
June 201

NASA/CR 201 -220 83

Safe and Optimal Techniques Enabling 
Recovery, Integrity, and Assurance

Kit Y. Siu and Heber Herencia-Zapana 
General Electric Global Research Center, Niskayuna, New York 

Panagiotis Manolios 
Northeastern University, Boston, Massachusetts 

Michael Noorman and Richard Haadsma 
General Electric Aviation Systems, Grand Rapids, Michigan



NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA scientific and technical information (STI) 
program plays a key part in helping NASA maintain 
this important role.

The NASA STI program operates under the 
auspices of the Agency Chief Information Officer. 
It collects, organizes, provides for archiving, and 
disseminates NASA’s STI. The NASA STI 
program provides access to the NTRS Registered 
and its public interface, the NASA Technical 
Reports Server, thus providing one of the largest 
collections of aeronautical and space science STI in 
the world. Results are published in both non-NASA 
channels and by NASA in the NASA STI Report 
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counter-part of peer-
reviewed formal professional papers but has
less stringent limitations on manuscript length
and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing 
and publishing research results, distributing 
specialized research announcements and feeds, 
providing information desk and personal search 
support, and enabling data exchange services.

For more information about the NASA STI 
program, see the following:

Access the NASA STI program home page
at http://www.sti.nasa.gov

E-mail your question to help@sti.nasa.gov

Phone the NASA STI Information Desk at
757-864-9658

Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199



National Aeronautics and 
Space Administration 

Langley Research Center  
Hampton, Virginia 23681-2199 

Prepared for Langley Research 
Center under Contract NNL15AA02C

June 201

NASA/CR 201 -220 83

Safe and Optimal Techniques Enabling 
Recovery, Integrity, and Assurance

Kit Y. Siu and Heber Herencia-Zapana 
General Electric Global Research Center, Niskayuna, New York 

Panagiotis Manolios 
Northeastern University, Boston, Massachusetts 

Michael Noorman and Richard Haadsma 
General Electric Aviation Systems, Grand Rapids, Michigan



Available from: 

NASA STI Program / Mail Stop 148 
NASA Langley Research Center 

Hampton, VA  23681-2199 
Fax: 757-864-6500 

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not 
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the 
National Aeronautics and Space Administration. 



 

 

 

 

 

SOTERIA 
Safe and Optimal Techniques Enabling Recovery, Integrity, and Assurance 

 

 

 

 

 

 

 

 

 

 

 

GE Global Research 
Kit Siu Heber Herencia-Zapana 

siu@ge.com heber.herencia-zapana@ge.com 
  

Northeastern University 
Panagiotis Manolios 

pmanolios@gmail.com 
  

GE Aviation Systems 
Michael Noorman 

michael.noorman@ge.com 
Richard Haadsma 

richard.haadsma@ge.com 
  

mailto:siu@ge.com
mailto:heber.herencia-zapana@ge.com
mailto:pmanolios@gmail.com
mailto:michael.noorman@ge.com
mailto:richard.haadsma@ge.com


 

SOTERIA Contractor Report Page 2 

Contents 
1 Introduction ...................................................................................................................................................... 3 

2 IMA Architectures ............................................................................................................................................. 4 

3 Fault Tree Analysis (FTA) .................................................................................................................................. 9 

3.1 IMA Fault Trees ............................................................................................................................................ 9 

3.2 Other techniques ....................................................................................................................................... 11 

4 FTA Implementation in SOTERIA .................................................................................................................... 11 

4.1 Verified against existing tools .................................................................................................................... 12 

4.2 Limitations of OSATE and OpenFTA ........................................................................................................... 21 

5 Fault Tree Synthesis ........................................................................................................................................ 22 

5.1 Decision Tables ........................................................................................................................................... 22 

5.2 Monotone Formulas ................................................................................................................................... 30 

6 Modeling Language ........................................................................................................................................ 31 

6.1 Library of Components ............................................................................................................................... 32 

6.2 Model ......................................................................................................................................................... 33 

6.3 Validation Checks ....................................................................................................................................... 34 

7 Analysis Capability .......................................................................................................................................... 42 

8 Visualization ................................................................................................................................................... 46 

9 Functionally Integrated Distributed Systems & Other Examples ................................................................... 50 

9.1 B777 ........................................................................................................................................................... 50 

9.2 B787 ........................................................................................................................................................... 64 

9.3 Modeling Multiple Failures ........................................................................................................................ 71 

9.4 Wheel Brake and Landing Gear System ..................................................................................................... 80 

9.5 Models with Fault Dependencies ............................................................................................................. 107 

10 Architecture Synthesis .................................................................................................................................. 109 

10.1 Challenge Architectures ........................................................................................................................... 109 

10.2 Inputs from User and Roles ...................................................................................................................... 111 

10.3 Architecture Synthesis Goals and Approach ............................................................................................ 119 

10.4 Results ...................................................................................................................................................... 125 

10.5 Possible Extensions .................................................................................................................................. 128 

11 Conclusion .................................................................................................................................................... 129 

12 Acknowledgements ...................................................................................................................................... 129 

13 Works Cited .................................................................................................................................................. 129 

 



 

SOTERIA Contractor Report Page 3 

1 Introduction 
There is a trend in the aviation industry from federated to integrated computing systems (Wolfig & 

Jakovlijevic, 2008). Combining a number of traditional stand-alone federated systems into an integrated 

common platform (called Integrated Modular Avionics, IMA) has the benefit of increased power 

efficiency, reduced support hardware, and reduced cabling. Changing from traditional, federated 

systems has a significant impact on the system architecture and hence the process of how avionic 

systems are to be analyzed. Traditional approaches to safety analysis become inefficient when 

functional boundaries can no longer be assumed for failure independence and fault isolation.  

We developed a tool to accelerate the safety engineer’s ability to perform safety analysis of IMA 

systems through modeling, as well as optimize the system engineer’s ability to develop a system 

through architecture synthesis. This work was the result of a three-year research effort called SOTERIA1 

(Safe and Optimal Techniques Enabling Recovery, Integrity, and Assurance). In this program, we 

developed a compositional modeling language that supports rapid development, modification, and 

evaluation of architectures. The modeling language is structured such that the end-user defines a library 

of components with information on component reliability, connectivity, and fault propagation logic. The 

system model is built by instantiating the components from the library, connecting the components, and 

identifying the top-level faults of interest. Our tool is compositional in that the end-user only needs to 

define safety aspects at the component level. The tool takes the model and automatically synthesizes 

both the qualitative and quantitative safety analyses.  We go further by allowing users to describe 

system information such as components to use in an architecture and their connection compatibility and 

automatically synthesize an architecture that meets the top-level probability target adhering to end-

user specified constraints. This capability allows users to rapidly explore a design space. 

We use OCaml as our programming language (www.ocaml.org). OCaml is a high-level, type-safe, 

functional programming language, that also has imperative language constructs. It is as fast as C and 

scales very well. There are several online articles that tout the features of OCaml (Meister, 2014) 

(Waclena, 2006) (Minsky, 2016). OCaml is strongly typed so that one type cannot be accidentally used 

with another. OCaml does static type checking, where the compiler determines the data types at 

compile time and will not compile a program with type conflicts. Users can define their own types, but 

the compiler will also automatically infer types that are not explicitly declared, which is very powerful 

for preventing inconsistent use of functions and data types.  

OCaml is the base language from which Professor Manolios and his collaborators developed CoBaSA, a 

high-level modeling and specification language coupled with a synthesis tool (Manolios & Papavasileiou, 

ILP Modulo Theories, 2013) (Hang, Manolios, & Papavasileiou, 2011). CoBaSA, later renamed to Inez 

(github.com/vasilisp/inez), is based on the Jane Street Core (janestreet.github.io), which is an industrial 

strength alternative to OCaml’s standard library. On this program, we follow Professor Manolios’ 

previous success and use OCaml with the Jane Street Core to develop the modeling language and the 

safety analysis and synthesis capabilities. 

                                                            
1 A bit of trivia – in modern Greek, soteria (σωτηρια) means salvation, and in Greek mythology, Soteria was the 
goddess or spirit of safety, and of deliverance and preservation from harm. 



 

SOTERIA Contractor Report Page 4 

The remainder of the report is organized as follows. Section 2 gives a description of IMA architectures. 

Section 3 goes over fault-tree analysis. In section 4 we describe how fault-tree analysis is implemented 

in our tool and how ours compare with existing tools. In section 5 we discuss our fault-tree synthesis 

design and capability. In section 6 we describe our modeling language including validation checks to 

assist the end-user. In section 7 we give an example of our analysis capability and describe our ability to 

handle modeling aspects such as loops. In section 8 we demonstrate our tool’s visualization capability 

which includes the depiction of fault trees and architectures at various levels of abstractions. In section 

9 we show an extensive number of examples, including an industrial size problem. In section 10 we 

describe our architecture synthesis capability. Finally, we end the report with some conclusions in 

section 11. 

The source code is available on GitHub under the following code repositories. 

• github.com/ge-high-assurance/safety-analysis 

• github.com/ge-high-assurance/SOTERIA 

2 IMA Architectures 
The challenge to assure safety on an IMA architecture is compounded by having multiple vendors 

supplying different functions that must share resources on the same distributed platform. Safety 

assumptions made by vendors of the hosted functions may not be valid. The challenge for a platform 

supplier is to provide platform level services that ensure non-interference between functions and 

provide the means for safe and coordinated interaction with no undesired emergent properties. The 

goal of the platform level modeling techniques developed in this program is to enhance the analysis 

capability of the basic infrastructure features of the platform services to effectively evaluate the safety 

aspects of the system. The analysis will validate the existing architecture services (such as redundancy 

and data integrity protection) and uncover areas where architecture changes are needed. 

An IMA architecture provides common platform resources such as computing, data transport, and I/O. 

The architecture can then support hosted functions that implement aircraft functionality using the 

common IMA resources, as illustrated in Figure 1. There is a published guidance (DO-297, 2005) that 

discusses platform, hosted function (HF), and IMA system development and safety activities.  



 

SOTERIA Contractor Report Page 5 

 

Figure 1 - Hosted functions on an IMA platform, using platform resources. 

As an example, Figure 2 shows an IMA architecture that we will model and analyze on this program. 

Looking at the diagram from the bottom up, the caption “Signal Source/Destination” means that the 

architecture can support either a sensor (signal source) or an effector (signal destination). For this 

project, we narrowed our scope to signal sources (i.e., sensors). In this case then there are 3 data 

sources transporting unidirectional up to a general processing module (GPM). Each data source is 

connected to a remote interface unit (RIU). There is a network of switches (SW) in between the RIUs and 

the GPM. With sensor voting, 2 of 3 must match (or be within range of each other) in order for the 

hosted function to use the data. Note that the models and analysis developed on this program would 

work the same in the unidirectional down from GPM to effectors. 



 

SOTERIA Contractor Report Page 6 

 

Figure 2 – An example of an IMA Platform Architecture. 

To further illustrate, Figure 3 shows how data flows through this architecture (illustrated with the 

addition of the red arrows). From the bottom up, data is replicated on channel A and channel B of the 

network. The GPM uses one copy from channel A or channel B (only one is used and there is no voting 

between the channels). The GPM compares the data from the 3 data sources and does a 2-of-3 vote. 

The failure conditions of concern here are loss of function and undetected erroneous data. These are 

the failure condition flows we will model and analyze on this program.  



 

SOTERIA Contractor Report Page 7 

 

Figure 3 - Data flow through an example IMA platform architecture. 

In addition to the architecture in Figure 2, we identified several other generic architectures that are 

representative of modern day avionics. These architectures include features such as sensor voting and 

end-to-end network integrity protection. Identifying these different architectures gives us a 

representative set of layouts such that when we develop the modeling constructs they are able to 

handle the breath of available possibilities that a safety engineer would have to analyze. 

The different architectures are listed and illustrated in the figures below.  

• 1 Sensor, 1 RIU with an end system (ES), network switches (SW), 1 GPM with an end system (Figure 4). 

• 2 Sensors, 2 RIUs each with an end system, network switches, 1 GPM with an end system (Figure 5). 

• 2 Sensors, 2 RIUs each with an end system, network switches, 2 GPMs each with an end system 

(Figure 6). 



 

SOTERIA Contractor Report Page 8 

 

Figure 4 - Generic IMA Platform Architecture 2. 

 

Figure 5 - Generic IMA Platform Architecture 3. 

Figure 6 - Generic IMA Platform Architecture 4. 



 

SOTERIA Contractor Report Page 9 
 

3 Fault Tree Analysis (FTA) 
FTA is a popular method used in industry that focuses on an undesirable top-level event. The following 

description is from SAE Standard, ARP4761 and is written here for reference (S18, 1996). 

FTA is a “top-down” system evaluation procedure in which a qualitative model for a particular undesired 

event is formed and then evaluated. FTAs are primarily used by system safety engineers to ensure that 

design safety aspects are identified and controlled. It is accepted by both the civil and military 

certification authorities as a method (preferred method) to show compliance with safety and 

certification regulations, requirements, and objectives. Safety is a measure of average risk – FTA 

accuracy is good enough to satisfy “on the order of” targets. 

FTA usage includes: 

a) Facilitation of technical/certification authority assessments and reviews. 

b) Assessment of a design modification with regards to its impact on safety. 

c) Quantification of the top event probability of occurrence. 

d) Allocation of probability budgets to lower-level events. 

e) Visibility into the contribution of development errors by providing a format for mixed 

quantitative and qualitative assessment. 

f) Assessment of single and multiple-fault effects. 

g) Assessment of exposure intervals, latency, and “at-risk” intervals with regard to their overall 

impact on the system. 

h) Visibility of potential common-cause boundaries. 

i) Assessment of common-cause fault sources. 

j) Assessment of fail-safe design attributes (fault-tolerant and error-tolerant). 

The fault tree graphical representation is hierarchical and takes its name from the branching that it 

displays. It is this format which makes this analysis a visibility tool for both engineering and the 

certification authority. 

A fault tree minimal cut set is a smallest set of Primary Events which must all occur in order for the 

undesired top-level event to occur. Cut sets are useful when assessing large fault trees for complex 

systems. Primary drivers causing the undesired top event, including single point failures, can be easily 

identified.  

3.1 IMA Fault Trees 
The failure conditions of concern are loss of function and undetected erroneous data.  

For the IMA platform depicted in Figure 2, loss of function occurs when there is a loss of the GPM, a loss 

of the network, or a loss of RIUs. When building the fault tree for loss of the network, we need to 

account for there being network redundancy. When building the fault tree for loss of RIUs, we need to 

account for there being a 2-of-3 voting scheme at the GPM. When modeling loss of function, the 2-of-3 

vote is modeled as “loss of 2-of-3 sources” because that is the point at which 2 sources are no longer 

available to compare. The loss of function fault tree for the IMA platform is shown in Figure 7. 



 

SOTERIA Contractor Report Page 10 
 

 

Figure 7 - Loss of function fault tree for IMA platform in Figure 2. 

Similarly, undetected erroneous data is outputted by the GPM when the GPM is erroneous, the network 

is erroneous, or the RIUs are erroneous. When building the fault tree for when the network is 

erroneous, we need to account for network integrity protection. In determining when the RIUs are 

erroneous, we need to account for voting of data in the GPM. The fault tree for undetected erroneous 

data is shown in Figure 8. 

 

Figure 8 - Undetected erroneous data fault tree for the IMA platform in Figure 2. 



 

SOTERIA Contractor Report Page 11 
 

3.2 Other techniques 
Our program is focused on FTA as the method for driving system architecture. There are other 

techniques, such as Failure Mode Effects Analysis (FMEA). Since FMEAs only look at the effects of single 

failures, they are limited in value to a system/aircraft level safety assessment.  However, FMEA for each 

component being modeled could be an input to the models developed in this program. Any FMEA work 

would be considered an input to the failure rate determination for the component models. Every failure 

mode in the FMEA for an IMA component we model would map to one of the failure conditions of 

concern, such as loss of function or undetected erroneous data, or could be deemed as having no effect.  

If there was a “loss of redundancy” type failure effect (e.g. something that alone isn’t loss of function or 

undetected erroneous data, but also cannot be deemed as having no effect), a fault tree would need to 

be developed separately to feed the probabilities in the component model. 

4 FTA Implementation in SOTERIA 
We developed functions to model fault trees and do fault tree analysis. Although developing algorithms 

to do this type of analysis is not an innovation in itself, since there are COTS tools that can do fault tree 

probability calculations, determine fault tree minimal cut sets, etc., we still needed to develop these 

functionalities so that we can apply them to our modeling construct and architecture synthesis. This 

section includes some material in our paper (Manolios, Siu, Noorman, & Liao, 2017) submitted for 

publication. 

We defined a new OCaml variant data type called ftree. Similar to the construct of a search tree, 

ftree is either a node or a leaf. A node is of an operator, either a sum or a product, and a list of 

ftrees and a leaf contains the failure rate, Lambda, and the exposure time, Tau, modeled as floats. 

This variant data type can handle fault trees of any size.  

We added code for going from fault trees to propositional formulas. The code symbolically manipulates 

the propositional formulas. This includes code to do simplification using Boolean logic rules shown in 

SAE ARP4761 (S18, 1996) (A+A=A, A*A=A, A+AK=A, AAK=AK) to aid in the construction of minimal cut 

sets. In addition, there is code for distributing conjunction (disjunction) over disjunction (conjunction), 

constant propagation, flattening formulas, removing redundant variables, simplifying conjunctions and 

disjunctions containing one variable and determining if a formula is in a sum of products (with no 

further structure). We also defined functions to compute approximate (Lambda * Tau) and exact (1 - 

e^(-Lambda * Tau)) probability of failure calculations, as per SAE ARP4761, directly on the fault trees.  

Finally, we added code for generating cut sets from a fault tree formula. The code uses the symbolic 

manipulation code mentioned above. Getting the minimal cut set is important because if primary events 

occur more than once in a fault tree the probability calculated for the undesired top-level event will be 

incorrect. (It will either be greater than or less than the actual probability because the primary event will 

be doubly accounted for.)  



 

SOTERIA Contractor Report Page 12 
 

We also compute the probabilities for each cut set, generate an importance metric for each cut set, and 

sort the cut sets by importance. The importance metric is defined as the ratio of the failure probability 

for the cut set divided by the top-level failure probability. 

4.1 Verified against existing tools 
We verified our SOTERIA tool against two existing tools: 1) OSATE which is an open-source AADL 

modeling tool with its fault tree generation output interpreted and analyzed using OpenFTA, and 2) 

Windchill FTA (formerly Relex Fault Tree), which is a commercial fault tree modeling tool used in 

industry. We identified 5 simple, yet interesting examples, in that they all have multiple layers and have 

repeated events. 

Example 1)  a sample IMA architecture 

Example 2) Fault Tree Handbook (U.S. Nuclear Regulatory Commission, 1981), Page VIII-13 

Example 3) Fault Tree Handbook (U.S. Nuclear Regulatory Commission, 1981), Page XI-3  

Example 4) Online course material (Fault Tree Analysis: A tutorial, pdf., 1999), slide 88 

Example 5) Reference material for a graduate course at RPI – Statistical Methods for Reliability 

Engineering (Tutorial - Fault Tree Analysis, 1998), slides 36-37 

We built the fault trees in OSATE, Windchill FTA, and OCaml and compared their analysis results. We 

verified that our functions computed cut sets and the top-level failure probabilities that were in 

agreement with the outputs from OSATE/OpenFTA and Windchill FTA. Below are the results of the 

comparisons.   

4.1.1 Example 1 – Sample IMA Architecture  

 

Here are the results from OSATE with OpenFTA. 



 

SOTERIA Contractor Report Page 13 
 

 

Here are the results using WindChill FTA. 



 

SOTERIA Contractor Report Page 14 
 

 

Here are the results from our function. We confirm that we calculate the same results. 

# let iru1 = Leaf("iru1", 1.0e-6, 1.0);; 

let iru2 = Leaf("iru2", 1.0e-6, 1.0);; 

let iru3 = Leaf("iru3", 1.0e-6, 1.0);; 

let riu2 = Leaf("riu2", 1.0e-6, 1.0);; 

let riu6 = Leaf("riu6", 1.0e-6, 1.0);; 

let riu7 = Leaf("riu7", 1.0e-6, 1.0);; 

let ncd = Leaf("ncd", 2.0e-10, 1.0);; 

let gcd = Leaf("gcd", 2.0e-10, 1.0);; 

let e2n1 = SUM [riu2; riu6; riu7];; 

let e2n2 = SUM [iru1; e2n1];; 

let e2n3 = SUM [riu2; riu6; riu7];; 

let e2n4 = SUM [iru2; e2n3];; 

let e2n5 = SUM [riu2; riu6; riu7];; 

let e2n6 = SUM [iru3; e2n5];; 

let mg = m23 e2n2 e2n4 e2n6;; 

let slide165 = SUM [mg; ncd; gcd];; 

# cutsets slide165 ;; 

- : string pexp = 

Sum 

 [Var "gcd"; Var "ncd"; Var "riu2"; Var "riu6"; Var "riu7"; 

  Pro [Var "iru1"; Var "iru2"]; Pro [Var "iru1"; Var "iru3"]; 

  Pro [Var "iru2"; Var "iru3"]] 

# probErrorCut slide165;; 

- : float * float = (3.00039849878e-06, 3.00039849878e-06) 



 

SOTERIA Contractor Report Page 15 
 

4.1.2 Example 2 – Fault Tree Handbook (NUREG-0492) Pressure Tank Example 

 

Here’s the output from OSATE with OpenFTA. 

