

Material Characterization of Additively Manufactured Titanium Parts for an Environmental Control and Life Support System in Space Flight Hardware

Preston McGill¹ **Christopher Roberts¹**, Presenter Larry Foreman¹ Matthew Roberts² Ellen Rabenberg¹ Arthur Brown³

- ¹ Materials and Processes Laboratory, NASA Marshall Space Flight Center, Huntsville, Alabama.
- ² Jacobs Engineering, NASA Marshall Space Flight Center, Huntsville, Alabama.
- ³ Human Exploration Development Chief Engineer's Office, NASA, Marshall Space Flight Center, Huntsville, Alabama

EXPLORE MARSHALL

www.nasa.gov

Introduction

Hot-fire testing of additively manufactured nozzle. Credits: NASA/MSFC/David Olive

3-D Printed Habitat Challenge first place in the Phase 3: Level 4 *Credits: Team SEArch+/Apis Cor*

Additive Manufacturing Facility aboard ISS NASA Image: ISS047E152501

Introduction: Continued...

Advantages:

- Altered Design Space
- Fast Production Time
- Potential Cost Reductions
- Potential Weight Reductions
- In-Situ Resource Utilization
- Rapid Design Iteration

Disadvantages:

- New Design Constraints
- Difficult Inspection
- Limited Availability of Standards
- Limited Materials Data
 - "New Process"
 - Small Sample Sizes
- Limited Process knowledge

ECLSS PCPA

Environmental Control and Life Support System (ECLSS) Pressure Control Pump Assembly (PCPA)

- Peristaltic pumps in the Urine Processor Assembly (UPA)
 - Maintains vacuum pressure on the Distillation Assembly (DA)
 - Provide a two phase flow to the Separator Pump Assembly (SPA)
- Short lifespan

Part Design & Production

- PCPA shell was replaced with an additively manufactured component
- Selective Laser Melting (SLM)
 - EOS M290
 - Argon
 - 60 µm
 - Titanium Grade 5
- Stress Relieved
- Hot Isostatic Pressed

PCPA Shell

New Assembly

Old Assembly Section View

Part Design & Production

 Manufactured before MSFC-SPEC-3717 and MSFC-STD-3716 were released

Tupo	Qua	Metrology	
туре	HIP	As Built	Sample
Tensile	6	1	
Poisson's Ratio	1	1	•
High Cycle Fatigue	2	-	
Metallography	3	3	•
da/dN	2	2	•
Fracture Toughness	1	-	•

Testing Does Not Represent a Statistically Significant Dataset

Testing was used to support analysis assumptions

Tensile Testing

- Samples Tested to ASTM E8/E8M
- HIP Samples showed reduced tensile and yield strength comparable to traditional Ti64
- Fracture elongation, while improved by the HIP procedure still does not meet traditional values

	Tensile Stress	Yield Stress	Inelastic	Modulus of	Fracture	Reduction of
Specimen ID	[ksi]	[ksi]	Strain [%]	Elasticity	Elongation [%]	Area [%]
Heat Treated ^a	145.0	138.5	8.8	17.1 ^b	9.8	10.6
As-Built	170.6	140.5	4.7	15.2 ^b	5.8	5.4

^{*a*} Data represents mean values

^b Modulus of elasticity value is for reference only. Specific modulus tests are required for true value.

Poisson's Ratio Testing

- Tested per ASTM E132
- Three runs
- Slope was calculated using linear least squares regression on the portion of the curve between 500 lbf and 2500 lbf

Sample	Poisson's Ratio			
Heat Treated	0.296			
As-Built	0.306			

High Cycle Fatigue: Conditions

- Design life dictated testing to 20 million cycles
- Room temperature and pressure
- Samples were tested under 2 conditions in load control
 - Sample 1 tested at 75% of yield strength
 - Sample 2 tested at 40% of yield strength

Specimen ID	Alternating Stress	Max Stress	Mean Stress	Min Stress	R-Ratio
	[ksi]	[ksi]	[ksi]	[ksi]	
HCF-1 ⁺	103.8	103.8	0.0	-103.8	-1
HCF-2	55.3	55.3	0.0	-55.3	-1

