.org/10.1175/2009JTECHA1256.1
http://dx.doi.org/10.1175/2009JTECHA1256.1
http://dx.doi.org/10.1109/MCSE.2011.37

	Introduction
	Three dimensional variational (3DVAR) technique
	Executing the 3DVAR technique with just a few lines of code
	Visualization module
	Hurricane Florence winds using NEXRAD and HRRR
	Tornado in Sydney, Australia using 4 radars
	Combining winds from 3 scanning radars with HRRR in Oklahoma
	Validation
	Contributor Information
	Acknowledgments
	Appendix: Mass continuity cost function in Python
	References