 

 

 



 

SOTERIA Contractor Report Page 16 
 

Here’s the output from Windchill FTA. 

 

Here is the output from our functions. We confirm that we match the output from the handbook. 

# let k1 = Leaf("K1", lFromErr 3.e-5, 1.) ;; 

let r = Leaf("R", lFromErr 1.e-4, 1.) ;; 

let s1 = Leaf("S1", lFromErr 3.e-5, 1.) ;; 

let s = Leaf("S", lFromErr 1.e-4, 1.) ;; 

let t = Leaf("T", lFromErr 5.e-6, 1.) ;; 

let k2 = Leaf("K2", lFromErr 3.e-5, 1.) ;; 

let e5 = SUM [k1;r] ;; 

let e4 = SUM [s1;e5] ;; 

let e3 = PRO [s;e4] ;; 

let e2 = SUM [e3;k2] ;; 

let e1 = SUM [t;e2] ;; 

# cutsets e1;; 

- : string pexp = 

Sum 

 [Var "K2"; Var "T"; Pro [Var "K1"; Var "S"]; Pro [Var "R"; Var "S"]; 

  Pro [Var "S"; Var "S1"]] 

# probErrorCut e1;; 

- : float * float = (3.501584875e-05, 3.501584875e-05) 



 

SOTERIA Contractor Report Page 17 
 

4.1.3 Example 3 – Fault Tree Handbook (NUREG-0492) An evaluation example 

This example did not include probabilities, so we used arbitrary numbers for testing. 

 

Here are the results using OSATE with OpenFTA. 

 



 

SOTERIA Contractor Report Page 18 
 

Here are the results from our FTA implementation. 

# let lFromErr err = log(1. /. (1. -. err)) ;; 

let err1 = lFromErr 2.e-5;; 

let s6 = Leaf("S6", err1, 1.) ;; 

let p6 = Leaf("P6", err1, 1.) ;; 

let e6 = Leaf("E6", err1, 1.) ;; 

let g8 = SUM [s6;p6;e6] ;; 

let s5 = Leaf("S5", err1, 1.) ;; 

let p5 = Leaf("P5", err1, 1.) ;; 

let g7 = SUM [p5;g8;s5] ;; 

let s4 = Leaf("S4", err1, 1.) ;; 

let p4 = Leaf("P4", err1, 1.) ;; 

let e4 = Leaf("E4", err1, 1.) ;; 

let g6 = SUM [s4;p4;e4] ;; 

let g4 = SUM [g6;g7] ;; 

let s3 = Leaf("S3", err1, 1.) ;; 

let p3 = Leaf("P3", err1, 1.) ;; 

let e3 = Leaf("E3", err1, 1.) ;; 

let g5 = SUM [s3;p3;e3] ;; 

let g3 = PRO [g4;g5] ;; 

let s2 = Leaf("S2", err1, 1.) ;; 

let p2 = Leaf("P2", err1, 1.) ;; 

let g2 = SUM [p2;s2;g3] ;; 

let e1 = Leaf("E1", err1, 1.) ;; 

let g1 = SUM [g2;e1] ;; 

let s1 = Leaf("S1", err1, 1.) ;; 

let p1 = Leaf("P1", err1, 1.) ;; 

let t = SUM [p1;g1;s1] ;; 

# cutsets t;; 

- : string pexp = 

Sum 

 [Var "E1"; Var "P1"; Var "P2"; Var "S1"; Var "S2"; Pro [Var "E3"; Var "E4"]; 

  Pro [Var "E3"; Var "E6"]; Pro [Var "E3"; Var "P4"]; 

  Pro [Var "E3"; Var "P5"]; Pro [Var "E3"; Var "P6"]; 

  Pro [Var "E3"; Var "S4"]; Pro [Var "E3"; Var "S5"]; 

  Pro [Var "E3"; Var "S6"]; Pro [Var "E4"; Var "P3"]; 

  Pro [Var "E4"; Var "S3"]; Pro [Var "E6"; Var "P3"]; 

  Pro [Var "E6"; Var "S3"]; Pro [Var "P3"; Var "P4"]; 

  Pro [Var "P3"; Var "P5"]; Pro [Var "P3"; Var "P6"]; 

  Pro [Var "P3"; Var "S4"]; Pro [Var "P3"; Var "S5"]; 

  Pro [Var "P3"; Var "S6"]; Pro [Var "P4"; Var "S3"]; 

  Pro [Var "P5"; Var "S3"]; Pro [Var "P6"; Var "S3"]; 

  Pro [Var "S3"; Var "S4"]; Pro [Var "S3"; Var "S5"]; 

  Pro [Var "S3"; Var "S6"]] 



 

SOTERIA Contractor Report Page 19 
 

4.1.4 Example 4 – from www.thecourse-pm.com 

 

Here are the results from Windchill FTA. 

 



 

SOTERIA Contractor Report Page 20 
 

Here are the results from OSATE with OpenFTA. 

 

Here are the results from SOTERIA. 

# let da =  Leaf("A", (lFromErr 2.e-6), 1.);; 

let db =  Leaf("B", (lFromErr 2.e-6), 1.);; 

let dc =  Leaf("C", (lFromErr 2.e-6), 1.);; 

let dn1 = SUM [da; db];; 

let dn2 = SUM [da; dc];; 

let dn3 = PRO [dn1; dn2];; 

# cutsets dn3;; 

- : string pexp = Sum [Var "A"; Pro [Var "B"; Var "C"]] 

# probErrorCut dn3;; 

- : float * float = (2.00000399994e-06, 2.00000399994e-06) 

4.1.5 Example 5 – from lecture notes  

 

Here are results from OSATE and OpenFTA. 



 

SOTERIA Contractor Report Page 21 
 

 

Here are results from SOTERIA. 

# let a2 = Leaf("A", (lFromErr 0.1), 1.);; 

let b2 = Leaf("B", (lFromErr 0.1), 1.);; 

let c2 = Leaf("C", (lFromErr 0.1), 1.);; 

let d2 = Leaf("D", (lFromErr 0.1), 1.);; 

let n5 = PRO [b2; c2];; 

let n6 = PRO [b2; d2];; 

let n7 = SUM [n5; n6];; 

let n8 = SUM [a2; n7];; 

# cutsets n8;; 

- : string pexp = 

Sum [Var "A"; Pro [Var "B"; Var "C"]; Pro [Var "B"; Var "D"]] 

# probErrorCut n8;; 

- : float * float = (0.1171, 0.1171) 

4.2 Limitations of OSATE and OpenFTA 
OSATE is an open-source AADL modeling tool with its fault tree output interpreted and analyzed using 

OpenFTA. In constructing the models in OSATE and evaluating the fault tree analysis output in OpenFTA, 

we uncovered some limitations. 

• OSATE cannot handle repeated events. When modeling the composite error behavior, even when 

repeated events are modeled as such, the tool will always assign different labels to each event. 

We hacked the OSATE fault tree generation output file by manually replacing labels that were 

meant to be repeated. Only then was OpenFTA able to generate the correct cut sets. 

• OSATE does not generate a very compact fault tree because its logic gates are limited to two 

inputs. As a result, the fault tree can be very deep and cannot be flattened. 

• OpenFTA has some bugs in probability analysis, e.g., for Example 5 above, OpenFTA generated an 

incorrect result of top-level event probability. 

• OpenFTA has some scalability issues, e.g., for Example 3 above, OpenFTA took about 40 minutes 

to perform the probability analysis. 



 

SOTERIA Contractor Report Page 22 
 

• OSATE does not seem to be able to generate the fault tree analysis output without the composite 

error behavior model, which essentially requires the user to manually provide the fault tree logic.  

Uncovering these limitations tells us that there are gaps in existing tools. Our program to come up with a 

technique that automatically transforms an IMA architecture model into a fault tree fills a void in the 

capabilities of current tools. 

5 Fault Tree Synthesis 
Fault tree synthesis advances the safety engineer’s capability to perform safety analysis. As Banach & 

Bozaano wrote in their paper, “The manual construction of fault trees relies on the ability of the safety 

engineer to understand and to foresee the system behaviour. As a consequence, it is a time consuming 

and error-prone activity; moreover, managing the generated fault trees is challenging in case of large 

complex systems” (Banach & Bozzano, 2006). Also, Wang quoted in her thesis, “Although general 

guidelines are available for fault tree synthesis, learning how to create fault trees is akin to learning to 

ski: some people never quite make it” (Wang, 2004). 

We conducted a literature search of papers on automatically generating fault trees from models. We 

found 10 well cited papers that covered a wide range of modeling techniques – di-graphs, cause-and-

effect models, AADL, UML, SysML, and Matlab/Simulink. The range of modeling techniques were a result 

of the different domains, such as chemical processing systems, mechanical systems, P&ID (piping and 

instrumentation diagrams), and computer systems. Within each domain, we found different emphasis 

on the modeling techniques, such as the ability to handle feedback and feedforward loops for chemical 

processing systems. We also found that the papers spanned a wide range of dates, from 1970’s to 

2010’s. While there was a spread in modeling techniques and domains, when it comes to synthesizing 

fault trees there was one similarity amongst all of these which is the need to have two separate types of 

models: 1) a system model that gives the physical components and their connections, and 2) fault 

model(s) that describe behaviors, usually on the unit component level.   

We studied the literature and narrowed down to a modeling technique and fault tree construction 

procedure that was based on decision tables. The technique from decision tables to fault trees was not 

overwhelmed with features for handling domain-specific system-level attributes. Therefore, the use of 

decision tables was sufficient and divorced us from having to deal with any added system level 

complexity. 

5.1 Decision Tables 
The concept of using decision tables to construct fault trees was first introduced in a 264 page report 

from UCLA prepared for the Electric Power Research Institute at Palo Alto, CA in 1976 (Salem, 

Apostolakis, & Okent, 1976). This report introduced a means of representing component behavior via 

decision tables by relating each component’s input(s) and internal failure(s) to its output(s). It also 

presented techniques for making the tables compact in order to simplify their use in constructing fault 

trees.  Then, the report described how to take these component models to systematically construct the 

fault tree, including how to pick out the top-level event and identify boundary conditions. Finally, the 



 

SOTERIA Contractor Report Page 23 
 

technical report showed, via examples, how the methodology was implemented and verified in a 

computer program called CAT (Computer Aided Trees).  

An extension to the original technical report was published in a 1984 paper written by Contini and 

Squellati for the European Commission’s “Nuclear Science and Technology” series of publications 

(Contini & Squellati, 1984). This paper addressed two limitations of the CAT method. First, it extended 

the decision tables to include bidirectional relationships between components. The example illustrated 

that without bidirectional relationships the resulting fault tree could be incomplete and miss a cut set. 

Another extension presented in this paper was a new algorithm for simplifying the decision tables to 

speed up the CAT algorithm.  

A more recent paper that illustrated the use of decision tables was from 2009 by Majdara and 

Wakabayashi, published in the Reliability Engineering and System Safety journal (Majdara & 

Wakabayashi, 2009). In this paper, the authors combined ideas from various different modeling 

approaches. Their component based models included the use of decision tables, augmented with state 

transition tables and special junction and extension components. In spirit, the use of decision tables was 

the same as the original technical report from UCLA. The authors also published several subsequent 

papers using their combined modeling approach, illustrated their approach with a different example in 

each paper. 

We will show the construction of a decision table using one of our IMA components as an illustrative 

example. A GPM has 1 input, an internal failure mode, and 1 output. The complete GPM decision table, 

listing all combinations of inputs and internal states, is shown below. The table describes undetected 

erroneous data failure, where 0 = no failure, 1 = undetected erroneous. 

GPM 

Input = GESo internal failure = Sgpm Output = Go 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

 

This decision table could be reduced by noting that when an internal integrity failure occurs, the output 

is 1 regardless of the input. Similarly, when there is undetected erroneous data at the input, the output 

is 1 regardless of the internal failure. The reduced decision table (where 0 = no failure, 1 = undetected 

erroneous failure, -- = don’t care) would be: 

GPM 

Input = GESo internal failure = Sgpm Output = Go 

0 0 0 
-- 1 1 
1 -- 1 

 



 

SOTERIA Contractor Report Page 24 
 

The reduced decision tables for other IMA components are shown below. The input and output names 

are also listed. For reference, a generic IMA architecture is illustrated below, which shows the 

relationship between inputs and outputs from one component to the next. 

GPM 1

End System

SW-1A SW-1B

RIU-1

Ch A           Ch B

End System

Ch A           Ch B

Signal Source
(Sensor)

SW-3A SW-3B

 

• Go     : GPM output (top-level event) 

• GESo   : GPM End system output 

• SW-1Ao : SW-1A output 

• SW-1Bo : SW-1B output 

• SW-3Ao : SW-3A output 

• SW-3Bo : SW-3B output 

• RESo   : RIU End system output 

• RIUo   : RIU output 

• Seno   : Sensor output 

GPMES 

SW-1Ao SW-1Bo Sges GESo 

0 0 0 0 
1 -- -- 1 
-- 1 -- 1 
-- -- 1 1 

 

SW1A 

SW-3Ao Ssw1a SW-1Ao 

0 0 0 
1 0 1 

 

SW1B 

SW-3Bo Ssw1b SW-1Bo 

0 0 0 
1 0 1 

 

SW3A 



 

SOTERIA Contractor Report Page 25 
 

RESo Ssw3a SW-3Ao 

0 0 0 
1 0 1 

 

SW3B 

RESo Ssw3b SW-3Bo 

0 0 0 
1 0 1 

 

RIUES 

RIUo Sres RESoa RESob 

0 0 0 0 
-- 1 1 1 
1 -- 1 1 

 

RIU 

Seno Sriu RIUo 

0 0 0 
-- 1 1 
1 -- 1 

 

Sensor 

Ssensor Seno 

0 0 
1 1 

 

Next we describe the systematic procedure for generating a fault tree using the component decision 

tables. Selecting the top-level event as GPM with an output that has an undetected erroneous data 

failure (Go=1), we start with the GPM decision table and find when the output is 1. There are two rows 

with Go = 1, therefore we use an OR gate with two inputs. The first input is from the GPM internal 

failure, Sgpm, which can be considered a basic-event, i.e., an event internal to the system and requires 

no further development. The second input is from the GPMES output, therefore we reference the 

GPMES decision table for when its output is 1. We continue this procedure until we reach the end of the 

components. The resulting fault tree is illustrated below. 



 

SOTERIA Contractor Report Page 26 
 

Go = 1

Sgpm = 1

GESo = 1

Sges = 1

SW-1Ao = 1 SW-1Bo=1

SW-3o = 1 SW-3Bo=1

RESo = 1 RESo = 1

Sres = 1Sres = 1

RIUo = 1 RIUo = 1

Sriu = 1 Sriu = 1

Seno = 1 Seno = 1

Ssensor = 1 Ssensor = 1

 

Notice that in this fault tree there are repeated events. As discussed earlier, repeated events could be 

removed via Boolean logic, the algorithm which we implemented in our SOTERIA tool. Applying the 

reduction would result in the fault tree with the correct cut set. 

Notice also that in this example to demonstrate fault tree synthesis from decision tables we left out the 

network integrity protection for ease of illustration. The following is a more comprehensive example 

where we illustrate how CRC integrity protection is added into the model using decision tables. The 

same IMA architecture is illustrated in Figure 9 along with its expected fault tree for undetected 

erroneous data. The expected fault tree is one that would be created by a safety engineer and that 

would have the expected minimal cut set. 



 

SOTERIA Contractor Report Page 27 
 

 

Figure 9 - IMA architecture with its expected fault tree for undetected erroneous data. 

This architecture includes a CRC check for integrity that is physically applied by the transmitting end 

system (RIU ES) and checked in the receiving end system (GPM ES). In this architecture, the CRC is only 

on the message traffic between the end systems. It does not protect against failures outside of 

equipment between the two communicating end systems. There could be, for example, an Application 

layer CRC, where the sensor encodes data with a CRC and the Application on the GPM checks the CRC. In 

that case, the fault tree would have that CRC protection mechanism modeled higher in the tree.  

What we discovered in terms of modeling is that in order to correctly represent the CRC integrity 

wrapper we needed to include the feature in the model of the protected components (i.e., the switches) 

and not in the components where the feature is applied. Doing it in this way resulted in the fault tree we 

expected for undetected erroneous data. Below are the component models that make up this 

architecture. The column highlighted in yellow shows where CRC integrity wrapper is modeled, where 1 

represents when a CRC protection fails to detect an error. Note that in this architecture we show CRC 

protection to all the switches. There could be, for example, a mixed network, where there are different 

fault protection approaches on different sub-networks. We could still accommodate for that in the 

models (or any other component protected by the CRC). 

 



 

SOTERIA Contractor Report Page 28 
 

GPM 

In = GESo internal failure = Sgpm Output = Go 

0 0 0 
-- 1 1 
1 -- 1 

 

GPM ES 

In1 = SW-1Ao  In2 = SW-1Bo Sges GESo 

0 0 0 0 
1 -- -- 1 
-- 1 -- 1 
-- -- 1 1 

 

SW1A 

In = SW-3Ao Ssw1a EScrc SW-1Ao 

0 0 0 0 
1 
-- 
-- 

-- 
1 
1 

-- 
1 
0 

1 
1 
0 

 

SW3A 

In = RESoa Ssw3a EScrc SW-3Ao 

0 0 0 0 
1 
-- 
-- 

-- 
1 
1 

-- 
1 
0 

1 
1 
0 

 

SW1B 

In = SW-3Bo Ssw1b EScrc SW-1Bo 

0 0 0 0 
1 
-- 
-- 

-- 
1 
1 

-- 
1 
0 

1 
1 
0 

 

SW3B 

In = RESob Ssw3b EScrc SW-3Bo 

0 0 0 0 
1 
-- 
-- 

-- 
1 
1 

-- 
1 
0 

1 
1 
0 

 

RIU ES 



 

SOTERIA Contractor Report Page 29 
 

In = RIUo Sres RESoa RESob 

0 0 0 0 
-- 1 1 1 
1 -- 1 1 

 

RIU 

In = Seno Sriu RIUo 

0 0 0 
-- 1 1 
1 -- 1 

 

Sensor 

Ssensor Seno 

0 0 
1 1 

Another architectural feature is sensor voting. An example of a multi-sensor IMA architecture is 

illustrated in Figure 10. 

 

Figure 10 - IMA architecture with sensor voting. 



 

SOTERIA Contractor Report Page 30 
 

Note that in this architecture there are two network switch paths, A and B. The modeling construct 

allows as many network channels as needed. The key here would be to make sure the component 

models for the equipment receiving the data off of the network are modeled to handle the data (i.e., 

support the correct number of input paths). We validated the modeling constructs using known 

architectures, but the methods are still applicable for other types of physical architectures. 

In this architecture there are 3 sensors, 3 RIUs, and 1 GPM, where a 2-of-3 vote of sensors is applied. 

The voting feature is represented by extending a GPM component model to include more inputs and by 

altering the output. The GPM component model with 2-of-3 voting feature is illustrated in the decision 

table below. 

GPM (2-of-3 vote) 
In1 = GESo1 In2 = GESo2 In3 = GESo3 internal failure = 

Sgpm 
Output = Go 

0 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
-- -- -- 1 1 
1 1 -- -- 1 
-- 1 1 -- 1 
1 -- 1 -- 1 

 

In the process of extending our model to handle more features and more complex architectures what 

we discovered is that we needed to instantiate virtual models of the system based on data flows. For 

example, even though physically we have only 1 receiving end system (i.e., GPM ES), we need to 

instantiate the GPM ES component model 3 times in order to represent the dataflow. This is illustrated 

in Figure 10. The physical encapsulation is illustrated by the green dotted box while the virtual 

component models are in gray boxes. 

5.2 Monotone Formulas 
An interesting insight we discovered is that our component models are decision tables with limited 

expressiveness. For the cases when we have a faulted output (i.e., when there is a 1 in the output 

column), the inputs are either faulted (1) or don’t care (--). This is a good thing because from a safety 

perspective things are modeled and analyzed from the view of when events and faults occur, not when 

they don’t occur. Furthermore, FTA typically does not allow the use of NOT gates2. Not having to deal 

with negations increases analyzability and makes defining tables easier. What we further discovered is 

that we can support monotone formulas, a generalization of such decision tables. A Boolean formula is 

called monotone if it uses AND and OR gates and does not contain any negation gates. This is a more 

                                                            
2 This is addressed in the technical report, “Automated Fault Tree Construction,” by S. Contini, G. Squellati, section 
3.2 Component Modeling: Method of Decision Tables, page 69, “Although certain codes, such as BAM, allow the 
use of NOT gates, the general fault tree analysis techniques do not.” 