[†] Sample previously cycled at low stress levels

High Cycle Fatigue: Sample Geometry & NDT

- Samples were produced in a low cycle fatigue geometry
 - Analogue samples were produced of wrought Ti64 to ensure acceptable alignment and temperature rise
- AM samples were machined to a final finish of RMS 8
- AM samples inspected by eddy current (calibrated to a 0.080"L x 0.010"D notch specimen)
 - No crack-like indications noted

1/2-20UNF-2A

High Cycle Fatigue: Results & Fracture Surface

Specimen ID	Relative Stress	Alternating Stress [ksi]	Max Stress [ksi]	Mean Stress [ksi]	Min Stress [ksi]	R- Ratio	Cycle Count
$HCF-1^{+}$	75% s _y	103.8	103.8	0.0	-103.8	-1	61,432
HCF-2	40% s _y	55.3	55.3	0.0	-55.3	-1	Runout @ 20M

[†] Sample previously cycled at low stress levels

Microscopy: As-Built

- One sample from each local orientation was mounted, polished and imaged
- Entrapped gas porosity observed
- Evidence of layering was observed

Microscopy: HIP'ed Samples

 HIP'ed samples showed no evidence of layering or visible porosity

Fracture Toughness

- One compact tension fracture toughness test, W = 0.75", B = 0.25"
- Sample tested in the heat treated condition at room temperature and pressure per ASTM E1820
- Crack opening direction normal to build plane

- Load-Crack Opening Displacement Curve with Compliance Unloading Cycles
- Stable tearing followed by fracture instability in the final load response

- ASTM E 1820 Evaluation
- Test did not produce a JIc value due to lack of well defined crack extension and R-curve regression curve fit invalidity
- Rising R-curve behavior reflecting stable tearing capability
- Fracture instability occurred after stable tearing.
- Jq = 177 in-lb/in²
- Kjq = 57.9 ksi√in

- ASTM E 399 Evaluation
- Test did not produce a KIc value due to sample ligament size.
- $(Kq/\sigma_{YS})^2 = 0.171$ in
- Required ligament = 0.42 in
- Actual ligament = 0.36 in
- The extended COD capability after Pq suggests some stable tearing capability
- Kq = 54.5 ksi√in
- Kq ≈ KJq

- Evaluations from a single data point are speculative, but...
- Fracture toughness in the build plane is approximately 55 ksi√in for 0.25" thick material at room temperature.
- Average fracture toughness for mill annealed forged bar titanium (yield strength range 124 – 145 ksi) is 57 ksi√in, COV=11.7 ksi√in (Ref: MMPDS-10)
- Material exhibits rising R-curve behavior
- Additional testing and fracture surface microscopy is needed to characterize material

Fatigue Crack Growth

- Four compact tension fatigue crack growth rate (FCGR) specimens
 - Two heat treated
 - Two as-built samples
- Tested at room temperature and pressure per ASTM E647
 - ΔK increasing tests
 - R ratio = 0.1
- Objective to evaluate Paris region crack growth

Fatigue Crack Growth: Continued

Fatigue Crack Growth: Continued

Fatigue Crack Growth: Continued

- As built material exhibits more scatter vs heat treated material
- As built material instability consistent with estimated fracture toughness
- Evaluation of crack growth rate at additional R-ratios recommended to establish mean stress effects

Work Going Forward

- Implementing MSFC-SPEC-3716 & MSFC-STD-3717
 - Qualified Metallurgical Process
 - More Samples per Build
 - Build Confidence in AM
 Technology
 - Work with ASTM on standards development

Conclusions & Summary

- Samples compare reasonably well to wrought data
- The process is maturing to the point where it may provide viable alternatives to engineering challenges
- Going forward more work is needed to obtain a statistically significant dataset to allow for the development of robust design allowables

Questions

EXPLORE MARSHALL

MAKING HUMAN SPACE EXPLORATION POSSIBLE