


# Low-dose Caffeine Administration During Acute Sleep Deprivation Eliminates Visual Motion Processing Impairment, but Does Not Improve Saccadic Rate

Erin E. Flynn-Evans PhD MPH<sup>1</sup>, Terence L. Tyson<sup>2</sup>, Patrick F. Cravalho PhD<sup>3</sup>, Nathan H. Feick<sup>3</sup>, Leland S. Stone PhD<sup>2</sup>



<sup>1</sup>Fatigue Countermeasures and <sup>2</sup>Visuomotor Control Laboratories, Human Systems Integration Division, NASA Ames Research Center, <sup>3</sup>San Jose State University Foundation, NASA Ames Research Center.

## INTRODUCTION

- Oculomotor behavior and Visual Motion Processing vary with time awake:
  - Pursuit initiation and steady-state gain reduced,
  - Saccadic rate increased to compensate, and
  - Precision in direction/speed processing reduced.
- Low-dose caffeine (~0.3 mg/kg) is associated with increased alertness and performance on visual reaction time tasks (Wyatt et al. 2004)
- We hypothesized that the impairment of oculomotor and visual metrics associated with time awake would be mitigated by low-dose caffeine administration.

#### **METHODS**

- Healthy participants (mean age = 25.0,  $\pm 5.6$ ) completed an overnight laboratory sleep-deprivation constant routine study (Mills *et al.* 1978) with (N = 9) or without (N = 12) caffeine administration.
- Two-week at-home pre-study schedule with 8.5 hours in bed with regular timing, verified by actigraphy, callins, and sleep logs
- Comprehensive Oculomotor Behavioral Response Assessment (Liston & Stone, 2014; Figure 1)
  - Participant required to track constant velocity target motion across the screen for ~1 second (radial Rashbass step-ramps)
  - Motion onset at unpredictable time and location with unpredictable direction and speed.
  - All directions covered in 2° steps
  - Speeds of 16, 18, 20, 22, or 24 deg/s
  - Data-collection runs administered 2-5 times during the day and hourly from habitual bedtime until morning
  - High-speed eye-tracking system used to measure and compute 12 metrics per trial with 180 trials per run.



B Speed & Directional Uncertainty

90
25
150
30

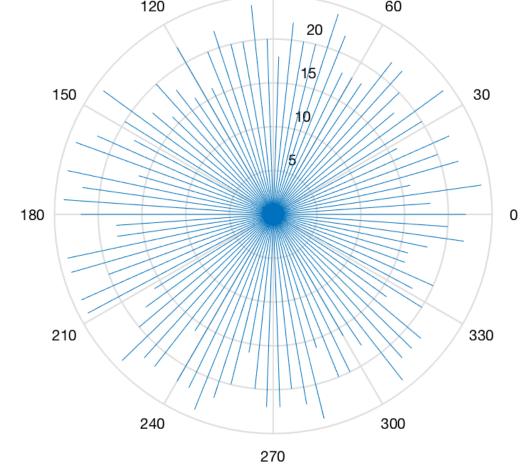
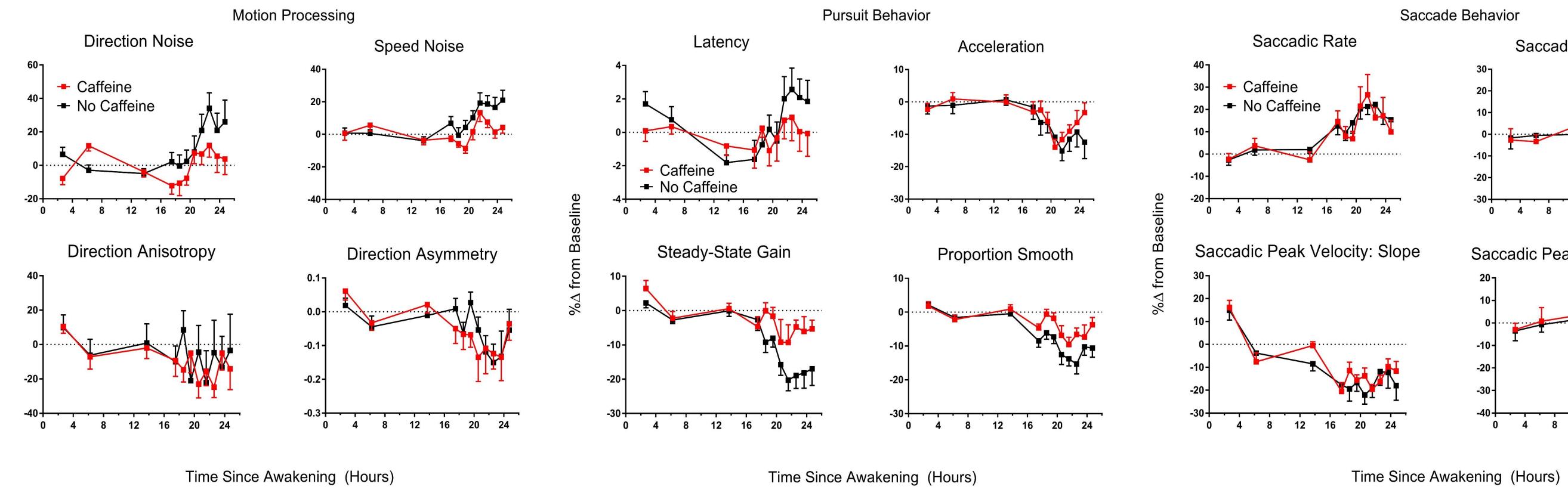