 

SOTERIA Contractor Report Page 31 
 

convenient way for the end-user to model a component and express its behavior – he simple writes the 

formula expressing its faulted behavior in terms of ANDs and ORs, rather than listing all the 

combinations of inputs, internal states, and output behaviors. The fault tree synthesis algorithms 

complexity remains unchanged.  

Below is an example of a monotone formula generalization of a decision table, described using a Switch 

that is protected with a CRC integrity wrapper. Undetected erroneous data propagates if input 1 

propagates a fault OR an internal failure occur AND the end-to-end protection fail to detect an error 

(CRC fail). The decision table can be described using the following monotone formula: 

Switch w/CRC   

In Internal failure EScrc Out  𝑂𝑢𝑡 = 𝐼𝑛 ∨ [𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ∧ 𝐸𝑆𝑐𝑟𝑐] 

1 -- -- 1   
-- 1 1 1   

 

Consider another example which highlights the benefits of using monotone formulas. In this case, the 

monotone formula is a simpler expression. This behavior is not expressible directly using a decision 

table.  

In1  In2 In3  In4 Out  𝑂𝑢𝑡 = 𝐼𝑛1 ∨ (𝐼𝑛2 ∧ 𝐼𝑛4) ∨ (𝐼𝑛3 ∧ 𝐼𝑛4) 

1 -- -- -- 1  𝑂𝑢𝑡 = 𝐼𝑛1 ∨ [𝐼𝑛4 ∧ (𝐼𝑛2 ∨ 𝐼𝑛3)] 
-- 1 -- 1 1   
-- -- 1 1 1   

 

Given a monotone formula, we can automatically generate a fault tree using the procedure described 

earlier in this section. Note that the examples in this report have been with respect to undetected 

erroneous data, but the method can be used to model various types of fault propagation such as loss of 

function. 

6 Modeling Language 
We developed a modeling language for IMA architectures. The modeling language defines a library of 

components and describes the architecture of the system, which includes the components, their 

connections, and the type of flow that the user is interested in analyzing (for example, undetected 

erroneous data (UED) or loss of function/availability (LOA)). In coming up with the modeling constructs 

for the library and for the model, we took care to separate as much as possible the responsibility of the 

end-user that defines the library components and the end-user that constructs the system. We thereby 

decomposed the modeling construct into 2 local problems: 1) a library of components, and 2) 

connection definition. We also made the modeling language such that the users do not have to be an 

OCaml programmer in order to use it. In addition to the modeling constructs, we also came up with a list 

of validations needed to ensure that all connections described have been made and if that they are 

physically valid. Finally, we implemented the fault tree synthesis algorithms to automatically generate 



 

SOTERIA Contractor Report Page 32 
 

fault trees from the system descriptions. This section includes some material in our paper (Manolios, 

Siu, Noorman, & Liao, 2017) submitted for publication. 

6.1 Library of Components  
A library is a list of components. A component consists of a name, a list (possibly empty) of faults, a list 

(possibly empty) of input flow names, a list (possibly empty) of basic events, a list of basic event 

information consisting of pairs of floats corresponding to the failure rate (Lambda) and exposure time 

(Tau) of the basic events (so this list has the same length as the list of basic events), a list of output flow 

names, and a list of monotone Boolean formulas over the input flow names and the basic events. An 

example of a component with no input flows is a sensor that can only fail due to an internal fault. All 

components must have an output flow, otherwise there is nothing to analyze. 

A library of components is a list of components, such that no two components have the same name.  

Below is how the end-user would describe the library sufficient for modeling an IMA architecture such 

as that in Figure 2. 

let library = 

[  {name         = "Sensor"; 

    faults       = ["ued"; "loa"]; 

    input_flows  = []; 

    basic_events = ["sen_flt_ued";"sen_flt_loa"]; 

    event_info   = [(1.0e-6, 1.0); (1.0e-5, 1.0)]; 

    output_flows = ["out"]; 

    formulas     = [(["out";"ued"], F["sen_flt_ued"]); 

                    (["out";"loa"], F["sen_flt_loa"])]}; 

 

   {name         = "RIU"; 

    faults       = ["ued"; "loa"]; 

    input_flows  = ["in"]; 

    basic_events = ["riu_flt_ued";"riu_flt_loa"]; 

    event_info   = [(2.0e-7, 1.0); (5.0e-6, 1.0)]; 

    output_flows = ["out"]; 

    formulas     = [(["out";"ued"], Or[F["in";"ued"]; F["riu_flt_ued"]]); 

                    (["out";"loa"], Or[F["in";"loa"]; F["riu_flt_loa"]])]}; 

 

   {name         = "Switch"; 

    faults       = ["ued"; "loa"]; 

    input_flows  = ["in1";"in2";"in3"]; 

    basic_events = ["sw_flt_ued"; "sw_flt_loa"; "crc32_flt"]; 

    event_info   = [(1.0e-6, 1.0); (1.0e-6, 1.0); (2.**(-32.),1.0)]; 

    output_flows = ["out1";"out2";"out3"];  

    formulas     = [(["out1";"ued"],  

                       Or[F["in1";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out2";"ued"],  

                       Or[F["in2";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out3";"ued"],  

                       Or[F["in3";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out1";"loa"], Or[F["in1";"loa"];F["sw_flt_loa"]]); 

                    (["out2";"loa"], Or[F["in2";"loa"];F["sw_flt_loa"]]); 

                    (["out3";"loa"], Or[F["in3";"loa"];F["sw_flt_loa"]])]}; 

     

    {name         = "GPM"; 

     faults       = ["ued"; "loa"]; 

     input_flows  = ["in1a1";"in1a2";"in1a3";"in1b1";"in1b2";"in1b3";]; 

     basic_events = ["gpm_flt_ued"; "gpm_flt_loa"]; 



 

SOTERIA Contractor Report Page 33 
 

     event_info   = [(2.0e-10, 1.0); (3.0e-5, 1.0)]; 

     output_flows = ["out"];  

     formulas     = [(["out"; "ued"],  

                        Or[F["gpm_flt_ued"];  

                           N_of(2, [Or[F["in1a1";"ued"];F["in1b1";"ued"]]; 

                                    Or[F["in1a2";"ued"];F["in1b2";"ued"]]; 

                                    Or[F["in1a3";"ued"];F["in1b3";"ued"]]])]); 

                     (["out"; "loa"],  

                        Or[F["gpm_flt_loa"];  

                           N_of(2, [And[F["in1a1";"loa"];F["in1b1";"loa"]]; 

                                    And[F["in1a2";"loa"];F["in1b2";"loa"]]; 

                                    And[F["in1a3";"loa"];F["in1b3";"loa"]]])])]}; 

];; 

 

6.2 Model  
A model consists of a list of instances, a list of connections, and the out flow of interest. An instance 

consists of the instance name, the name of the component it is instantiating from the library, and the 

exposure time. The connection information is a list of pairs consisting of an input flow and an output 

flow. Both flows have to exist in the list of instances of the model. The pair ((x, i), (y, o)) indicates that 

instance x's input flow i is fed by instance y's output flow o. Input flows have exactly 1 output flow 

connected to them.  One output flow can feed multiple input flows. 

Instances can optionally override the failure rate Lambda and/or the exposure times Tau originally 

defined in the library. Tau has to be editable for each basic event since this can change based on how 

often the component is checked, e.g. PBIT, CBIT, IBIT, or in some cases, physical inspection or test (more 

likely for analog and mechanical components). The failure rate, Lambda, for the most part remains 

constant, but can also change. Lambda is sourced from either the reliability prediction or FMEA. These 

analyses take into account several factors that can impact the basic failure rate of a component, e.g. 

installed environment, quality, etc. The intent is to build the component library for each project’s 

architecture based on the failure rates determined by the reliability process and for the most part the 

rates should remain static for that project. There are times, however, when Lambda would change. For 

instance, obsolescence often forces a component change (same function, but physically different) and 

revision to the project reliability data and subsequent update to the quantitative safety analyses. A 

change in supplier or a change in device (e.g. higher performance) may also force a change in a 

component failure rate. Therefore, we provide the user the capability to change these values when 

instancing the model. 

Below is how the end-user would describe a model. The instance of Sensor demonstrates the option to 

override the exposure time Tau originally defined in the library component. 

(* ----- UED MODEL ----- *) 

let figure2_ued = 

  { instances = 

      [makeInstance ~i:"sensor" ~c:"Sensor" ~t:[("sen_flt_ued", 5.0)] (); 

       makeInstance "riu1" "RIU" ();  

       makeInstance "riu2" "RIU" ();  

       makeInstance "riu3" "RIU" ();  

       makeInstance "sw1a" "Switch" ();  

       makeInstance "sw1b" "Switch" ();  

       makeInstance "sw3a" "Switch" ();  



 

SOTERIA Contractor Report Page 34 
 

       makeInstance "sw3b" "Switch" ();  

       makeInstance "gpm1" "GPM" ();  

      ]; 

    connections = 

      [ (("riu1",  "in"), ("sensor", "out")); 

        (("riu2",  "in"), ("sensor", "out")); 

        (("riu3",  "in"), ("sensor", "out")); 

        (("sw3a", "in1"), ("riu1", "out")); 

        (("sw3a", "in2"), ("riu2", "out")); 

        (("sw3a", "in3"), ("riu3", "out")); 

        (("sw3b", "in1"), ("riu1", "out")); 

        (("sw3b", "in2"), ("riu2", "out")); 

        (("sw3b", "in3"), ("riu3", "out")); 

        (("sw1a", "in1"), ("sw3a", "out1")); 

        (("sw1a", "in2"), ("sw3a", "out2")); 

        (("sw1a", "in3"), ("sw3a", "out3")); 

        (("sw1b", "in1"), ("sw3b", "out1")); 

        (("sw1b", "in2"), ("sw3b", "out2")); 

        (("sw1b", "in3"), ("sw3b", "out3")); 

        (("gpm1", "in1a1"), ("sw1a", "out1")); 

        (("gpm1", "in1a2"), ("sw1a", "out2")); 

        (("gpm1", "in1a3"), ("sw1a", "out3")); 

        (("gpm1", "in1b1"), ("sw1b", "out1")); 

        (("gpm1", "in1b2"), ("sw1b", "out2")); 

        (("gpm1", "in1b3"), ("sw1b", "out3")); 

      ]; 

    top_fault = ("gpm1", F["out";"ued"]) 

  } ;; 

 

(* ----- LOA MODEL ----- *) 

let figure2_loa = 

  { instances = figure2_ued.instances; 

    connections = figure2_ued.connections; 

    top_fault = ("gpm1", F["out";"loa"]) 

  };; 

6.3 Validation Checks 
We came up with a list of validation checks to assist the end-user during component library and model 

construction. Some checks pertain to just the component library, some to just the system model, and 

other to the model with respect to the component library. The checks are ordered so that the flow 

makes procedural sense to the end-user, as shown in Table 1. 

Table 1.  Validation checks presented in order 

Order Validation Check Description 

1 checkLibrary_componentUnique No two components have the same 
name. 

2 checkLibrary_nonEmptyFaults For any component, faults is not empty. 

3 checkLibrary_disjointInputFlows 

andBasicEvents 
For any component, 
{input_flows} ∩ {basic_events}=empty 
set. 

5 checkLibrary_allOutputFaultsHaveFormulas For any component, all outputs faults 
have a formula defined. 

6 checkLibrary_formulasMakeSense For any formula (a, f), a is in faults, f 
uses references variables that are well 
defined within the component.  



 

SOTERIA Contractor Report Page 35 
 

Order Validation Check Description 

8 checkModel_instanceNameUnique All instance names are disjoint. 

9 checkModel_cnameInstanceIsDefined 

InLibrary 
When instancing components in a 
model, all component names are 
defined in the library. 

10 checkModel_exposureOfBasicIsDefined 

InLibrary 
For any exposure (a, x), a is a well 
defined basic event in that component 
of the library. 

11 checkModel_validConnections All connections are valid, including input 
flows and instance. 

12 checkModel_inputFlowUnique In the connections of the model, each 
input flow has exactly 1 instance 
connected to it. 

 

The following sections contain examples to demonstrate the checks. Each example contains an error 

injected in the component library (and/or system model), as well as the corresponding output of the 

validation check. The validation checks are organized into three categories: 1) checks on component 

library only, 2) checks on system model only, and 3) checks on model with respect to the component 

library. 

6.3.1 Checks on the Component Library 

All error injections described within this sub-section are in the component library. Errors are highlighted 

in yellow. 

6.3.1.1 No two components have the same name 

A library of components is a list of components, such that no two components have the same name. 

Error Description:  two components have the same name, “Sensor.” 

let library = 

  [ {name         = "Sensor"; 

     faults       = ["ued"; "loa"]; 

     input_flows  = []; 

     basic_events = ["sen_flt_ued";"sen_flt_loa"]; 

     event_info   = [(1.0e-6, 1.0); (1.0e-5, 1.0)]; 

     output_flows = ["out"]; 

     formulas     = [(["out";"ued"], F["sen_flt_ued"]); 

                     (["out";"loa"], F["sen_flt_loa"])]}; 

 

    {name         = "Sensor"; 

     faults       = ["ued"; "loa"]; 

     input_flows  = ["rin"]; 

     basic_events = ["sen_flt_ued";"sen_flt_loa"]; 

     event_info   = [(2.0e-7, 1.0); (5.0e-6, 1.0)]; 

     output_flows = ["out"]; 

     formulas     = [(["out";"ued"], Or[F["rin";"ued"]; F["sen_flt_ued"]]); 

                     (["out";"loa"], Or[F["rin";"loa"]; F["sen_flt_loa"]])]}; 

     … 

   ];; 

 

The check detects the error and gives the output below. 



 

SOTERIA Contractor Report Page 36 
 

# checkLibrary_componentUnique library;; 

Duplicate component: Sensor 

- : (string, string) Core.Std._result = 

Core.Std.Error "Library component not unique - see above" 

6.3.1.2 All components must support at least one fault 

For any component in the component library, the “faults” section must not be empty.  

Error Description:  the RIU component in the library does not support any faults. 

let library = 

  [ … 

    {name         = "RIU"; 

     faults       = []; 

     input_flows  = ["riu_flt_ued";"riu_flt_loa"]; 

     basic_events = ["riu_flt_ued";"riu_flt_loa"]; 

     event_info   = [(1.0e-6, 1.0);(1.0e-5, 1.0)]; 

     output_flows = ["out"]; 

     formulas     = [(["out";"ued"], Or[F["rin";"ued"]; F["riu_flt_ued"]]); 

                     (["out";"loa"], Or[F["rin";"loa"]; F["riu_flt_loa"]])]}; 

     … 

   ];;  

 

The check detects the error and gives the output below. 

# checkLibrary_nonEmptyFaults library;; 

- : (string, string) Core.Std._result = 

Core.Std.Error "Faults not defined for library component RIU" 

 

6.3.1.3 Input_flows and basic_events names are disjoint 

For each component in the component library, check that {input_flows} ∩ {basic_events} = empty set.  

Error Description: "riu_flt_ued" and "riu_flt_loa" are used in both input_flows and basic_events. 

let library = 

  [  

   … 

    {name         = "RIU"; 

     faults       = []; 

     input_flows  = ["riu_flt_ued";"riu_flt_loa"]; 

     basic_events = ["riu_flt_ued";"riu_flt_loa"]; 

     event_info   = [(1.0e-6, 1.0);(1.0e-5, 1.0)]; 

     output_flows = ["out"]; 

     formulas     = [(["out";"ued"], Or[F["rin";"ued"]; F["riu_flt_ued"]]); 

                     (["out";"loa"], Or[F["rin";"loa"]; F["riu_flt_loa"]])]}; 

 

   … 

  ];; 

 

The check detects the error and gives the output below. 

# checkLibrary_disjointInputFlowsandBasicEvents library;; 

- : (string, string) Core.Std._result = 

Core.Std.Error 

"Names used for input_flows and basic_events are not disjoint in component RIU" 



 

SOTERIA Contractor Report Page 37 
 

6.3.1.4 Consistency between length of basic_events and event_info;  

Consistency between fault and formulas 

One way to check consistency is to check the following list lengths in the component library. 

• Length (basic_events list) = Length (event_info list) 

• Length (faults list) * Length (output_flows list) = Length (formulas list) 

Error Description:  the fault “ued_or_loa” does not have an associated formula defined.  

let library = 

  [  

    {name         = "Sensor"; 

     faults       = ["ued"; "loa"; "ued_or_loa"]; 

     input_flows  = []; 

     basic_events = ["sen_flt_ued";"sen_flt_loa"]; 

     event_info   = [(1.0e-6, 1.0); (1.0e-5, 1.0);]; 

     output_flows = ["out"]; 

     formulas     = [(["out";"ued"], F["sen_flt_ued"]); 

                     (["out";"loa"], F["sen_flt_loa"])]}; 

 

     … 

  ];; 

The check detects the error and gives the output below. 

# checkLibrary_listsAreConsistentLengths library;; 

- : (string, string) Core.Std._result = 

Core.Std.Error 

"Faults and formulas lists are of inconsistent lengths in component Sensor" 

 

Here, a different error is injected. Error Description: the length of the list basic_events is 2, whereas the 

length of the list event_info is 1. 

let library = 

  [ 

    {name         = "Sensor"; 

     faults       = ["ued"; "loa"]; 

     input_flows  = []; 

     basic_events = ["sen_flt"; "sen_flt2"]; 

     event_info   = [(1.0e-6, 1.0)]; 

     output_flows = ["out"]; 

     formulas     = [(["out";"ued"], F["sen_flt"]); 

                     (["out";"loa_1"], F["out";"ued"])]}; 

     … 

   ];; 

 

The check detects the error and gives the output below. 

# checkLibrary_listsAreConsistentLengths library;; 

- : (string, string) Core.Std._result = 

Core.Std.Error 

"Basic events and event info are of inconsistent lengths in component Sensor". 



 

SOTERIA Contractor Report Page 38 
 

6.3.1.5 All faults have a formula defined 

Check that all faults in a component have a formula associated with it. 

let library = 

  [  

    {name         = "Sensor"; 

     faults       = ["ued"; "loa"; "ued_or_loa"]; 

     input_flows  = []; 

     basic_events = ["sen_flt_ued";"sen_flt_loa"]; 

     event_info   = [(1.0e-6, 1.0); (1.0e-5, 1.0); (1.0e-5, 1.0);]; 

     output_flows = ["out"]; 

     formulas     = [(["out";"ued"], F["sen_flt_ued"]); 

                     (["out";"loa"], F["sen_flt_loa"])]}; 

     … 

  ];; 

Error Description:  the flow “ued_or_loa” does not have an associated formula defined.  

The check detects the error and gives the output below. 

# checkLibrary_allOutputFaultsHaveFormulas library;; 

- : (string, string) Core.Std._result = 

Core.Std.Error "Not all output faults have formulas, check component Sensor" 

6.3.1.6 Invalid component library formula  

If the formula is of the form (a, f), then the variables used in f are a subset of the variables in the union 

of input_flows, basic_events, and any formula variables defined.  

Error Description:  the variable “loa_1” is not defined in this component. 

let library = 

  [  

   … 

    {name         = "Sensor"; 

     faults       = ["ued"; "loa"]; 

     input_flows  = []; 

     basic_events = ["sen_flt"; "sen_flt2"]; 

     event_info   = [(1.0e-6, 1.0)]; 

     output_flows = ["out"]; 

     formulas     = [(["out";"ued"], F["sen_flt"]); 

                     (["out";"loa_1"], F["out";"ued"])]}; 

   … 

  ];; 

 

The check detects the error and gives the output below. 

# checkLibrary_formulasMakeSense library;; 

- : (string, string) Core.Std._result = 

Core.Std.Error 

 "Invalid formula in component Sensor, check formula [out,loa_1]" 

 



 

SOTERIA Contractor Report Page 39 
 

6.3.2 Checks on the System Model 

All error injections described within this sub-section are in the system model. Errors are highlighted in 

yellow.   

6.3.2.1 Model instances have unique instance names. 

This check applies to the “instances” section of a model. 

Error Description: the instance name “swa” is used twice in the model. 

let gar_001 = 

  { instances = 

      [makeInstance ~i:"sensor" ~c:"Sensor" ~t:[("sen_flt_ued", 5.0)] (); 

       makeInstance "riu" "RIU" ();  

       makeInstance "swa" "Switch" ();  

       makeInstance "swa" "Switch" ();  

       makeInstance "gpm" "GPM" ();  

      ]; 

    connections = 

      [ (("riu",  "rin"),  ("sensor", "out")); 

  (("swa", "swin"), ("riu", "out")); 

  (("swb", "swin"), ("riu", "out")); 

  (("gpm",  "gin1"), ("swa", "out")); 

  (("gpm",  "gin2"), ("swb", "out")); 

      ]; 

    top_fault = ("gpm", F["out";"ued"]) 

  } ;; 

 

The check detects the error and gives the output below. 

