EVM World 2019

May 22 - 24, 2019 The Westin Fort Lauderdale, FL

"Maximizing Program & Performance Management Through Collaboration"

A NASA Case Study - Are EVM Estimate at Completion (EAC) Reliable?

Jerald Kerby / Brad Richards

Agenda

- A real life example
- EAC Analysis Study
 - Answer the question: "Does EVM Work?" In particular: "Does EVM provide advance insight into a projects final cost/EAC?"
 - Tools and Data
 - Findings
- Summary

Year 1

The Big Picture

The tools

	NiteHawk 12/	30/16 WBS E	Oollars [00000	000 : Nite	lawk]	Ţ				
		Six Perio	od Summary			E				
ITEM	7/31/2016	8/31/2016	9/30/2016	10/31/2016	11/30/2016	12/30/2016				
BCWS_c	863,492	750,068	729,503	689,653	433,457	1,272,862				
BCWP_c	1,046,865	1,001,470	1,667,961	1,437,520	577,449	1,469,169				
ACWP_c	1,329,316	2,459,044	1,249,967	1,237,910	1,298,686	1,849,684				
SCH VAR_c	183,374	251,402	938,458	747,867	143,992	196,307				
SCH VAR %_c	21.24	33.52	128.64	108.44	33.22	15.42				
SPI_c	1.212	1 335	2 286	2 084	1 332	1.154	ı	1	ı	1
CEI	0.311	_		NitoLl	out 12/3	N/16 W/De	Dollare [000	OOOOO - Nitol	Javek1	
COST VAR_c	-282,451			MILET	awk 12/3			00000 : Nitel	lawkj	
COST VAR %_c	-26.98					Six Peri	od Summar	y		
CPI_c	0.788									
BCWS	41,521,532	ITEM		7/2	1/2016	8/31/2016	9/30/2016	10/31/2016	11/30/2016	12/30/2016
BCWP	36,277,269									
ACWP	48,810,398	CUR C	PI Fcst	72,1	22,676	93,889,539	64,277,085	66,291,497	86,859,211	74,024,418
SCH VAR SCH VAR %	-5,244,263 -12.63	3 PER	AVG Fcst	73,8	55,105	82,017,141	73,790,265	71,289,505	69,594,918	74,023,442
SPI	0.874	6 PFR	AVG Fcst	73.8	55,105	82,017,141	74,165,763	71,964,645	74,025,306	74,702,831
BEI	0.929	_	PI Fcst		11,994	75,141,146	73,676,605	73,132,532	74,062,729	75,141,277
TOTAL FLOAT	0.525	_			•					
COST VAR	-12,533,129	CPI*SF	PI Fcst	77,0	82,871	78,338,359	75,879,096	74,718,915	75,530,189	76,416,083
COST VAR %	-34.55	MICON	/I Fcst	77,4	75,582	86,135,278	76,419,176	73,455,405	75,489,876	75,946,987
CPI	0.743	COST	& SCH Fcst	71.5	18,827	72,844,894	71,568,359	71,131,038	71,967,780	73,089,853
TCPI-BAC	3.151	- 000.	u 00111 001	, .	10,021	12,011,001	,000,000	,,	. 1,001,100	10,000,000
TCPI-EAC	0.631	V PERF I	FACTOR Fcs	t 🖊 67,1	69,323	68,626,897	68,208,903	68,312,600	69,197,008	70,502,770
BAC	54,636,194	_								
EAC	77,925,298	User E	ntered EAC		0	0	0	0	0	0
VAC	-23,289,104	Entere	d EAC		NaN	NaN	NaN	NaN	NaN	NaN
VAC %	-42.63									
% SCHED	76	Weighted VAR: Cost = 50.0%, Schedule = 50.0, Performance Factor = 1.00								
% COMP	66.4									
% SPENT	89.34	Forecasts are generated independently for each level.								

Encore Empower

EAC ANALYSIS STUDY

What we did...

- Selecting data
 - Development work needed to be completed
 - Seven NASA projects selected for this study
- Reviewed relevant literature and previous studies
- Results are presented in percentages not \$

 One of the seven projects did not have EVM data at the 20% completion point

 In all cases the overrun only worsened Project Cost Overrun at 20% and 100% Completion Points

	Percent Complete			
Project	20%	100%		
Α	0.3%	-6.6%		
В	0.4%	-6.4%		
С	-2.4%	-22.1%		
D	-1.9%	-2.3%		
E	0.7%	-17.0%		
F	1.2%	-1.8%		
Avg of \$ values	-1.0%	-10.6%		

¹Christensen Wilson 1992

- DoD Finding: Once a contract is over 20%
 complete, the cumulative Cost Performance Index
 (CPI) does not change by more than 10 percent,
 and in most cases it only worsens²
- One project (E) the CPI grew by more than 10%
- One project (D) the CPI improved
- NASA data generally supports DoD finding

Duntant		% Change				
Project	20%	25%	50%	75 %	100%	(20 to 100)
Α	1.01	1.00	0.99	0.96	0.94	-7.6%
В	1.02	1.00	0.99	0.96	0.94	-7.8%
С	0.90	0.89	0.86	0.83	0.82	-8.8%
D	0.91	0.90	1.00	1.00	0.97	6.6%
Е	1.04	1.00	0.92	0.86	0.85	-18.1%
F	1.08	1.07	1.03	1.00	0.98	-8.7%

²Christensen Wilson 1992

- At the 50%, completion point for each of the NASA projects the EVM EAC was within 13% or less of the final cost to complete the project
- Prior to 50% completion,
 NASA projects have
 significant budget volatility
 (some projects were
 replanned)
- At 50% completion point the baselines stabilized and produced accurate EACs for each project

Cost at 50% and 75%
Completion Points

	EVM_EAC			
Projects	50%	75 %		
Α	8%	4%		
В	13%	7%		
С	1%	1%		
D	12%	7%		
Е	9%	2%		
F	11%	5%		
G	8%	1%		

 DoD Finding: "overruns at completion predicted by the contractor and by the government program office were unrealistically optimistic

NASA data generally supports the DoD study conclusion

Results

- Once a contract is more than 15-20% complete, the final overrun will be worse than the present overrun
- Once a contract is over 20% complete, the cumulative Cost Performance Index (CPI) does not change by more than 10 percent, and in most cases it only worsens
- Contractor/Projects EACs are usually more optimistic than EVM EACs

Summary

- EVM can provide early warning signs of potential cost and schedule problems
- This study validated that one of the benefits of implementing an EVM process is the ability to forecast how much a project will cost

EVM is effective in forecasting cost growth and predicting a realistic EAC

QUESTIONS?

BACK-UP

When is EVM required?

Projects that are valued to have a LCC =>\$250M anytime prior to KDP-C require EVM. Contract thresholds are governed by the NASA FAR Supplement 1852 and 1834

^{*} SMD EVM Guidance for Cat 3, Class D less than requires the Seven Principles of EVM instead of the 32 guidelines for projects and contracts

EAC Formulas