Figure 1. A. Eye-tracking and display system.

B. Example of randomized trial speeds and directions.

## RESULTS



**Figure 2**. Each panel plots the percentage deviation (% $\Delta$ ) from baseline (dashed black line, average of daytime measurements) with each measurement binned by run ( $\pm$  SEM across participants). The black curves show runs without caffeine administration and the red curves with caffeine administration.

- Acceleration and gain of pursuit, saccadic rate, proportion smooth, peak velocity (slope & intercept), as well as direction and speed noise, all showed significant linear trends as a function of time awake across a 24-hr period, without caffeine administration (Stone *et al.* 2019).
- ANCOVA comparison of the caffeine and no-caffeine trends showed that the linear trend was eliminated for direction (p < 0.05) and speed (p < 0.005) noise, and approximately halved for pursuit gain (p < 0.006) and proportion smooth (p < 0.005).
- Caffeine administration was associated with a linear increase in saccadic amplitude with time awake (p < 0.003).

## CONCLUSIONS

- Caffeine was protective of visual motion processing during sleep-deprivation and circadian misalignment with precision remaining at baseline levels overnight under low-dose caffeine.
- Caffeine was only partially protective of pursuit gain and proportion smooth, but enabled a compensatory increase in saccadic amplitude with time awake not seen without caffeine.
- While the <u>amplitude</u> of catch-up saccades increased only with low-dose caffeine, the increase in saccadic <u>rate</u>
   with time awake remained the same with or without caffeine.
- We conclude that the systematic impairment of the precision of visual motion processing with time awake was largely a homeostatic effect, while time-awake trends on tracking gain may have reflected a mixture of homeostatic and circadian effects thus are only partially mitigated by caffeine.

## REFERENCES

Wyatt J.K., Cajochen C, Ritz-De Cecco A., Czeisler C.A., Dijk D.J. (2004). Low-dose repeated caffeine administration for circadian-dependent performance degradation during extended wakefulness. Sleep 27(3):374-81.

Liston, D.B., Stone, L.S. (2014). Oculometric assessment of dynamic visual processing. J Vis 14:12.

Mills, J.N., Minors, D.S., Waterhouse, J.M. (1978). Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms. *J Physiol*, 285:455-470. Stone, L.S., Tyson T.L., Cravalho P.F., Feick N.H., Flynn-Evans E.E. (*under review*) Distinct Pattern of Oculomotor Impairment Associated with Acute Sleep Loss and Circadian Misalignment.