# checkModel_instanceNameUnique gar_001;; 

- : (string, string) Core.Std._result = 

Core.Std.Error "Model instance names are not unique" 

6.3.2.2 Input flows have exactly one instance connected to them. 

The “input_flows” in the “connections” is always defined as an instance-inflow pair, such as ("gpm", 

"gin1"). Therefore, we need to check that ("gpm", "gin1") will not appear in the connection section more 

than once. 

Error Description: the input flow (“gpm”, “gin1”) have two instances connected to it. 

let gar_001 = 

  {  

   … 

  connections = 

  [ (("riu",  "rin"),  ("sensor", "out")); 

    (("sw3a", "swin"), ("riu", "out")); 

    (("sw3b", "swin"), ("riu", "out")); 

    (("gpm",  "gin1"), ("swa", "out")); 

    (("gpm",  "gin1"), ("swb", "out")); 

  ]; 

    … 

  } ;; 

 

The check is able to detect the error, as shown below. 

# checkModel_inputFlowUnique gar_bad;; 

- : (string, string) Core.Std._result = 



 

SOTERIA Contractor Report Page 40 
 

Core.Std.Error 

"One of the input_flows in the model has more than one connection made to it." 

 

6.3.3 Checks on the System Model with respect to the Component Library 

All error injections described within this sub-section are in the component library and system model. 

Errors are highlighted in yellow.   

6.3.3.1 All names in a model correspond to actual components in the component library. 

When instancing components for the model, check whether the component is defined in the library. 

Error Description:  in the model, the component “DME” is not defined in the component library. 

let gar_001 = 

{ instances = 

     [makeInstance ~i:"sensor" ~c:"DME" ~t:[("sen_flt_ued", 5.0)] (); 

makeInstance "riu" "RIU" ();  

makeInstance "swa" "Switch" ();  

makeInstance "swa" "Switch" ();  

makeInstance "gpm" "GPM" ();  

]; 

     … 

  };; 

 

The check detects the error and gives the output below. 

# checkModel_cnameInstanceIsDefinedInLibrary gar_001 library;; 

- : (string, string) Core.Std._result = 

Core.Std.Error 

 "Invalid Component: this instantiation references a component that is not in the 

library: DME" 

 

6.3.3.2 Elements of the form (a, x) in exposures of an instance make sense, i.e., there is a basic 

event named a in the component being instantiated. 

Error Description:  in the model, “flt_ued” associated with the instance “sensor” is not a basic event of 

the component “Sensor” in the component library. 

let library = 

  [ … 

    {name         = "Sensor"; 

     faults       = ["ued"; "loa"]; 

     input_flows  = ["sin"]; 

     basic_events = ["sen_flt_ued";"sen_flt_loa"]; 

     event_info   = [(1.0e-6, 1.0);(1.0e-5, 1.0)]; 

     output_flows = ["out"];  

     formulas     = [FM(("out", "ued"), F("sen_flt_ued")); 

         FM(("out", "loa"),  F("sen_flt_loa"))]}; 

    … 

];; 

 

let gar_001 = 

{ instances = 

      [makeInstance ~i:"sensor" ~c:"Sensor" ~t:[("flt_ued", 5.0)] (); 

makeInstance "riu" "RIU" ();  

makeInstance "swa" "Switch" ();  

makeInstance "swa" "Switch" ();  



 

SOTERIA Contractor Report Page 41 
 

makeInstance "gpm" "GPM" ();  

]; 

   … 

} ;; 

 

The check detects the error and gives the output below. 

# checkModel_exposureOfBasicIsDefinedInLibrary gar_001 library;; 

- : (string, string) Core.Std._result = 

Core.Std.Error "Model attempts to change an invalid basic_event of a library 

component" 

6.3.3.3 The connection information is a list of pairs consisting of an input flow and an 

instance. 

Error Description:  in the model, the instance named “riu” is an instantiation of the “RIU” component; 

“riu” references “riu_in” in the connections as the input_flow, but is not defined in the RIU component 

of the library. 

let library = 

[   {name         = "Sensor"; 

     faults       = ["ued"; "loa"]; 

     input_flows  = ["rin"]; 

     basic_events = ["sen_flt_ued";"sen_flt_loa"]; 

     event_info   = [(1.0e-6, 1.0); (1.0e-5, 1.0)]; 

     output_flows = ["out"]; 

     formulas     = [(["out";"ued"], Or[F["rin";"ued"]; F["sen_flt_ued"]]); 

                     (["out";"loa"], Or[F["rin";"loa"]; F["sen_flt_loa"]])]}; 

 

    {name         = "RIU"; 

     faults       = ["ued"; "loa"]; 

     input_flows  = ["rin"]; 

     basic_events = ["riu_flt_ued";"riu_flt_loa"]; 

     event_info   = [(2.0e-7, 1.0); (5.0e-6, 1.0)]; 

     output_flows = ["out"]; 

     formulas     = [(["out";"ued"], Or[F["rin";"ued"]; F["riu_flt_ued"]]); 

                     (["out";"loa"], Or[F["rin";"loa"]; F["riu_flt_loa"]])]}; 

 

   {name         = "Switch"; 

    faults       = ["ued";]; 

    input_flows  = ["swin"]; 

    basic_events = ["sw_flt"]; 

    event_info   = [(1.0e-6, 1.0)]; 

    output_flows = ["out"];  

    formulas     = [(["out";"ued"], Or[F["swin";"ued"];F["sw_flt"]])]}; 

     

    {name         = "GPM"; 

     faults       = ["ued"; "loa"]; 

     input_flows  = ["gin1";"gin2"]; 

     basic_events = ["gpm_flt_ued"; "gpm_flt_loa"]; 

     event_info   = [(2.0e-10, 1.0); (3.0e-5, 1.0)]; 

     output_flows = ["out"];  

     formulas     = [(["out"; "ued"],  

                       Or[F["gin1";"ued"];F["gin2";"ued"];F["gpm_flt_ued"]]); 

                     (["out"; "loa"],  

                       Or[And[F["gin1";"loa"];F["gin2";"loa"]; F["gpm_flt_loa"]]])]}; 

 

];; 

 

let gar_001 = 



 

SOTERIA Contractor Report Page 42 
 

{ instances = 

      [makeInstance ~i:"sensor" ~c:"Sensor" ~t:[("sen_flt_ued", 5.0)] (); 

       makeInstance "riu" "RIU" ();  

       makeInstance "swa" "Switch" ();  

       makeInstance "swb" "Switch" ();  

       makeInstance "gpm" "GPM" ();  

      ]; 

    connections = 

      [(("riu", "rin_in"),("sensor", "out")); 

       (("swa", "swin"),  ("riu", "out")); 

       (("swb", "swin"),  ("riu", "out")); 

       (("gpm", "gin1"),  ("swa", "out")); 

       (("gpm", "gin1"),  ("swb", "out")); 

]; 

     top_fault = ("gpm", F["out", "ued"]) 

} ;; 

 

The check detects the error and gives the output below. 

# checkModel_validConnections gar_bad2 library_good;; 

- : (string, string) Core.Std._result = 

Core.Std.Error 

 "Invalid connection: this is not a valid component input from the library: (riu, 

rin_in)" 

7 Analysis Capability 
Our SOTERIA tool takes the modeling constructs described in section 6 and automatically generates the 

fault tree analysis. model_to_ftree generates the fault tree, cutsets lists the cutsets from the fault tree, 

and probErrorCutImp generates the cut set list along with its probability and ranked with an importance 

metric. Below is the output from calling these functions for the UED fault from section 6. The fault tree 

and cut sets agrees with the manually generated analysis in Figure 8. The raw output is difficult for a 

human to analyze, especially as the model gets large. To help the end-user, we added the capability to 

visualize the fault-tree and the model, which we describe in section 8. 

# let figure2_ued_ftree = model_to_ftree library figure2_ued ;; 

val figure2_ued_ftree : (string * string) ftree = 

  SUM 

   [Leaf (("gpm1", "gpm_flt_ued"), 2e-10, 1.); 

    PRO 

     [SUM 

       [SUM 

         [SUM 

           [SUM 

             [Leaf (("sensor", "sen_flt_ued"), 1e-06, 5.); 

              Leaf (("riu1", "riu_flt_ued"), 2e-07, 1.)]; 

            PRO 

             [Leaf (("sw3a", "crc32_flt"), 2.32830643654e-10, 1.); 

              Leaf (("sw3a", "sw_flt_ued"), 1e-06, 1.)]]; 

          PRO 

           [Leaf (("sw1a", "crc32_flt"), 2.32830643654e-10, 1.); 

            Leaf (("sw1a", "sw_flt_ued"), 1e-06, 1.)]]; 

        SUM 

         [SUM 

           [SUM 

             [Leaf (("sensor", "sen_flt_ued"), 1e-06, 5.); 

              Leaf (("riu1", "riu_flt_ued"), 2e-07, 1.)]; 



 

SOTERIA Contractor Report Page 43 
 

            PRO 

             [Leaf (("sw3b", "crc32_flt"), 2.32830643654e-10, 1.); 

              Leaf (("sw3b", "sw_flt_ued"), 1e-06, 1.)]]; 

          PRO 

           [Leaf (("sw1b", "crc32_flt"), 2.32830643654e-10, 1.); 

            Leaf (("sw1b", "sw_flt_ued"), 1e-06, 1.)]]]; 

      SUM 

       [SUM 

         [SUM 

           [SUM 

             [Leaf (("sensor", "sen_flt_ued"), 1e-06, 5.); 

              Leaf (("riu2", "riu_flt_ued"), 2e-07, 1.)]; 

            PRO 

             [Leaf (("sw3a", "crc32_flt"), 2.32830643654e-10, 1.); 

              Leaf (("sw3a", "sw_flt_ued"), 1e-06, 1.)]]; 

          PRO 

           [Leaf (("sw1a", "crc32_flt"), 2.32830643654e-10, 1.); 

            Leaf (("sw1a", "sw_flt_ued"), 1e-06, 1.)]]; 

        SUM 

         [SUM 

           [SUM 

             [Leaf (("sensor", "sen_flt_ued"), 1e-06, 5.); 

              Leaf (("riu2", "riu_flt_ued"), 2e-07, 1.)]; 

            PRO 

             [Leaf (("sw3b", "crc32_flt"), 2.32830643654e-10, 1.); 

              Leaf (("sw3b", "sw_flt_ued"), 1e-06, 1.)]]; 

          PRO 

           [Leaf (("sw1b", "crc32_flt"), 2.32830643654e-10, 1.); 

            Leaf (("sw1b", "sw_flt_ued"), 1e-06, 1.)]]]]; 

    PRO 

     [SUM 

       [SUM 

         [SUM 

           [SUM 

             [Leaf (("sensor", "sen_flt_ued"), 1e-06, 5.); 

              Leaf (("riu1", "riu_flt_ued"), 2e-07, 1.)]; 

            PRO 

             [Leaf (("sw3a", "crc32_flt"), 2.32830643654e-10, 1.); 

              Leaf (("sw3a", "sw_flt_ued"), 1e-06, 1.)]]; 

          PRO 

           [Leaf (("sw1a", "crc32_flt"), 2.32830643654e-10, 1.); 

            Leaf (("sw1a", "sw_flt_ued"), 1e-06, 1.)]]; 

        SUM 

         [SUM 

           [SUM 

             [Leaf (("sensor", "sen_flt_ued"), 1e-06, 5.); 

              Leaf (("riu1", "riu_flt_ued"), 2e-07, 1.)]; 

            PRO 

             [Leaf (("sw3b", "crc32_flt"), 2.32830643654e-10, 1.); 

              Leaf (("sw3b", "sw_flt_ued"), 1e-06, 1.)]]; 

          PRO 

           [Leaf (("sw1b", "crc32_flt"), 2.32830643654e-10, 1.); 

            Leaf (("sw1b", "sw_flt_ued"), 1e-06, 1.)]]]; 

      SUM [SUM [SUM [...]; ...]; ...]; ...]; 

    ...] 

 

# let figure2_ued_cutsets = cutsets figure2_ued_ftree;; 

val figure2_ued_cutsets : (string * string) pexp = 

  Sum 

   [Var ("gpm1", "gpm_flt_ued"); Var ("sensor", "sen_flt_ued"); 

    Pro [Var ("riu1", "riu_flt_ued"); Var ("riu2", "riu_flt_ued")]; 

    Pro [Var ("riu1", "riu_flt_ued"); Var ("riu3", "riu_flt_ued")]; 

    Pro [Var ("riu2", "riu_flt_ued"); Var ("riu3", "riu_flt_ued")]; 



 

SOTERIA Contractor Report Page 44 
 

    Pro [Var ("sw1a", "crc32_flt"); Var ("sw1a", "sw_flt_ued")]; 

    Pro [Var ("sw1b", "crc32_flt"); Var ("sw1b", "sw_flt_ued")]; 

    Pro [Var ("sw3a", "crc32_flt"); Var ("sw3a", "sw_flt_ued")]; 

    Pro [Var ("sw3b", "crc32_flt"); Var ("sw3b", "sw_flt_ued")]] 

# 

# probErrorCutImp figure2_ued_ftree;; 

- : ((string * string) pexp * float * float) Core.Std.List.t = 

[(Var ("sensor", "sen_flt_ued"), 4.99998750003e-06, 0.999959977512); 

 (Var ("gpm1", "gpm_flt_ued"), 2.00000016548e-10, 3.9998502406e-05); 

 (Pro [Var ("riu1", "riu_flt_ued"); Var ("riu2", "riu_flt_ued")], 

  3.99999920087e-14, 7.9996982211e-09); 

 (Pro [Var ("riu1", "riu_flt_ued"); Var ("riu3", "riu_flt_ued")], 

  3.99999920087e-14, 7.9996982211e-09); 

 (Pro [Var ("riu2", "riu_flt_ued"); Var ("riu3", "riu_flt_ued")], 

  3.99999920087e-14, 7.9996982211e-09); 

 (Pro [Var ("sw1a", "crc32_flt"); Var ("sw1a", "sw_flt_ued")], 

  2.32830527235e-16, 4.65643581662e-11); 

 (Pro [Var ("sw1b", "crc32_flt"); Var ("sw1b", "sw_flt_ued")], 

  2.32830527235e-16, 4.65643581662e-11); 

 (Pro [Var ("sw3a", "crc32_flt"); Var ("sw3a", "sw_flt_ued")], 

  2.32830527235e-16, 4.65643581662e-11); 

 (Pro [Var ("sw3b", "crc32_flt"); Var ("sw3b", "sw_flt_ued")], 

  2.32830527235e-16, 4.65643581662e-11)] 

 
We further discuss an additional capability in our analysis which is the ability to handle loops in the 

model when generating fault trees. For this work, we referenced the NASA Fault Tree Handbook with 

Aerospace Applications, version 1.1, Section 5.4, Modeling Loops and Feedback (NASA, 2002). This 

section presented a space shuttle example where the orbiter sends a control signal to the main engine 

and the main engine provides a feedback signal back to the orbiter, as shown in Figure 11. A loop occurs 

because the failure of the orbiter depends on the failure of the main engine which depends on the 

failure of the orbiter (Figure 12).  

  

Figure 11. Visualization of the physical and functional architecture of the space shuttle example. 



 

SOTERIA Contractor Report Page 45 
 

 

Figure 12. Visualization of the Orbiter & Main Engine feedback loop. 

 

Figure 13. Prior to handling loops -- stack overflow. 

To handle loops our algorithm first needs to detect them. Loops occur when we try to synthesize the 

fault tree. The synthesis proceeds by unwinding the fault definitions in each component and to the next 

connected component. Starting at the top-level fault, the algorithm unwinds the definitions until it 

reaches a fixpoint. A loop occurs when there is a cycle in the expanded fault definition. Note that we can 

legitimately expand out the definition of some faults more than once without there being a loop. 

Therefore, repetition must consider the context. We look for loops only along the path of ancestors of 

the fault tree being generated. This would depend on where you are in the tree.  

Once a loop is discovered it needs to be broken. First, we break loops only in the context of conjunction 

and disjunction. Here is a simple example: when we come across a loop that has the formula A ∨ A ∨ A ∨ 

A ∨ …, we want to break the loop by replacing it with something. We note that A ∨ false = A, so we 



 

SOTERIA Contractor Report Page 46 
 

replace this type of loop (i.e., starting after the first disjunction) with false so that we can replace this 

loop with an A. Similarly, when we come across a loop that has A ∧ A ∧ A ∧ A ∧ …, we replace the loop 

with true so that we get A ∧ true = A and replace this loop with an A. From the systems that we have 

seen so far, we tend to see unwinding of the fault definitions to loops with these conjunctions and 

disjunctions, so it’s likely that we will be able to break the loops in the context of conjunction and 

disjunction once the algorithm has expanded the formulas enough to reveal spots like these. 

In addition, we break loops by replacing repeated faults with identity. For example, when we come 

across A ∧ B ∧ B ∧ B ∧ …, we replace the loop with I so we get A ∧ B ∧ I. Another way to think of this is if 

we discover a tree that we have seen before, we can replace it with an identity. 

Finally, if there is a loop of the form Ain = Bout, Bout = Ain – in other words, the fault is just passed 

through the components with no additional basic events influencing the outputs of A or B – then we 

report an error. We could have replaced this sort of a loop with true and declare that a fault will always 

be passed through, but this will likely cause more confusion for the safety engineer when analyzing the 

resulting fault tree. 

 

Figure 14. Fault tree synthesis with loops – space shuttle example fault tree and cut sets. 

 

8 Visualization 
We added a visualization capability to our model which automatically generates a view of the physical 

architecture, a view of the functional architecture, a view of the fault propagation through the 

architecture, and the fault tree. Raw output is difficult for a human to digest. We describe the 

visualization with the use of a very simple example – a system with 4 components, where data from a 

distance measuring equipment (DME) is sent through a switch to a GPM (general processing module) for 

processing, then back through the same switch to be displayed on a primary flight display (PFD). The 

library of components and model that describes this example are as follows: 



 

SOTERIA Contractor Report Page 47 
 

let slibrary=  
  [{name         = "GPM"; 
    faults       = ["ued";]; 
    input_flows  = ["gin"]; 
    basic_events = ["gpm_fl"]; 
    event_info   = [(2.0e-10, 1.0)]; 
    output_flows = ["out"];  
    formulas     = [(["out"; "ued"], Or[F["gin";"ued"]; F["gpm_fl"]]); ]}; 
 
   {name         = "Switch"; 
    faults       = ["ued";]; 
    input_flows  = ["swin1"; "swin2"]; 
    basic_events = ["sw_fl"]; 
    event_info   = [(1.0e-6, 1.0)]; 
    output_flows = ["out1"; "out2"];  
    formulas     = [(["out1"; "ued"], Or[F["swin1";"ued"]; F["sw_fl"]]); 
                    (["out2"; "ued"], Or[F["swin2";"ued"]; F["sw_fl"]]);]}; 
 
   {name         = "DME"; 
    faults       = ["ued";]; 
    input_flows  = []; 
    basic_events = ["dme_fl"]; 
    event_info   = [(1.0e-6, 1.0)]; 
    output_flows = ["out"];  
    formulas     = [(["out"; "ued"], F["dme_fl"]);]}; 
 
   {name         = "PFD"; 
    faults       = ["ued";]; 
    input_flows  = ["pin"]; 
    basic_events = ["pfd_fl"]; 
    event_info   = [(2.0e-10, 1.0)]; 
    output_flows = ["out"];  
    formulas     = [(["out"; "ued"], Or[F["pin";"ued"]; F["pfd_fl"]]); ]}; 
  ];; 

 

let s_model = 
  { instances = 
      [makeInstance "gpm" "GPM" (); 
       makeInstance "sw" "Switch" (); 
       makeInstance "dme" "DME" (); 
       makeInstance "pfd" "PFD" (); 
      ]; 
    connections = 
      [ (("sw", "swin1"), ("dme", "out")); 
        (("sw", "swin2"), ("gpm", "out")); 
        (("gpm", "gin"), ("sw", "out1")); 
        (("pfd", "pin"), ("sw", "out2")); 
      ]; 
    top_fault = ("pfd", F["out"; "ued"]) 
  } ;; 

 

The top-level fault being analyzed is undetected erroneous data of the PFD. 

Figure 15 is the visualization of the physical architecture of the component library and model from 

above. Automatically generating the physical architecture not only helps the end-user with 

communication and documentation, but it also helps him visually validate the instantiations and 

connections he created in the model.  



 

SOTERIA Contractor Report Page 48 
 

 

Figure 15. Visualization of the physical architecture. 

Figure 16 shows the visualization of the functional architecture. This is a functional view in that the 

inputs and outputs of all the components are shown along with their connections to one another. The 

additional details gained by looking at the functional view over the physical view is that what appeared 

to be an infinite loop in the physical architecture (i.e., the double arrows between the SW and the GPM) 

is now further defined in the functional architecture. Functionally, the data is flowing from swin1 of SW 

→ out1 of SW → gin of GPM → out of GPM → swin2 of SW → out2 of SW. Automatically generating the 

functional architecture helps the end-user visually validate the input/output connections. 

 

Figure 16. Visualization of the functional architecture. 

Figure 17 shows the visualization of the fault propagation. The red edges highlight which part of the 

system influences the top-level fault. The internal faults of each component are also depicted with an 

appendage on the side of the component. For example, the component DME has an internal fault, 

dme_fl, as shown appended on the side. (Note that if this component had more than one fault defined 

in the library, then the visualization would generate more than one appendages.) The DME output is 

affected by the internal DME fault, dme_fl, as shown with the red edge, indicating that this fault can 

propagate to the top-level PFD fault (which, recall, is what this model is analyzing). Another example: 



 

SOTERIA Contractor Report Page 49 
 

the GPM has an internal fault, gpm_fl; its output is affected by gpm_fl and its input, gin, both of which 

have an effect on the top-level fault. Automatically generating the fault propagation view helps the end-

user see which part of the system affects the top-level fault being analyzed. 

 

Figure 17. Visualization of the fault propagation. 

The SOTERIA tool is now also enhanced with the ability to visualize an automatically synthesized fault 

tree, as shown in Figure 18.  

 

Figure 18. Visualization of the synthesized fault tree. 

We further enhanced the qualitative and quantitative analysis results by automatically generating both a 

simplified fault tree and a list view of the cut sets. In this example, the simplified tree is equivalent to 

the cut sets. The cut set list is ordered by the importance measure (% contribution) with the biggest 

failure contributor listed first. The list view is consistent with outputs of popular commercial fault tree 

tools like Windchill FTA® so safety engineers will be familiar and comfortable with this view. Lastly, the 

top-level failure probability is calculated. 



 

SOTERIA Contractor Report Page 50 
 

 

 

 

Figure 19. Visualization off the cut sets, list view of the cut sets, and calculation of the top-level failure probability. 

9 Functionally Integrated Distributed Systems & Other Examples 
Here we demonstrate some more examples. The first two systems are inspired by real architectures 

from B777 and B787, each complex in its own way. We chose to analyze aircraft functions in each of 

these aircrafts that were interesting from a safety perspective. These are the kinds of 

problems/situations that engineers find difficult to solve in the sense that the hosted aircraft functions 

utilize shared resources and failure of functions are considered or contribute to “catastrophic” failure 

conditions. A Wheel brake and Landing Gear system was also defined for the purposes of stress testing 

our modeling and fault tree synthesis capabilities. This section includes some material in our paper 

(Manolios, Siu, Noorman, & Liao, 2017) submitted for publication. The failure probabilities used for the 

components in these examples are not intended to be representative of the actual equipment modeled, 

but merely example numbers to illustrate the calculations. 

9.1 B777  
The B777 architecture is interesting because it is the first platform to use IMA. B777 is also complex in 

that an IMA generally can host multiple applications that need to share system resources, such as 

computing time, communication bandwidth, and memory, where resource allocation is typically 

considered as a separate problem from the safety analysis problem. From a safety point of view, one 

hazard that engineers find hard to analyze and mitigate is the unintended erroneous position display 

during low RNP approach. The requirement for probability of failure is 1e-9, which corresponds to a 

catastrophic failure condition.  

This section is organized as follows. First, we present the model and analyses of the original B777 sample 

architecture. Second, we consider an alternative configuration of the sample architecture, which 

changes the connections between input devices and Input/output Modules (IOMs). Third, we further 

consider another alternative configuration of the sample architecture, which, in addition to the changes 

in the previous alternative configuration, also changes the implementation of the Flight Management 



 

SOTERIA Contractor Report Page 51 
 

Computers (FMC). Fourth, we present a technique to deal with communication bus in the system. 

Finally, we discuss some findings applicable to the system synthesis based on the study in this section. 

9.1.1 Original Sample Architecture 

A functionally integrated distributed architecture inspired by B777 is shown in Figure 20. In this sample 

architecture, we are interested in the top-level probability of loss of availability in a simplified Required 

Navigation Performance (RNP) scenario, where Primary Flight Display #1 (PFD #1) is the sink node of 

data flows under study. Most of the data flows are self-explanatory from the figure. We further describe 

the data flows between IOMs and FMCs as follows.  

• The output from port A of IOM #1 goes to both port A of FMC #1 and port A of FMC #2.  

• The output from port B of IOM #1 goes to both port B of FMC #1 and port B of FMC #2.  

• The data flows from IOM #2 and IOM #3 to FMCs are defined similarly.  

• Per a connection scheme from FMCs to electronic flight instrument system (EFIS) as described in 

Section 7.2 of ARINC 702A-4, the output from port A of FMC #1 goes to port A of IOM #4; the 

output from port B of FMC #2 goes to port B of IOM #4; the output from port A of FMC #2 goes 

to port A of IOM #5; and the output from port B of FMC #1 goes to port B of IOM #5. 

Note that the communication bus is not explicitly modeled here. We will deal with buses later in Section 

9.1.4. 

 

 
Figure 20. A functionally integrated distributed architecture inspired by B777 



 

SOTERIA Contractor Report Page 52 
 

To model the sample architecture, we define a component library as follows. 

 
let b777_library =  

  [ 

   {name = "DME"; 

    faults = ["loa"]; 

    input_flows = []; 

    basic_events = ["dme_fl"]; 

    event_info = [(1e-06, 1.)]; 

    output_flows = ["out"]; 

    formulas = [(["out"; "loa"], F ["dme_fl"])]}; 

    

   {name = "MCDU"; 

    faults = ["loa"]; 

    input_flows = []; 

    basic_events = ["mcdu_fl"]; 

    event_info = [(1e-06, 1.)]; 

    output_flows = ["out"]; 

    formulas = [(["out"; "loa"], F ["mcdu_fl"])]}; 

   {name = "IRU"; 

    faults = ["loa"]; 

    input_flows = []; 

    basic_events = ["iru_fl"]; 

    event_info = [(1e-06, 1.)]; 

    output_flows = ["out"]; 

    formulas = [(["out"; "loa"], F ["iru_fl"])]}; 

    

   {name = "IOM22"; 

    faults = ["loa"]; 

    input_flows = ["iom_in1"; "iom_in2"]; 

    basic_events = ["iom_fl"]; 

    event_info = [(1e-06, 1.)]; 

    output_flows = ["A"; "B"]; 

    formulas = 

       [(["A"; "loa"], 

  Or [And [F ["iom_in1"; "loa"]; F ["iom_in2"; "loa"]]; F ["iom_fl"]]); 

 (["B"; "loa"], F ["A"; "loa"])]}; 

    

   {name = "IOM21"; 

    faults = ["loa"]; 

    input_flows = ["inA"; "inB"]; 

    basic_events = ["iom_fl"]; 

    event_info = [(1e-06, 1.)]; 

    output_flows = ["out"]; 

    formulas = 

       [(["out"; "loa"], 

  Or [And [F ["inA"; "loa"]; F ["inB"; "loa"]]; F ["iom_fl"]])]}; 

    

   {name = "FMC"; 

    faults = ["loa"]; 

    input_flows = ["inA1"; "inA2"; "inA3"; "inB1"; "inB2"; "inB3"]; 

    basic_events = ["fmc_fl"]; 

    event_info = [(2e-10, 1.)]; 

    output_flows = ["outA"; "outB"]; 

    formulas = 

       [(["outA"; "loa"], 

  Or 

           [F ["fmc_fl"]; F ["inA1"; "loa"]; F ["inA2"; "loa"]; 

            F ["inA3"; "loa"]]); 

 (["outB"; "loa"], 

  Or 

           [F ["fmc_fl"]; F ["inB1"; "loa"]; F ["inB2"; "loa"]; 

            F ["inB3"; "loa"]])]}; 

    

   {name = "SG";  

    faults = ["loa"]; 

    input_flows = ["in"]; 

    basic_events = ["sg_fl"]; 

    event_info = [(1e-06, 1.)]; 

    output_flows = ["out"]; 



 

SOTERIA Contractor Report Page 53 
 

    formulas = [(["out"; "loa"], Or [F ["in"; "loa"]; F ["sg_fl"]])]}; 

    

   {name = "PFD"; 

    faults = ["loa"]; 

    input_flows = ["in1"; "in2"]; 

    basic_events = ["pfd_fl"]; 

    event_info = [(2e-10, 1.)]; 

    output_flows = ["out"]; 

    formulas = 

       [(["out"; "loa"], 

  Or [And [F ["in1"; "loa"]; F ["in2"; "loa"]]; F ["pfd_fl"]])]}; 

    

   {name = "ND"; 

    faults = ["loa"]; 

    input_flows = ["in1"; "in2"]; 

    basic_events = ["nd_fl"]; 

    event_info = [(2e-10, 1.)]; 

    output_flows = ["out"]; 

    formulas = 

       [(["out"; "loa"], 

  Or [And [F ["in1"; "loa"]; F ["in2"; "loa"]]; F ["nd_fl"]])]}; 

   {name = "BUS5_8"; 

    faults = ["loa"]; 

    input_flows = ["i1"; "i2"; "i3"; "i4"; "i5"]; 

    basic_events = []; 

    event_info = []; 

    output_flows = ["o11"; "o12"; "o13"; "o21"; "o22"; "o23"; "o4"; "o5"]; 

    formulas = 

       [(["o11"; "loa"], F ["i1"; "loa"]); (["o21"; "loa"], F ["o11"; "loa"]); 

 (["o12"; "loa"], F ["i2"; "loa"]); (["o22"; "loa"], F ["o12"; "loa"]); 

 (["o13"; "loa"], F ["i3"; "loa"]); (["o23"; "loa"], F ["o13"; "loa"]); 

 (["o4"; "loa"], F ["i4"; "loa"]); (["o5"; "loa"], F ["i5"; "loa"])]}; 

    

  ];; 

Note that the component type FMC has two output data flows, outA and outB. In the component 

library, a separate formula is defined for each of the output data flows. More specifically, the output 

data flow associated with outA depends on input data flows from port A and FMC internal failure, and 

the output data flow associated with outB depends on input data flows from port B and FMC internal 

failure. With this implementation, the FMC ports could be used as independent sources with the caveat 

that an internal FMC failure would affect both ports. This is one possible implementation of the FMC 

operation; other implementations are also possible and are discuss later within this section. We will 

discuss another implementation in the alternative configuration of the sample architecture later. 

 

The model of this sample architecture is presented as follows, where we instantiate the components 

involved in the safety scenario under study, define data flow connections, and specify the output of PFD 

#1 as the sink node associated with the top-level event in fault tree analysis. Note that an identified 

hazard with a failure condition of major or higher requires an analysis, such as an FTA, that shows 

compliance with an allowable average quantitative probability. For an example of a hazard that might 

involve more than one sink node associated with the top-level event refer to Section 9.3. 

 
let b777_model = 

  {instances = 

      [makeInstance "iru1" "IRU" (); 

       makeInstance "iru2" "IRU" (); 

       makeInstance "mcdu1" "MCDU" (); 

       makeInstance "mcdu2" "MCDU" (); 

       makeInstance "dme1" "DME" (); 

       makeInstance "dme2" "DME" (); 



 

SOTERIA Contractor Report Page 54 
 

       makeInstance "iom1" "IOM22" (); 

       makeInstance "iom2" "IOM22" (); 

       makeInstance "iom3" "IOM22" (); 

       makeInstance "fmc1" "FMC" (); 

       makeInstance "fmc2" "FMC" (); 

       makeInstance "iom4" "IOM21" (); 

       makeInstance "iom5" "IOM21" (); 

       makeInstance "sg1" "SG" (); 

       makeInstance "sg2" "SG" (); 

       makeInstance "nd1" "ND" (); 

       makeInstance "nd2" "ND" (); 

       makeInstance "pfd1" "PFD" (); 

       makeInstance "pfd2" "PFD" (); 

      ]; 

   connections = 

      [ (("iom1", "iom_in1"), ("iru1", "out")); 

 (("iom1", "iom_in2"), ("iru2", "out")); 

 (("iom2", "iom_in1"), ("mcdu1", "out")); 

 (("iom2", "iom_in2"), ("mcdu2", "out")); 

 (("iom3", "iom_in1"), ("dme1", "out")); 

 (("iom3", "iom_in2"), ("dme2", "out")); 

 (("fmc1", "inA1"), ("iom1", "A")); 

 (("fmc1", "inA2"), ("iom2", "A")); 

 (("fmc1", "inA3"), ("iom3", "A")); 

 (("fmc1", "inB1"), ("iom1", "B")); 

 (("fmc1", "inB2"), ("iom2", "B")); 

 (("fmc1", "inB3"), ("iom3", "B")); 

 (("fmc2", "inA1"), ("iom1", "A")); 

 (("fmc2", "inA2"), ("iom2", "A")); 

 (("fmc2", "inA3"), ("iom3", "A")); 

 (("fmc2", "inB1"), ("iom1", "B")); 

 (("fmc2", "inB2"), ("iom2", "B")); 

 (("fmc2", "inB3"), ("iom3", "B")); 

 (("iom4", "inA"), ("fmc1", "outA")); 

 (("iom4", "inB"), ("fmc2", "outB")); 

 (("iom5", "inA"), ("fmc2", "outA")); 

 (("iom5", "inB"), ("fmc1", "outB")); 

 (("sg1", "in"), ("iom4", "out")); 

 (("sg2", "in"), ("iom5", "out")); 

 (("pfd1", "in1"), ("sg1", "out")); 

 (("pfd1", "in2"), ("sg2", "out")); 

 (("pfd2", "in1"), ("sg1", "out")); 

 (("pfd2", "in2"), ("sg2", "out")); 

 (("nd1", "in1"), ("sg1", "out")); 

 (("nd1", "in2"), ("sg2", "out")); 

 (("nd2", "in1"), ("sg1", "out")); 

 (("nd2", "in2"), ("sg2", "out")); 

      ]; 

   top_fault =("pfd1", F["out"; "loa"]) 

  } ;; 

 

We used our tool to synthesize the fault tree and generate the minimum cut set for analysis. The cut 

sets and some comments describing each cut set are presented below. 

 

Output from tool Comment 
  Sum 

   [Var ("iom1", "iom_fl");  

    Var ("iom2", "iom_fl");  

    Var ("iom3", "iom_fl"); 

    Var ("pfd1", "pfd_fl"); 

    Pro [Var ("dme1", "dme_fl"); Var ("dme2", "dme_fl")]; 

    Pro [Var ("fmc1", "fmc_fl"); Var ("fmc2", "fmc_fl")]; 

    Pro [Var ("iom4", "iom_fl"); Var ("iom5", "iom_fl")]; 

    Pro [Var ("iom4", "iom_fl"); Var ("sg2", "sg_fl")]; 

    Pro [Var ("iom5", "iom_fl"); Var ("sg1", "sg_fl")]; 

 

Loss of IRU 

Loss of MCDU 

Loss of DME 

Loss of PFD 

Loss of DME 

Loss of FMC 

Loss of display data 

Loss of display data 

Loss of display data 



 

SOTERIA Contractor Report Page 55 
 

    Pro [Var ("iru1", "iru_fl"); Var ("iru2", "iru_fl")]; 

    Pro [Var ("mcdu1", "mcdu_fl"); Var ("mcdu2", "mcdu_fl")]; 

    Pro [Var ("sg1", "sg_fl"); Var ("sg2", "sg_fl")]] 

Loss of IRU 

Loss of MCDU 

Loss of display data 

 

From the cut sets, we observe that for each type of input devices (i.e., IRU, MCDU, and DME), there are 

two ways to completely lose the associated input data; that is, either the associated IOM fails or both 

(redundant) instances of the input device fail. Take IRU as an example, which corresponds to the terms 

in the cut sets, Var ("iom1", "iom_fl")and Pro [Var ("iru1", "iru_fl"); Var ("iru2", 

"iru_fl")], respectively. 

 

Another interesting observation is regarding the total loss of display data (between FMC and PFD). From 

the cut sets, we see that there are four ways to completely lose the display data, i.e., 

(1) SG #1 and SG #2 both fail 

(2) IOM #4 and IOM #5 both fail 

(3) SG #1 and IOM #5 both fail 

(4) SG #2 and IOM #4 both fail 

Whereas (1) and (2) above are obvious since they correspond to failures of both redundant instances of 

a component, (3) and (4) are less obvious. In fact, the latter two scenarios could be omitted by users 

who derive cut sets manually, because (3) and (4) are not intuitive (especially in a larger system). In this 

example, our tool helps users to obtain the complete cut sets, based on which the users can further 

validate each term in the cut sets in the context of its physical meaning. 

 

Our tool calculates the probability of the top-level event as: 

(3.00020249934150288e-06, 3.00020249934150288e-06) 

 

The analysis from the SOTERIA tool was compared to the output generated using Windchill FTA®, the 

commercial fault tree tool. The cut set report generated by Windchill FTA® (Figure 21), as well as the FTA 

probabilities calculated are consistent with SOTERIA.  

 

 
Figure 21. Cut Set Report from Windchill FTA for a functionally integrated distributed architecture inspired by B777 



 

SOTERIA Contractor Report Page 56 
 

 

The SOTERIA tool also calculates the probability and the importance measure of each term in the cut set 

as shown below: 

 

  [(Var ("iom1", "iom_fl"), 9.99999499984305373e-07, 0.33331066826448863); 

   (Var ("iom2", "iom_fl"), 9.99999499984305373e-07, 0.33331066826448863); 

   (Var ("iom3", "iom_fl"), 9.99999499984305373e-07, 0.33331066826448863); 

   (Var ("pfd1", "pfd_fl"), 2.000000165480742e-10, 6.66621725006798845e-05); 

   (Pro [Var ("dme1", "dme_fl"); Var ("dme2", "dme_fl")], 

    9.99998999968860778e-13, 3.3331050160392335e-07); 

   (Pro [Var ("iom4", "iom_fl"); Var ("iom5", "iom_fl")], 

    9.99998999968860778e-13, 3.3331050160392335e-07); 

   (Pro [Var ("iom4", "iom_fl"); Var ("sg2", "sg_fl")], 

    9.99998999968860778e-13, 3.3331050160392335e-07); 

   (Pro [Var ("iom5", "iom_fl"); Var ("sg1", "sg_fl")], 

    9.99998999968860778e-13, 3.3331050160392335e-07); 

   (Pro [Var ("iru1", "iru_fl"); Var ("iru2", "iru_fl")], 

    9.99998999968860778e-13, 3.3331050160392335e-07); 

   (Pro [Var ("mcdu1", "mcdu_fl"); Var ("mcdu2", "mcdu_fl")], 

    9.99998999968860778e-13, 3.3331050160392335e-07); 

   (Pro [Var ("sg1", "sg_fl"); Var ("sg2", "sg_fl")], 

    9.99998999968860778e-13, 3.3331050160392335e-07); 

   (Pro [Var ("fmc1", "fmc_fl"); Var ("fmc2", "fmc_fl")], 

    4.00000066192299538e-20, 1.33324356032665548e-14)] 

 

We observe that the terms corresponding to internal failures of IOM #1, IOM #2, and IOM #3 dominate 

the safety performance of the overall system (i.e., each account for 33.3% of the top-level failure 

probability). Moreover, the three IOMs also introduce potential single points of failure to data flows 

from input devices, e.g., failure of IOM #1 will lead to total loss of IRU data. Therefore, we next consider 

an alternative configuration of the connections between input devices and IOMs for the purpose of 

mitigating the above impacts of IOMs. 

9.1.2 First Move: Change Connections in the Architecture 

We consider an alternative configuration of the connections between input devices and IOMs as shown 

in Figure 22. More specifically, the connections between the second instance of each input device type 

and the IOMs are shuffled. The other connections in the architecture remain the same. 

 



 

SOTERIA Contractor Report Page 57 
 

 
Figure 22. An alternative configuration of the sample architecture inspired by B777 

In the original sample architecture (Figure 20), each of the three IOMs at the bottom of the figure takes 

redundant inputs from two instances of the same type of input device. In the new alternative 

architecture (Figure 22), each of the three IOMs takes inputs from two different types of input devices. 

Therefore, we need a new implementation of the IOMs. Accordingly, we added the following new 

component type to our library. 

 
   {name = "IOM22_alt"; 

    faults = ["loa"]; 

    input_flows = ["iom_in1"; "iom_in2"]; 

    basic_events = ["iom_fl"]; 

    event_info = [(1e-06, 1.)]; 

    output_flows = ["A"; "B"]; 

    formulas = 

       [(["A"; "loa"], Or [F ["iom_in1"; "loa"]; F ["iom_fl"]]); 

 (["B"; "loa"], Or [F ["iom_in2"; "loa"]; F ["iom_fl"]])]};; 

 

The model of the alternative sample architecture is as follows. Again, buses are not explicitly modeled in 

this example.  
let b777_model_shuffle = 

  { instances = 

      [makeInstance "iru1" "IRU" (); 

       makeInstance "iru2" "IRU" (); 

       makeInstance "mcdu1" "MCDU" (); 

       makeInstance "mcdu2" "MCDU" (); 

       makeInstance "dme1" "DME" (); 

       makeInstance "dme2" "DME" (); 



 

SOTERIA Contractor Report Page 58 
 

       makeInstance "iom1" "IOM22_alt" ();   (* New type for this example *) 

       makeInstance "iom2" "IOM22_alt" (); 

       makeInstance "iom3" "IOM22_alt" (); 

       makeInstance "fmc1" "FMC" (); 

       makeInstance "fmc2" "FMC" (); 

       makeInstance "iom4" "IOM21" (); 

       makeInstance "iom5" "IOM21" (); 

       makeInstance "sg1" "SG" (); 

       makeInstance "sg2" "SG" (); 

       makeInstance "nd1" "ND" (); 

       makeInstance "nd2" "ND" (); 

       makeInstance "pfd1" "PFD" (); 

       makeInstance "pfd2" "PFD" (); 

      ]; 

    connections = 

      [ (("iom1", "iom_in1"), ("iru1", "out")); 

   (("iom1", "iom_in2"), ("dme2", "out")); 

   (("iom2", "iom_in1"), ("mcdu1", "out")); 

   (("iom2", "iom_in2"), ("iru2", "out")); 

   (("iom3", "iom_in1"), ("dme1", "out")); 

   (("iom3", "iom_in2"), ("mcdu2", "out")); 

   (("fmc1", "inA1"), ("iom1", "A")); 

   (("fmc1", "inA2"), ("iom2", "A")); 

   (("fmc1", "inA3"), ("iom3", "A")); 

   (("fmc1", "inB1"), ("iom1", "B")); 

   (("fmc1", "inB2"), ("iom2", "B")); 

   (("fmc1", "inB3"), ("iom3", "B")); 

   (("fmc2", "inA1"), ("iom1", "A")); 

   (("fmc2", "inA2"), ("iom2", "A")); 

   (("fmc2", "inA3"), ("iom3", "A")); 

   (("fmc2", "inB1"), ("iom1", "B")); 

   (("fmc2", "inB2"), ("iom2", "B")); 

   (("fmc2", "inB3"), ("iom3", "B")); 

   (("iom4", "inA"), ("fmc1", "outA")); 

   (("iom4", "inB"), ("fmc2", "outB")); 

   (("iom5", "inA"), ("fmc2", "outA")); 

   (("iom5", "inB"), ("fmc1", "outB")); 

   (("sg1", "in"), ("iom4", "out")); 

   (("sg2", "in"), ("iom5", "out")); 

   (("pfd1", "in1"), ("sg1", "out")); 

   (("pfd1", "in2"), ("sg2", "out")); 

   (("pfd2", "in1"), ("sg1", "out")); 

   (("pfd2", "in2"), ("sg2", "out")); 

   (("nd1", "in1"), ("sg1", "out")); 

   (("nd1", "in2"), ("sg2", "out")); 

   (("nd2", "in1"), ("sg1", "out")); 

   (("nd2", "in2"), ("sg2", "out")); 

      ]; 

    top_fault =("pfd1", F["out";"loa"]) 

  } ;; 

 

The analysis provides the following cut sets. 
  Sum 

   [Var ("iom1", "iom_fl"); Var ("iom2", "iom_fl"); Var ("iom3", "iom_fl"); 

    Var ("pfd1", "pfd_fl"); 

    Pro [Var ("dme1", "dme_fl"); Var ("dme2", "dme_fl")]; 

    Pro [Var ("dme1", "dme_fl"); Var ("iru2", "iru_fl")]; 

    Pro [Var ("dme1", "dme_fl"); Var ("mcdu2", "mcdu_fl")]; 

    Pro [Var ("dme2", "dme_fl"); Var ("iru1", "iru_fl")]; 

    Pro [Var ("dme2", "dme_fl"); Var ("mcdu1", "mcdu_fl")]; 

    Pro [Var ("fmc1", "fmc_fl"); Var ("fmc2", "fmc_fl")]; 

    Pro [Var ("iom4", "iom_fl"); Var ("iom5", "iom_fl")]; 



 

SOTERIA Contractor Report Page 59 
 

    Pro [Var ("iom4", "iom_fl"); Var ("sg2", "sg_fl")]; 

    Pro [Var ("iom5", "iom_fl"); Var ("sg1", "sg_fl")]; 

    Pro [Var ("iru1", "iru_fl"); Var ("iru2", "iru_fl")]; 

    Pro [Var ("iru1", "iru_fl"); Var ("mcdu2", "mcdu_fl")]; 

    Pro [Var ("iru2", "iru_fl"); Var ("mcdu1", "mcdu_fl")]; 

    Pro [Var ("mcdu1", "mcdu_fl"); Var ("mcdu2", "mcdu_fl")]; 

    Pro [Var ("sg1", "sg_fl"); Var ("sg2", "sg_fl")]; 

    Pro 

     [Var ("dme1", "dme_fl"); Var ("fmc1", "fmc_fl"); Var ("iom4", "iom_fl")]; 

    Pro 

     [Var ("dme1", "dme_fl"); Var ("fmc1", "fmc_fl"); Var ("sg1", "sg_fl")]; 

    Pro 

     [Var ("dme1", "dme_fl"); Var ("fmc2", "fmc_fl"); Var ("iom5", "iom_fl")]; 

    Pro 

     [Var ("dme1", "dme_fl"); Var ("fmc2", "fmc_fl"); Var ("sg2", "sg_fl")]; 

    Pro 

     [Var ("dme2", "dme_fl"); Var ("fmc1", "fmc_fl"); Var ("iom5", "iom_fl")]; 

    Pro 

     [Var ("dme2", "dme_fl"); Var ("fmc1", "fmc_fl"); Var ("sg2", "sg_fl")]; 

    Pro 

     [Var ("dme2", "dme_fl"); Var ("fmc2", "fmc_fl"); Var ("iom4", "iom_fl")]; 

    Pro 

     [Var ("dme2", "dme_fl"); Var ("fmc2", "fmc_fl"); Var ("sg1", "sg_fl")]; 

    Pro 

     [Var ("fmc1", "fmc_fl"); Var ("iom4", "iom_fl"); Var ("iru1", "iru_fl")]; 

    Pro 

     [Var ("fmc1", "fmc_fl"); Var ("iom4", "iom_fl"); 

      Var ("mcdu1", "mcdu_fl")]; 

    Pro [...]; ...] 

 

The probability of the top-level event is: 

(3.00020849929850045e-06, 3.00020849929950122e-06). 

 

Similar to the original architecture, the analysis generated by the SOTERIA tool and the output 

generated using Windchill FTA® (Figure 23) are consistent.  

 

 
Figure 23. Cut Set Report from Windchill FTA for an alternative configuration of the sample architecture inspired by B777 



 

SOTERIA Contractor Report Page 60 
 

Although we changed the architecture, the dominant terms associated with internal failures of IOM #1, 

IOM #2, and IOM #3 remain in the cut sets, and the probability of top-level event did not improve. Some 

further thoughts reveal that we also need to change the implementation of FMCs. In the current 

implementation of the FMC, the output data flow associated with outA (resp., outB) of FMC only 

depends on input data flows from port A (resp., port B) and FMC internal failure. If any of the above 

IOMs fail, neither port A nor port B of an FMC will receive a complete set of input data, hence leading to 

failures of both output data flows. For example, if IOM #1 fails, then port A of an FMC will miss IRU data 

and port B of an FMC will miss DME data. Therefore, we next consider another alternative sample 

architecture, where a different implementation of FMCs is employed. 

9.1.3 Second Move: Change an Implementation in the Architecture 

The second alternative sample architecture is the same as the first one, except that the FMCs employ a 

different implementation. More specifically, each output data flow of an FMC will depend on input data 

flows from both port A and port B as well as FMC internal failure. Formally, we define this 

implementation of FMC as a new component type in our library as follows. 

 
    

   {name         = "FMC6_2_alt"; 

    faults       = ["loa"]; 

    input_flows  = ["inA1"; "inA2"; "inA3"; "inB1"; "inB2"; "inB3"]; 

    basic_events = ["fmc_fl"]; 

    event_info   = [(2e-10, 1.)]; 

    output_flows = ["outA"; "outB"]; 

    formulas     = [(["outA"; "loa"], 

  Or[F ["fmc_fl"]; And [F ["inA1"; "loa"]; F ["inB2"; "loa"]]; 

            And [F ["inA2"; "loa"]; F ["inB3"; "loa"]]; 

            And [F ["inA3"; "loa"]; F ["inB1"; "loa"]]]); 

 (["outB"; "loa"], F ["outA"; "loa"])]}; 

  

 

In the model, we instantiate two FMCs using the new component type FMC6_2_alt. 

 
        

       makeInstance "fmc1" "FMC6_2_alt" ();  (* New type for this example *) 

       makeInstance "fmc2" "FMC6_2_alt" (); 

 

 

The rest of the model remains the same as the first alternative sample architecture. The cut sets and 

some comments describing each cut set are presented below. 

 

Output from tool Comment 
  Sum 

   [Var ("pfd1", "pfd_fl");     

    Pro [Var ("dme1", "dme_fl"); Var ("dme2", "dme_fl")];  

    Pro [Var ("dme1", "dme_fl"); Var ("iom1", "iom_fl")];  

    Pro [Var ("dme2", "dme_fl"); Var ("iom3", "iom_fl")];  

    Pro [Var ("fmc1", "fmc_fl"); Var ("fmc2", "fmc_fl")];  

    Pro [Var ("iom1", "iom_fl"); Var ("iom2", "iom_fl")];  

    Pro [Var ("iom1", "iom_fl"); Var ("iom3", "iom_fl")];  

    Pro [Var ("iom1", "iom_fl"); Var ("iru2", "iru_fl")];  

    Pro [Var ("iom2", "iom_fl"); Var ("iom3", "iom_fl")];  

    Pro [Var ("iom2", "iom_fl"); Var ("iru1", "iru_fl")];  

 

Loss of PFD 

Loss of DME 

Loss of DME 

Loss of DME 

Loss of FMC 

Loss of IRU 

Loss of DME 

Loss of IRU 

Loss of MCDU 

Loss of IRU 



 

SOTERIA Contractor Report Page 61 
 

    Pro [Var ("iom2", "iom_fl"); Var ("mcdu2", "mcdu_fl")];  

    Pro [Var ("iom3", "iom_fl"); Var ("mcdu1", "mcdu_fl")];  

    Pro [Var ("iom4", "iom_fl"); Var ("iom5", "iom_fl")];  

    Pro [Var ("iom4", "iom_fl"); Var ("sg2", "sg_fl")];  

    Pro [Var ("iom5", "iom_fl"); Var ("sg1", "sg_fl")];  

    Pro [Var ("iru1", "iru_fl"); Var ("iru2", "iru_fl")];  

    Pro [Var ("mcdu1", "mcdu_fl"); Var ("mcdu2", "mcdu_fl")]; 

    Pro [Var ("sg1", "sg_fl"); Var ("sg2", "sg_fl")]]  

Loss of MCDU 

Loss of MCDU 

Loss of display data 

Loss of display data 

Loss of display data 

Loss of IRU 

Loss of MCDU 

Loss of display data 

 

The probability of the top-level event is: 

(2.15999973584375374e-10, 2.15999973584375374e-10) 

 

The analysis generated by the SOTERIA tool and the output generated using Windchill FTA® (Figure 24) 

are consistent.  

 
Figure 24. Cut Set Report from Windchill FTA for a second alternative configuration of the sample architecture inspired by 

B777 

Observe that the dominant terms associated with internal failures of IOM #1, IOM #2, and IOM #3 all 

disappear in the cut sets, and the probability of the top-level event improves significantly. The second 

alternative architecture effectively removes the potential single point of failure due to the IOMs. The 

probability and importance measure of each term in cut sets are also calculated. 

 

  [(Var ("pfd1", "pfd_fl"), 2.000000165480742e-10, 0.925926115773106); 

   (Pro [Var ("dme1", "dme_fl"); Var ("dme2", "dme_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("dme1", "dme_fl"); Var ("iom1", "iom_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("dme2", "dme_fl"); Var ("iom3", "iom_fl")], 



 

SOTERIA Contractor Report Page 62 
 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iom1", "iom_fl"); Var ("iom2", "iom_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iom1", "iom_fl"); Var ("iom3", "iom_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iom1", "iom_fl"); Var ("iru2", "iru_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iom2", "iom_fl"); Var ("iom3", "iom_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iom2", "iom_fl"); Var ("iru1", "iru_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iom2", "iom_fl"); Var ("mcdu2", "mcdu_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iom3", "iom_fl"); Var ("mcdu1", "mcdu_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iom4", "iom_fl"); Var ("iom5", "iom_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iom4", "iom_fl"); Var ("sg2", "sg_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iom5", "iom_fl"); Var ("sg1", "sg_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("iru1", "iru_fl"); Var ("iru2", "iru_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("mcdu1", "mcdu_fl"); Var ("mcdu2", "mcdu_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("sg1", "sg_fl"); Var ("sg2", "sg_fl")], 

    9.99998999968860778e-13, 0.00462962556603385093); 

   (Pro [Var ("fmc1", "fmc_fl"); Var ("fmc2", "fmc_fl")], 

    4.00000066192299538e-20, 1.85185238476915286e-10)] 

 

From the above results, the remaining single of point of failure in the cut sets is contributed by PFD #1, 

and its failure probability dominates the overall system safety performance (i.e., accounting for 92.5% of 

the top-level failure probability). Therefore, if we want to further improve the system safety 

performance, investigating an alternative configuration of the display(s) would be a logical next step. 

One potential solution is to consider reversionary modes of displays, which will be discussed later in this 

report. 

9.1.4 Modeling Technique to Incorporate Communication Bus 

The sample architecture under study involves two communication buses. In safety analysis, the 

probability of failure associated with bus is usually omitted, so we did not explicitly model buses in the 

above examples. On the other hand, when synthesizing architectures, modeling a bus may be necessary, 

e.g., when communication bandwidth is a constraint in the synthesis problem. We propose the following 

to model a bus. For reference, the input and output data flows associated with the buses are annotated 

in blue texts in Figure 22. In the component library, we formally define a component type BUS5_8 as 

follows. 

 
     

    {name         = "BUS5_8"; 

     faults       = ["loa"]; 

     input_flows  = ["i1"; "i2"; "i3"; "i4"; "i5"]; 

     basic_events = []; 

     event_info   = []; 



 

SOTERIA Contractor Report Page 63 
 

     output_flows = ["o11"; "o12"; "o13"; "o21"; "o22"; "o23"; "o4"; "o5"]; 

     formulas     = 

       [(["o11"; "loa"], F ["i1"; "loa"]); (["o21"; "loa"], F ["o11"; "loa"]); 

 (["o12"; "loa"], F ["i2"; "loa"]); (["o22"; "loa"], F ["o12"; "loa"]); 

 (["o13"; "loa"], F ["i3"; "loa"]); (["o23"; "loa"], F ["o13"; "loa"]); 

 (["o4"; "loa"], F ["i4"; "loa"]); (["o5"; "loa"], F ["i5"; "loa"])] }; 

 

 

Note that “basic_events” is an empty set in BUS5_8, as we omit potential failures associated with the 

bus in safety analysis. Also, note that the data flows between IOMs and FMCs, which were (fully) 

captured by direct connections between IOMs and FMCs in the above examples, are now (partly) 

captured by the formulas in the bus component. In the model below, we instantiate two instances of 

BUS5_8 and specify the connections between IOMs, buses, and FMCs. 

 
let b777_model_shuffle_w_bus = 

  { instances = 

      [makeInstance "iru1" "IRU" (); 

       makeInstance "iru2" "IRU" (); 

       makeInstance "mcdu1" "MCDU" (); 

       makeInstance "mcdu2" "MCDU" (); 

       makeInstance "dme1" "DME" (); 

       makeInstance "dme2" "DME" (); 

       makeInstance "iom1" "IOM22_alt" (); 

       makeInstance "iom2" "IOM22_alt" (); 

       makeInstance "iom3" "IOM22_alt" (); 

       makeInstance "fmc1" "FMC6_2_alt" (); 

       makeInstance "fmc2" "FMC6_2_alt" (); 

  makeInstance "bus1" "BUS5_8" ();  (* Add bus *) 

  makeInstance "bus2" "BUS5_8" (); 

       makeInstance "iom4" "IOM21" (); 

       makeInstance "iom5" "IOM21" (); 

       makeInstance "sg1" "SG" (); 

       makeInstance "sg2" "SG" (); 

       makeInstance "nd1" "ND" (); 

       makeInstance "nd2" "ND" (); 

       makeInstance "pfd1" "PFD" (); 

       makeInstance "pfd2" "PFD" (); 

      ]; 

    connections = 

      [ (("iom1", "iom_in1"), ("iru1", "out")); 

   (("iom1", "iom_in2"), ("dme2", "out")); 

   (("iom2", "iom_in1"), ("mcdu1", "out")); 

   (("iom2", "iom_in2"), ("iru2", "out")); 

   (("iom3", "iom_in1"), ("dme1", "out")); 

   (("iom3", "iom_in2"), ("mcdu2", "out")); 

   (("bus1", "i1"), ("iom1", "A")); 

   (("bus1", "i2"), ("iom2", "A")); 

   (("bus1", "i3"), ("iom3", "A")); 

   (("bus2", "i1"), ("iom1", "B")); 

   (("bus2", "i2"), ("iom2", "B")); 

   (("bus2", "i3"), ("iom3", "B"));   

   (("fmc1", "inA1"), ("bus1", "o11")); 

   (("fmc1", "inA2"), ("bus1", "o12")); 

   (("fmc1", "inA3"), ("bus1", "o13")); 

   (("fmc1", "inB1"), ("bus2", "o11")); 

   (("fmc1", "inB2"), ("bus2", "o12")); 

   (("fmc1", "inB3"), ("bus2", "o13")); 

   (("fmc2", "inA1"), ("bus1", "o21")); 

   (("fmc2", "inA2"), ("bus1", "o22")); 

   (("fmc2", "inA3"), ("bus1", "o23")); 

   (("fmc2", "inB1"), ("bus2", "o21")); 

   (("fmc2", "inB2"), ("bus2", "o22")); 

   (("fmc2", "inB3"), ("bus2", "o23")); 

   (("bus1", "i4"), ("fmc1", "outA")); 

   (("bus1", "i5"), ("fmc2", "outA")); 

   (("bus2", "i5"), ("fmc1", "outB")); 



 

SOTERIA Contractor Report Page 64 
 

   (("bus2", "i4"), ("fmc2", "outB"));  

   (("iom4", "inA"), ("bus1", "o4")); 

   (("iom4", "inB"), ("bus2", "o4")); 

   (("iom5", "inA"), ("bus1", "o5")); 

   (("iom5", "inB"), ("bus2", "o5"));   

   (("sg1", "in"), ("iom4", "out")); 

   (("sg2", "in"), ("iom5", "out")); 

   (("pfd1", "in1"), ("sg1", "out")); 

   (("pfd1", "in2"), ("sg2", "out")); 

   (("pfd2", "in1"), ("sg1", "out")); 

   (("pfd2", "in2"), ("sg2", "out")); 

   (("nd1", "in1"), ("sg1", "out")); 

   (("nd1", "in2"), ("sg2", "out")); 

   (("nd2", "in1"), ("sg1", "out")); 

   (("nd2", "in2"), ("sg2", "out")); 

      ]; 

    top_fault =("pfd1", F["out";"loa"]) 

  } ;; 

 

As we expected, the cut sets and top-level probability of this model are the same as those of the second 

alternative architecture, because the bus does not inject new failure events in safety analysis. 

 

There were no changes in the Windchill FTA® FTA generated to test the second alternative architecture; 

the 2nd and 3rd modifications are equivalent from a safety perspective, and thus the results discussed 

within the last section are applicable and consistent with the expected outcome. 

9.1.5 Discussion 

The two alternative sample architectures discussed above imply two types of potential moves in the 

system synthesis problem, i.e. changing connections between components and changing 

implementation (e.g., modes) of components. Two other types of potential moves are adding and 

deleting components from the architecture (which we did not discuss in this example). Further, by 

comparing the two alternative sample architectures above, we find that only moving the physical 

component(s) does not necessarily lead to improved system safety performance, and corresponding 

changes in the implementation of (other) components sometimes are also required to achieve desired 

results. Finally, the probability of failure in a bus is usually omitted in safety analysis, while explicit 

modeling of bus can be useful when synthesizing architectures. In a model with a bus that does not 

introduce new failure events, from a safety analysis perspective, the bus component simply plays the 

role of routing the data and essentially introduces intermediate variables to the fault tree synthesis 

algorithm. The intermediate variables relay the effect of failure propagation and will not have an impact 

on the final cut sets and top-level probability. 

 

All architectures discussed within this section were also manually analyzed using Windchill FTA®. The cut 

set report generated by Windchill FTA®, as well as the FTA probabilities calculated were consistent with 

the analysis generated by the SOTERIA tool. This further proves the veracity of our tool. SOTERIA can 

also generate the cut set with the importance measure of each term, a feature that is useful for safety 

analysis.  

9.2 B787 
B787 is interesting because it is arguably “the most integrated, most supplier-based cockpit, using the 

largest display system and the most open architecture of any commercial aircraft developed by Boeing” 



 

SOTERIA Contractor Report Page 65 
 

(Jensen, 2005). The displays and system integration is done by Rockwell Collins. The IMA, known as the 

Common Core System (CCS) is supplied by GE. The CCS provides the processing, network and I/O 

resources to the many aircraft functions. On the B787, Boeing has “set a goal to have as much onboard 

processing as possible performed by the CCS. In fact, the CCS hosts even the flight management system 

function. The CSS performs most of the processing for the B787's display system, as well. ‘There is a very 

tight integration between our displays and the CCS,’ says Collins' Irmen. ‘The majority of the display 

applications are run on the general processing modules of the CCS. The display information is then sent 

over to our graphics generation module [GGM], housed in the CCS cabinets. It's sent using ARINC 661 

[standard for flight deck display interface] over Ethernet, where it is formatted for display and sent to 

the displays over a pixel bus. Other systems, such as the CISS [configurable integrated surveillance 

system], also generate display information and send it to the GGMs over ARINC 661 for display’” (B787 

Cockpit: Boeing's Bold Move, 2005). 

The B787 has five head down displays (HDD) and two head up displays (HUD). The HDDs are the two 

PFDs and two NDs, one set of each for the pilot and the co-pilot. The display in the middle is the “aisle 

stand,” which is for the two pilots to input information into the FMCs. In addition to these there are also 

two head-up displays for added situational awareness. These provide primary flight information (PFI) as 

well, but show additionally wind shear warnings and some takeoff cues for guidance when visibility is 

limited. When researching about the B787 cockpit, it would be hard to miss the endless articles about 

the coolness factor of the B787 cockpit, with the LCD HDDs in landscape format measuring 12 x 9.1”, 

twice the size of the B777, and the two HUDs, positioned so that the pilots can see the necessary flight 

information while keeping their eyes outside the cockpit. See Figure 25. 

Figure 25. Boeing 787-8 Dreamliner (787-8 Dreamliner, AeroMexico [digital image], 2013) 



 

SOTERIA Contractor Report Page 66 
 

The safety analysis of the B787 is complex in that a certification applicant can take credit for 

reversionary flight display, which is a secondary means to provide information initially presented on the 

PFD by transferring the information to an alternate display (FAA Advisory Circular: Installation of 

Electronic Display in Part 23 Airplanes, 2011). This is on top of analyzing the safety aspect with a dual 

FMC configuration. The FMCs transmit data to each other for comparison and validation. For example, if 

the computed positions between the FMCs differ by more than a set threshold, a message is issued to 

warm the crew (ARINC Characteristic 702A Advance Flight Management Computer System, 2014). The 

combination of reversionary flight display and dual FMCs make for a complex analysis problem; we 

would like for the modeling and fault tree synthesis capability of our tool to be able help an engineer 

solve a problem with this level of complexity. We analyzed, for instance, the loss of PFI which is 

influenced by the output of the FMCs. PFI refers to those functions or parameters that are required by 

the airworthiness and operational rules, such as airspeed, altitude, attitude, and heading (direction) 

(FAA Advisory Circular: Installation of Electronic Display in Part 23 Airplanes, 2011). FMCs provide 

functions such as navigation, flight planning, lateral and vertical guidance, performance optimization 

and prediction, air-ground data link, and pilot interfaces (ARINC Characteristic 702A Advance Flight 

Management Computer System, 2014). Lateral guidance/lateral steering, for example, generates the roll 

command and provides outputs related to various flight plans for display.  

Section 8.4  (FAA Advisory Circular: Installation of Electronic Display in Part 23 Airplanes, 2011) gives 

requirements for reversionary display, such as:  

• The reversionary flight information should be presented by an independent source and display 

to prevent complete loss of PFI due to a single failure.  

• The reversionary configuration should have two independent displays that incorporate dual-

independently powered AHRS and dual ADC subsystems that provide PFIs.  

• The reversionary system response time should provide flight critical information on the MFD in 

less than one second after a single pilot action or an automatic operation. 

• These displays should be powered such that any single failure of the power generation and 

distribution systems cannot remove the display of PFI from both displays. 

Figure 26 shows a sample architecture inspired by the B787 IMA architecture. Note that the architecture 

contains a mixture of IMA and Line Replaceable Unit (LRU) components. While the B787 integrates most 

of its functionality into the CCS, some complex modules are LRUs, creating a sort of “hybrid” system. For 

example, the IRUs are LRUs. They communicate via A429, necessitating a data conversion module 

(DCM).  



 

SOTERIA Contractor Report Page 67 
 

 

Figure 26. A functionally integrated distributed architecture inspired by B787. 

The main goal of our modeling and fault tree synthesis tool is to aid the engineer in coming up with a 

better architecture while considering constraints determined by safety requirements. The model helps 

the engineer capture the logic of how the sensor data is processed. For example, it will capture how 

each display application decides what attitude to display. The source selection and voting will also be 

modeled to properly build the fault propagation model. 

9.2.1 Exploring the Many Modes/Implementation 

The IMA on the B787, also known as the Common Core System (CCS), can accommodate up to 100 

applications (B787 Cockpit: Boeing's Bold Move, 2005). While this is a leap compared with a previous 

core processor like the C-130 AMP (Avionics Modernization Program) which incorporates about seven 

applications, it’s not the increased number of applications that make the IMA analysis difficult, but the 

many possible modes and combination of modes that add complexity to the safety analysis. The safety 

model need to reflect how the system works and each mode may have an impact on the fault tree and 

cut set. It is also possible that 2 different implementations have no safety impact, i.e., do not help meet 

safety targets. Prior to the modeling capability and concepts we are developing on this program, what 

the safety engineer would do was construct the entire fault trees, manually keeping track of where 

different modes/implementation would impact the fault tree. This can be difficult with large systems, 

especially when there are multiple ways to build a fault tree. Here what we provide with our modeling is 

the ability to decompose the problem so that various modes/implementation are managed on the 



 

SOTERIA Contractor Report Page 68 
 

component level, thereby making it easier to keep track of the various modes and implementations. The 

fault tree, cut sets, and probabilities are done automatically. 

The architecture shown in Figure 26 displays just 2 hosted applications: the FMS Application and the 

Display application. We analyzed the loss of Primary Flight Display (PFD). Here is a list of all possible 

modes that affect this analysis. 

3 modes for sensor selection: 

Though redundant sensors are common practice in Aviation, one reference on sensor set architecture 
from a safety perspective is Civil Avionics Systems, 2nd Edition, Chapter 4.7.4 Triplex Architecture (Moir, 
Seabridge, & Jukes, 2013). 

1. Triplex voting, with 2 possible implementations 

(Here’s an example where the implementation doesn’t make a difference for the safety analysis)  

a. Median  

b. Average  

2. Revert to duplex mode, with 2 possible implementations 

(Here, again, the implementation doesn’t make a difference for the safety analysis) 

a. Average 

b. Max or min, depending on which is safer 

3. Revert to simplex mode / No voting 

3 modes for selecting the 2 channels:  

Though dual channel is common practice in Avionics, one reference on multiple channels from a safety 

perspective is Civil Avionics Systems, 2nd Edition, Chapter 4.7.2 Duplex Architecture (Moir, Seabridge, & 

Jukes, 2013). 

1. Channel select logic (Ch A normal, Ch B alternate) 

The sensor set is replicated to both channels. If one channel fails, there an alternative channel 

available. Both channels are functionally identical and have the same precision and performance 

characteristics. This mode offers high availability. 

2. Channel cross monitor (Ch A & Ch B compare) 

The sensor set is replicated to both channels, with an additional cross monitor comparison 

function. Output is only available if both channels agree. This mode offers high integrity. 

3. Channel COM:MON feature 

This is a more sophisticated, dual-dual mode. Each channel has a command (COM) and a 

monitor (MON) lane within it, the command lane being in control and the monitor lane checking 

for correctness, with cross monitor comparison function to compare the COM and MON on each 

channel. Two failure modes are possible. The cross-monitor function may produce a false 

warning, in which case the channel will be deemed to have failed even if the COM and MON 

lanes are themselves okay. The cross-monitor function may also fail it detect a difference 

between the COM and MON. 



 

SOTERIA Contractor Report Page 69 
 

2 modes in dual FMS: 

Here is a possible dual-FMS implementation, inspired by the Bombardier Challenger 605 – Navigation 

System Manual3 and the Civil Avionics Systems, 2nd Edition, Chapter 11.2.10 Typical FMS Architecture 

(Moir, Seabridge, & Jukes, 2013). Dual-FMS system can operate in synchronized (SYNC) or independent 

(INDEP) modes. By default, dual-FMS installations power up in SYNC mode. When the two FMSs are 

synchronized, they share pilot entries. When the FMSs are operated in INDEP mode, all parameters 

must be manually entered in each FMS.  

There may a third FMS which makes up a triple-FMS configuration, which could be synchronized to the 

captain side FMS as a hot-spare. We decided to focus on just 2 FMSs. 

The following are possible FMS operations in dual-FMS implementation: 

1. Normal dual mode 

Each of the two FMSs interfaces with the Primary Flight Displays (PFDs) on their respective sides. 

2. Revert to simplex mode  

If FMS application 1 fails, the PFDs revert to displaying information from FMS Application 2. If 

FMS application 2 fails, the PFDs revert to displaying information from FMS Application 1. 

3 modes for Primary Flight Display: 

Here’s a description of the Primary Flight Display and Multifunction Display from the Bombardier 

Challenger 605 – Flight Instruments Manual4. The two PFDs provide the pilots with the information 

necessary for the safe operation of the aircraft. They are integrated displays of attitude, air data, and 

navigation information. The two MFDs can be operated in three basic configurations: split window, chart 

window, and STAT window. The most common configuration for normal operation is the split window, 

which consists of four distinct windows: radio tuning window, upper window, lower window, and lower 

window overlay. During normal operation, the upper window of the left MFD displays the EICAS page, 

including engine indications, full time system indications, and CAS messages. The upper window of the 

right MFD displays the SUMMARY page, or the electronic checklist. The lower window of both the left 

and right MFDs can display synoptic pages or navigation information.  

 
                                                            
3 The Bombardier manual is used as our reference because it was publicly available. In spirit, the dual-FMS 
functionality should be similar to that on the B787. 
4 In spirit, the reversionary display modes should be similar to that on the B787. 



 

SOTERIA Contractor Report Page 70 
 

The reversionary mode is selected using knobs on the Reversionary Panel.  

1. L-PFD Failure 

Turning the L DISPLAY selector knob to MFD REV 

reverts the L-MFD to a compressed format, disables 

the radio tune, and turns off the L-PFD. The MFD 

includes a compressed EICAS page and a compressed 

PFD. 

 

 

 

2. R-PFD Failure 

Turning the R DISPLAY selector knob to MFD Rev 

reverts the R-MFD to a PFD format, disables the radio 

tune, and turns off the R-PFD. Maintenance and 

checklist functionality are also lost. 

 

 

3. No reversion 

The point of going through all these available modes is to highlight that when creating a model, it is very 

important to know exactly how the system works and what’s being modeled because the cut sets will be 

different. The modes also provide a set of feasible moves of component implementation in system 

synthesis. 

The two scenarios analyzed by the SOTERIA tool were the following: 

• UED for no sensor voting, cross channel monitoring, dual FMS, no reversionary display mode 

• UED for triplex sensor voting, Ch A normal, dual FMS, no reversionary display mode 

Below are the results for the integrity cut set and probability obtained using our modeling tool for no 

sensor voting, cross channel monitoring, dual FMS, no reversionary display mode: 

# fmc_display_normal_cutsets;; 

- : (string * string) pexp = 

Sum 

 [Var ("adc_ES1", "es_fl_ued"); Var ("adc_ES2", "es_fl_ued"); 

  Var ("adc_Left", "sen_fl_ued"); Var ("adc_Right", "sen_fl_ued"); 

  Var ("dcm", "dcm_fl_ued"); Var ("dcm_ES", "es_fl_ued"); 

  Var ("ges1", "ges_fl_ued"); Var ("ggm1", "ggm_fl_ued"); 

  Var ("ggm_ES1", "es_fl_ued"); Var ("gpm1", "gpm_fl_ued"); 

  Var ("hdd1", "display_fl_ued"); Var ("iru_Ctr", "sen_fl_ued"); 

  Var ("iru_Left", "sen_fl_ued"); Var ("iru_Right", "sen_fl_ued"); 

  Var ("sw1a", "sw_fl_ued"); Var ("sw1b", "sw_fl_ued")] 

 

# probErrorCut fmc_display_normal_ftree;; 

- : float * float = (8.00096799204078471e-06, 8.00096799204078471e-06) 

 



 

SOTERIA Contractor Report Page 71 
 

Below are the initial results for the integrity cut set and probability for triplex sensor voting, Ch A 

normal, dual FMS, no reversionary display mode: 

# fmc_display_triplexVote_ChA_cutsets;; 

- : (string * string) pexp = 

Sum 

   [Var ("adc_ES1", "es_fl_ued"); Var ("adc_ES2", "es_fl_ued"); 

    Var ("adc_Left", "sen_fl_ued"); Var ("adc_Right", "sen_fl_ued"); 

    Var ("dcm_ES", "es_fl_ued"); Var ("ges1", "ges_fl_ued"); 

    Var ("ggm1", "ggm_fl_ued"); Var ("ggm_ES1", "es_fl_ued"); 

    Var ("gpm1", "gpm_fl_ued"); Var ("hdd1", "display_fl_ued"); 

    Var ("sw1a", "sw_fl_ued"); Var ("dcm", "dcm_fl_ued"); 

    Pro 

     [Var ("iru_Ctr", "sen_fl_ued"); 

      Var ("iru_Left", "sen_fl_ued"); Var ("iru_Right", "sen_fl_ued")]] 

 

# probErrorCut fmc_display_triplexVote_ChA_ftree;; 

- : float * float = (3.00099549703923056e-06, 3.00099549703923056e-06) 

 

The two samples discussed above were also manually analyzed using Windchill FTA® and the results 
were consistent. 

9.3 Modeling Multiple Failures 
Up until now we have only analyzed one component failure at a time, e.g., the loss of a single display. 

The failure conditions provided by the FAA AC 25-11B (FAA Advisory Circular: Electronic Flight Displays, 

2014) are more relevant to the functional capabilities of an aircraft, which is more realistic to the types 

of scenarios that an avionics safety engineer would have to analyze.  

The FAA AC 25-11B provides guidance for showing compliance with design requirements of electronic 

flight deck displays, components, and systems installed in airplane. Chapter 4, in particular, talks about 

the safety aspects of electronic display systems. Here’s a quote relevant to the examples we have 

chosen to model:  

“Using electronic displays and integrated modular avionics allows designers to integrate systems to 

a much higher degree than was practical with previous flight deck components. Although operating 

the airplane may become easier as a result of the integration, evaluating the conditions in which the 

display system could fail and determining the severity of the resulting failure effects may become 

more complex. The evaluation of the failure conditions should identify the display function and 

include all causes that could affect that function’s display and display equipment.” 

There is a series of tables that capture the failure conditions for display systems. Table 4-5 lists examples 

of safety objectives for navigation, which are interesting conditions for us to analyze with our models of 

an IMA hosting display and flight management applications.  



 

SOTERIA Contractor Report Page 72 
 

  

To model a failure condition in Table 4-5, like “Loss of display of all navigation information,” we need to 

add a dummy component to our library. Our model needs to instantiate this component and connect it 

with outputs from all the displays. This component has no basic events; its only purpose is to tie 

together the needed inputs for analysis. 

(* Fictitious top-level sink node to take into account different modes *) 
     
    {name         = "PILOT_4DU"; 
     faults       = ["loa"]; 
     input_flows  = ["in_pfd1"; "in_nd1"; "in_pfd2"; "in_nd2"]; 
     basic_events = []; 
     event_info   = []; 
     output_flows = ["out"];  
     formulas     = [(["out"; "loa"],  
                       And[F["in_pfd1";"loa"]; F["in_pfd2";"loa"]; F["in_nd1";"loa"]; F["in_nd2";"loa"]])] 
    }; 

 

We first tried out this method of adding a dummy component following a textbook example to verify 

our tool’s output. Then we applied the same method on the B777 and B787 inspired architectures.  

Additionally, the validation examples allowed the following: 

• Model realistic failure condition and ascertain that our modeling construct is powerful enough 

to model said failure conditions 

• Evaluate what the end-user must do to model the failure condition and compare it with current 

practices e.g. hand analysis  

• Collect any interesting scenarios to revisit with architecture synthesis 



 

SOTERIA Contractor Report Page 73 
 

9.3.1 Textbook EFIS Example 

The textbook Civil Avionics Systems (Moir, Seabridge, & Jukes, 2013), has an electronic flight instrument 

system (EFIS) example in Appendix B. We modeled this system using our tool to verify that adding a 

dummy component, which we call a “pilot” sink node, and ANDing all the display outputs in the formula, 

is the correct way of modeling the loss of all displays. Figure 27 is a picture of the architecture. Here’s a 

paraphrase from the text of how the system works: 

• There are 3 symbol generators (SGs) that formats images on to 4 display units (DUs). Each SG 

produces images to both PFD and ND at the same time.  

• In normal operation SG#1 sources the images to the captain’s side, PFD#1 and ND#1, while SG#2 

produces images for the first officer’s side, PFD#2 and ND#2. SG#3 is a hot spare and can take 

over the function of SG#1 or SG#2 if there is a failure in either one.  

• Each SG gets its inputs from both the left-hand side and right-hand side sensors.  

• If one DU fails, then the SG driving it will reconfigure its outputs so that the image on the 

adjacent DU will be a composite PFD/ND display 

• If an SG fails, then the impacted DUs will select their inputs from SG#3, the hot spare. 

For the sake of brevity, we will not include the independent integrated standby instrument (ISIS) in our 

model. 

 

Figure 27. From Civil Avionics Systems (2nd edition) -- Typical EFIS architecture 

Below is how we modeled the system. This model reuses the component library we developed for the 

B777 example, with the addition of three new components to match the textbook example. (Being able 

to reuse a component library from a previous example additionally demonstrates the broad applicability 

of our tool.) 

(*  
   Test model: Loss of primary flight data from Main Displays (i.e., PFDs and NDs) 
   Figure B.1, p.540, in "Civil Avionics Systems" 2nd edition, by Ian Moir et. al.  
*) 



 

SOTERIA Contractor Report Page 74 
 

 
let test_model =  
  { instances = 
      [makeInstance "ahrs1" "IRU" (); 
       makeInstance "ahrs2" "IRU" (); 
       makeInstance "adc1" "DME" (); 
       makeInstance "adc2" "DME" (); 
       makeInstance "iom1" "IOM2_1_NO_INT_FAIL" (); (* New component type for this example *) 
       makeInstance "iom2" "IOM2_1_NO_INT_FAIL" (); 
       makeInstance "sg1" "SG2_1" ();  (* New component type for this example *) 
       makeInstance "sg2" "SG2_1" (); 
       makeInstance "sg3" "SG2_1" ();     
       makeInstance "pfd1" "PFD" (); 
       makeInstance "pfd2" "PFD" (); 
       makeInstance "nd1" "ND" (); 
       makeInstance "nd2" "ND" (); 
       makeInstance "pilot" "PILOT_4DU" (); (* New component type for this example *) 
      ]; 
    connections = 
      [  (("iom1", "inA"), ("ahrs1", "out")); 
         (("iom1", "inB"), ("ahrs2", "out")); 
 (("iom2", "inA"), ("adc1", "out")); 
 (("iom2", "inB"), ("adc2", "out")); 
 (("sg1", "in1"), ("iom1", "out")); 
 (("sg2", "in1"), ("iom1", "out")); 
 (("sg3", "in1"), ("iom1", "out")); 
 (("sg1", "in2"), ("iom2", "out")); 
 (("sg2", "in2"), ("iom2", "out")); 
 (("sg3", "in2"), ("iom2", "out")); 
 (("pfd1", "in1"), ("sg1", "out")); 
 (("nd1", "in1"), ("sg1", "out")); 
 (("pfd2", "in1"), ("sg2", "out")); 
 (("nd2", "in1"), ("sg2", "out")); 
 (("pfd1", "in2"), ("sg3", "out")); 
 (("nd1", "in2"), ("sg3", "out")); 
 (("pfd2", "in2"), ("sg3", "out")); 
 (("nd2", "in2"), ("sg3", "out")); 
 (("pilot", "in_pfd1"), ("pfd1", "out")); 
 (("pilot", "in_pfd2"), ("pfd2", "out")); 
 (("pilot", "in_nd1"), ("nd1", "out")); 
 (("pilot", "in_nd2"), ("nd2", "out")); 
      ]; 
    top_fault = ("pilot", F["out";"loa"]) 
  } ;; 
 

The top-level fault being analyzed is loss of availability of the dummy component, “pilot.” Notice in the 

connections the pilot takes as input the 4 DUs. 

The cut sets obtained by our tool match the results from the text (Figure 28), minus the ISIS which we 

did not include in our model. 

Output from tool Comment 
Sum 
  [Pro [Var ("adc1", "dme_fl"); Var ("adc2", "dme_fl")]; 
  Pro [Var ("ahrs1", "iru_fl"); Var ("ahrs2", "iru_fl")]; 
  Pro [Var ("sg1", "sg_fl"); Var ("sg2", "sg_fl"); Var ("sg3", "sg_fl")]; 
  Pro [Var ("nd1", "nd_fl"); Var ("nd2", "nd_fl"); Var ("pfd1", "pfd_fl"); Var ("pfd2", "pfd_fl")]; 
  Pro [Var ("nd1", "nd_fl"); Var ("pfd1", "pfd_fl"); Var ("sg2", "sg_fl"); Var ("sg3", "sg_fl")]; 
  Pro [Var ("nd2", "nd_fl"); Var ("pfd2", "pfd_fl"); Var ("sg1", "sg_fl"); Var ("sg3", "sg_fl")]] 

 

Loss of Speed and Altitude 
Loss of Altitude 
Loss of all SGs 
Loss of all DUs 
Loss of opposite side DUs & SGs 
Loss of opposite side DUs & SGs 



 

SOTERIA Contractor Report Page 75 
 

 

Figure 28. From Civil Avionics Systems (2nd edition) -- EFIS cut sets. 

9.3.2 B777: Loss of Navigation Display 

We also modeled the loss of display of all navigation information using our B777 model following the 

same method of adding a dummy pilot sink node. This model is illustrated in Figure 22 and instantiates 

components from our B777 component library. In the model connections, the pilot component takes 

inputs from the 4 displays. For this example, each output flow of the FMC depends on input data from 

both port A and port B, i.e. the formula for outA is the following: 

 

(inA1 AND inB2) OR (inA2 AND inB3) OR (inA3 AND inB1) OR (FMC internal fault) 

=  

OR (inA1 AND inB2, inA2 AND inB3, inA3 AND inB1, FMC internal fault).  

 
 (* 
  Consider loss of primary flight data from Main Displays (i.e., PFDs and NDs). 
  Add pilot top-level sink node. 
*) 
 
let b777_model_shuffle_w_bus_pilot = 
  { instances = List.append b777_model_shuffle_w_bus.instances [(makeInstance "pilot" "PILOT_4DU" ());]; 
     
    connections = List.append b777_model_shuffle_w_bus.connections 
      [  (("pilot", "in_pfd1"), ("pfd1", "out")); 
 (("pilot", "in_pfd2"), ("pfd2", "out")); 
 (("pilot", "in_nd1"), ("nd1", "out")); 
 (("pilot", "in_nd2"), ("nd2", "out"));   
      ]; 
    top_fault = ("pilot", F["out";"loa"]) 
  } ;; 

 

The resulting cut sets for loss of display of all navigation information are as follows. Note that the cut set 

is the same as loss of a single display, except the loss of PFD#1 is now replaced with loss of all 4 displays 



 

SOTERIA Contractor Report Page 76 
 

(highlighted below). This is consistent with our intuition since the logic for the FMC did not change. The 

top-level probability is now much smaller since this new analysis accounts for the fault-tolerant design 

of the architecture. Notice, too, that creating a new model for this updated analysis was very simple – 

with just a few lines the end-user is able to instantiate a new model from a previously defined 

component library. All he had to do was add the connections and the new cut sets were automatically 

generated.   

 

Loss of display of all navigation information Comment 
Sum 
  [Pro [Var ("dme1", "dme_fl"); Var ("dme2", "dme_fl")]; 
  Pro [Var ("dme1", "dme_fl"); Var ("iom1", "iom_fl")]; 
  Pro [Var ("dme2", "dme_fl"); Var ("iom3", "iom_fl")]; 
  Pro [Var ("fmc1", "fmc_fl"); Var ("fmc2", "fmc_fl")]; 
  Pro [Var ("iom1", "iom_fl"); Var ("iom2", "iom_fl")]; 
  Pro [Var ("iom1", "iom_fl"); Var ("iom3", "iom_fl")]; 
  Pro [Var ("iom1", "iom_fl"); Var ("iru2", "iru_fl")]; 
  Pro [Var ("iom2", "iom_fl"); Var ("iom3", "iom_fl")]; 
  Pro [Var ("iom2", "iom_fl"); Var ("iru1", "iru_fl")]; 
  Pro [Var ("iom2", "iom_fl"); Var ("mcdu2", "mcdu_fl")]; 
  Pro [Var ("iom3", "iom_fl"); Var ("mcdu1", "mcdu_fl")]; 
  Pro [Var ("iom4", "iom_fl"); Var ("iom5", "iom_fl")]; 
  Pro [Var ("iom4", "iom_fl"); Var ("sg2", "sg_fl")]; 
  Pro [Var ("iom5", "iom_fl"); Var ("sg1", "sg_fl")]; 
  Pro [Var ("iru1", "iru_fl"); Var ("iru2", "iru_fl")]; 
  Pro [Var ("mcdu1", "mcdu_fl"); Var ("mcdu2", "mcdu_fl")]; 
  Pro [Var ("sg1", "sg_fl"); Var ("sg2", "sg_fl")]; 
  Pro [Var ("nd1", "nd_fl"); Var ("nd2", "nd_fl"); Var ("pfd1", "pfd_fl"); Var 
("pfd2", "pfd_fl")]] 

 
Loss of DME 
Loss of DME 
Loss of DME 
Loss of FMC 
Loss of IRU 
Loss of DME 
Loss of IRU 
Loss of MCDU 
Loss of IRU 
Loss of MCDU 
Loss of MCDU 
Loss of display data 
Loss of display data 
Loss of display data 
Loss of IRU 
Loss of MCDU 
Loss of display data 
Loss of all displays 

 

Loss of PFD#1 Comment 
  Sum 
   [Var ("pfd1", "pfd_fl");     
    Pro [Var ("dme1", "dme_fl"); Var ("dme2", "dme_fl")];  
    Pro [Var ("dme1", "dme_fl"); Var ("iom1", "iom_fl")];  
    Pro [Var ("dme2", "dme_fl"); Var ("iom3", "iom_fl")];  
    Pro [Var ("fmc1", "fmc_fl"); Var ("fmc2", "fmc_fl")];  
    Pro [Var ("iom1", "iom_fl"); Var ("iom2", "iom_fl")];  
    Pro [Var ("iom1", "iom_fl"); Var ("iom3", "iom_fl")];  
    Pro [Var ("iom1", "iom_fl"); Var ("iru2", "iru_fl")];  
    Pro [Var ("iom2", "iom_fl"); Var ("iom3", "iom_fl")];  
    Pro [Var ("iom2", "iom_fl"); Var ("iru1", "iru_fl")];  
    Pro [Var ("iom2", "iom_fl"); Var ("mcdu2", "mcdu_fl")];  
    Pro [Var ("iom3", "iom_fl"); Var ("mcdu1", "mcdu_fl")];  
    Pro [Var ("iom4", "iom_fl"); Var ("iom5", "iom_fl")];  
    Pro [Var ("iom4", "iom_fl"); Var ("sg2", "sg_fl")];  
    Pro [Var ("iom5", "iom_fl"); Var ("sg1", "sg_fl")];  
    Pro [Var ("iru1", "iru_fl"); Var ("iru2", "iru_fl")];  
    Pro [Var ("mcdu1", "mcdu_fl"); Var ("mcdu2", "mcdu_fl")]; 
    Pro [Var ("sg1", "sg_fl"); Var ("sg2", "sg_fl")]]  

 
Loss of PFD 
Loss of DME 
Loss of DME 
Loss of DME 
Loss of FMC 
Loss of IRU 
Loss of DME 
Loss of IRU 
Loss of MCDU 
Loss of IRU 
Loss of MCDU 
Loss of MCDU 
Loss of display data 
Loss of display data 
Loss of display data 
Loss of IRU 
Loss of MCDU 
Loss of display data 

9.3.3 B787:  Loss of Navigation Display 

We also modeled the loss of display of all navigation information using our B787 model using a dummy 

pilot sink node. We describe the final analysis by building the examples from loss of one display, then 2 

displays on the same side, then all displays on the same side, then, loss of 2 displays one on each side, 

and finally loss of all displays at the same time. The B787 model we will analyze has triplex IRU sensor 

voting, duplex ADC sensor voting, Ch A is normal and Ch B is available as an alternate, dual FMS, and 

reversionary display mode (Figure 26). 



 

SOTERIA Contractor Report Page 77 
 

Below are the cut sets for loss of just one of the displays on the left side, HDD1 (left side PFD). Notice 

that loss of one display on the left side is dependent on the GPM, GPM ES, GGM, and GGM ES on the left 

side only. 

Loss of HDD1 (Left PFD) Comments 
Sum 
 [Var ("dcm", "dcm_fl_loa"); 
  Var ("dcm_ES", "es_fl_loa");  
  Var ("ges1", "ges_fl_loa"); 
  Var ("ggm1", "ggm_fl_loa");  
  Var ("ggm_ES1", "es_fl_loa"); 
  Var ("gpm1", "gpm_fl_loa");  
  Var ("hdd1", "display_fl_loa"); 
  Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_ES2", "es_fl_loa")]; 
  Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_Right", "sen_fl_loa")]; 
  Pro [Var ("adc_ES2", "es_fl_loa"); Var ("adc_Left", "sen_fl_loa")]; 
  Pro [Var ("adc_Left", "sen_fl_loa"); Var ("adc_Right", "sen_fl_loa")]; 
  Pro [Var ("iru_Ctr", "sen_fl_loa"); 
       Var ("iru_Left", "sen_fl_loa"); Var ("iru_Right", "sen_fl_loa")] 
  Pro [Var ("sw1a", "sw_fl_loa"); Var ("sw1b", "sw_fl_loa")];] 

 
Loss of DCM 
Loss of DCM ES 
Loss of L. GPM ES 
Loss of L. GGM 
Loss of L. GGM ES 
Loss of L. GPM 
Loss of L. PFD 
Loss of both ADC ESs  
Loss of ADC L. ES & ADC R. 
Loss of ADC R. ES & ADC L. 
Loss of both ADCs  
Loss of all IRUs 
 
Loss of both SWs 

 

For completeness, below is a list of the cut sets with their probabilities in order of importance. 

Loss of HDD1 Probability Importance 

[(Var ("dcm", "dcm_fl_loa")); 
 (Var ("ggm1", "ggm_fl_loa")); 
 (Var ("gpm1", "gpm_fl_loa")); 
 (Var ("hdd1", "display_fl_loa")); 
 (Var ("dcm_ES", "es_fl_loa")); 
 (Var ("ges1", "ges_fl_loa")); 
 (Var ("ggm_ES1", "es_fl_loa")); 
 (Pro [Var ("adc_Left", "sen_fl_loa"); Var ("adc_Right","sen_fl_loa")]); 
 (Pro [Var ("sw1a", "sw_fl_loa"); Var ("sw1b", "sw_fl_loa")]); 
 (Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_Right", "sen_fl_loa")]); 
 (Pro [Var ("adc_ES2", "es_fl_loa"); Var ("adc_Left", "sen_fl_loa")]); 
 (Pro [Var ("iru_Ctr", "sen_fl_loa"); 
       Var ("iru_Left", "sen_fl_loa"); Var ("iru_Right", "sen_fl_loa")]); 
 (Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_ES2", "es_fl_loa")]); 
] 

9.99995000017e-06 
2.00000016548e-10 
2.00000016548e-10 
2.00000016548e-10 
1.00000008274e-10 
1.00000008274e-10 
1.00000008274e-10 
9.99998999969e-13 
9.99998999969e-13  
9.99999582725e-17 
9.99999582725e-17  
 
9.99998499954e-19 
1.00000016548e-20 

0.999909808559 
1.9998297817e-05 
1.9998297817e-05  
1.9998297817e-05 
9.99914890849e-06 
9.99914890849e-06 
9.99914890849e-06 
9.9991380817e-08 
9.9991380817e-08 
9.99914390876e-12 
9.99914390876e-12  
 
9.99913308197e-14 
9.99914973582e-16 

 

Below are the cut sets for loss of 2 displays: HDD1 (left side PFD) and HDD2 (left side ND). To model this, 

we created a dummy sink node which took inputs from the 2 displays. The only thing that changed from 

the previous analysis is that now the cut set contains the loss of HDD1 ANDed with HDD2. 

Loss of HDD1 & HDD2 Comments 
Sum 
 [Var ("dcm", "dcm_fl_loa"); 
  Var ("dcm_ES", "es_fl_loa");  
  Var ("ges1", "ges_fl_loa"); 
  Var ("ggm1", "ggm_fl_loa");  
  Var ("ggm_ES1", "es_fl_loa"); 
  Var ("gpm1", "gpm_fl_loa");  
  Pro [Var ("hdd1", "display_fl_loa"); Var ("hdd2", "display_fl_loa")]; 
  Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_ES2", "es_fl_loa")]; 
  Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_Right", "sen_fl_loa")]; 
  Pro [Var ("adc_ES2", "es_fl_loa"); Var ("adc_Left", "sen_fl_loa")]; 
  Pro [Var ("adc_Left", "sen_fl_loa"); Var ("adc_Right", "sen_fl_loa")]; 
  Pro [Var ("sw1a", "sw_fl_loa"); Var ("sw1b", "sw_fl_loa")]; 
  Pro [Var ("iru_Ctr", "sen_fl_loa"); 
       Var ("iru_Left", "sen_fl_loa"); Var ("iru_Right", "sen_fl_loa")]] 

 
Loss of DCM 
Loss of DCM ES 
Loss of L. GPM ES 
Loss of L. GGM 
Loss of L. GGM ES 
Loss of L. GPM 
Loss of HDD1 & HDD2 
Loss of both ADC ESs  
Loss of ADC L. ES & ADC R. 
Loss of ADC R. ES & ADC L. 
Loss of both ADCs  
Loss of both SWs 
Loss of all IRUs 

 



 

SOTERIA Contractor Report Page 78 
 

Continuing with the buildup of the examples, below are the cut sets for loss of all left-hand side displays. 

Our tool makes it very easy to model this – we simply took the model from the previous example and 

modified it by adding one more input to the dummy sink node. Similar to the change in the previous 

example, the cut set now differs with the AND of all left-hand side displays: HDD1 AND HDD2 AND 

HUD_Left. 

Loss of HDD1 & HDD2 & HUD_Left Comments 
Sum 
 [Var ("dcm", "dcm_fl_loa");  
  Var ("dcm_ES", "es_fl_loa");  
  Var ("ges1", "ges_fl_loa"); 
  Var ("ggm1", "ggm_fl_loa");  
  Var ("ggm_ES1", "es_fl_loa"); 
  Var ("gpm1", "gpm_fl_loa"); 
  Pro [Var ("hdd1", "display_fl_loa"); Var ("hdd2", "display_fl_loa"); 
       Var ("hud_Left", "display_fl_loa")]; 
  Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_ES2", "es_fl_loa")]; 
  Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_Right", "sen_fl_loa")]; 
  Pro [Var ("adc_ES2", "es_fl_loa"); Var ("adc_Left", "sen_fl_loa")]; 
  Pro [Var ("adc_Left", "sen_fl_loa"); Var ("adc_Right", "sen_fl_loa")]; 
  Pro [Var ("sw1a", "sw_fl_loa"); Var ("sw1b", "sw_fl_loa")];  
  Pro [Var ("iru_Ctr", "sen_fl_loa"); 
      Var ("iru_Left", "sen_fl_loa"); Var ("iru_Right", "sen_fl_loa")]] 

 
Loss of DCM 
Loss of DCM ES 
Loss of GPM1 ES 
Loss of GGM1 
Loss of GGM1 ES 
Loss of GPM1 
Loss of HDD1 & HDD2 & HUD L. 
 
Loss of both ADC ESs  
Loss of ADC L. ES & ADC R. 
Loss of ADC R. ES & ADC L. 
Loss of both ADCs  
Loss of both SWs 
Loss of all IRUs 

 

Now let’s look at the cut sets for two displays, but on opposite sides. Below are the cut sets for loss of 

ND on the left-hand side and on the right-hand side. Again, our tool makes it very easy to model this 

because we can take one of the previous models and modify the inputs to the dummy sink node. The 

interesting thing to note in the analysis is that every cut set is an AND of a left-hand side component 

with a right-hand side component. The end-user need only to modify the model in one place and then 

use our tool to automatically generate the cut sets, compared to having to modify multiple branches in 

the fault tree by hand for a system like this. Another thing to note is the presence of the DCM ES in all 

the cut sets so far, which says that this is a potential single point of failure in the way this system is 

designed. This will be an interesting scenario to test our synthesis algorithm later to see if the synthesis 

will have enough moves to resolve something like this. 

Loss of HDD2 & HDD4 (opposite side Nav Displays) Comments 
  Sum 
   [Var ("dcm", "dcm_fl_loa");  
    Var ("dcm_ES", "es_fl_loa"); 
    Pro [Var ("ges1", "ges_fl_loa"); Var ("ges2", "ges_fl_loa")]; 
    Pro [Var ("ges1", "ges_fl_loa"); Var ("ggm2", "ggm_fl_loa")]; 
    Pro [Var ("ges1", "ges_fl_loa"); Var ("ggm_ES2", "es_fl_loa")]; 
    Pro [Var ("ges1", "ges_fl_loa"); Var ("gpm2", "gpm_fl_loa")]; 
    Pro [Var ("ges1", "ges_fl_loa"); Var ("hdd4", "display_fl_loa")]; 
    Pro [Var ("ges2", "ges_fl_loa"); Var ("ggm1", "ggm_fl_loa")]; 
    Pro [Var ("ges2", "ges_fl_loa"); Var ("ggm_ES1", "es_fl_loa")]; 
    Pro [Var ("ges2", "ges_fl_loa"); Var ("gpm1", "gpm_fl_loa")]; 
    Pro [Var ("ges2", "ges_fl_loa"); Var ("hdd2", "display_fl_loa")]; 
    Pro [Var ("ggm1", "ggm_fl_loa"); Var ("ggm2", "ggm_fl_loa")]; 
    Pro [Var ("ggm1", "ggm_fl_loa"); Var ("ggm_ES2", "es_fl_loa")]; 
    Pro [Var ("ggm1", "ggm_fl_loa"); Var ("gpm2", "gpm_fl_loa")]; 
    Pro [Var ("ggm1", "ggm_fl_loa"); Var ("hdd4", "display_fl_loa")]; 
    Pro [Var ("ggm2", "ggm_fl_loa"); Var ("ggm_ES1", "es_fl_loa")]; 
    Pro [Var ("ggm2", "ggm_fl_loa"); Var ("gpm1", "gpm_fl_loa")]; 
    Pro [Var ("ggm2", "ggm_fl_loa"); Var ("hdd2", "display_fl_loa")]; 
    Pro [Var ("ggm_ES1", "es_fl_loa"); Var ("ggm_ES2", "es_fl_loa")]; 

 
Loss of DCM 
Loss of DCM ES 
Loss of L. GPM ES & R. GPM ES 
Loss of L. GPM ES & R. GGM 
Loss of L. GPM ES & R. GGM ES 
Loss of L. GPM ES & R. Nav Disp 
Loss of L. GPM ES & R. GPM2 ES 
Loss of R. GPM ES & L. GGM 
Loss of R. GPM ES & L. GGM ES 
Loss of R. GPM ES & L. GPM 
Loss of R. GPM ES & L. Nav Disp 
Loss of L. GGM & R. GGM 
Loss of L. GGM & R. GGM ES 
Loss of L. GGM & R. GPM 
Loss of L. GGM & R. Nav Disp 
Loss of R. GGM & L. GGM ES 
Loss of R. GGM & L. GPM 
Loss of R. GGM & L. Nav Disp 
Loss of L. GGM ES & R. GGM ES 



 

SOTERIA Contractor Report Page 79 
 

    Pro [Var ("ggm_ES1", "es_fl_loa"); Var ("gpm2", "gpm_fl_loa")]; 
    Pro [Var ("ggm_ES1", "es_fl_loa"); Var ("hdd4", "display_fl_loa")]; 
    Pro [Var ("ggm_ES2", "es_fl_loa"); Var ("gpm1", "gpm_fl_loa")]; 
    Pro [Var ("ggm_ES2", "es_fl_loa"); Var ("hdd2", "display_fl_loa")]; 
    Pro [Var ("gpm1", "gpm_fl_loa"); Var ("gpm2", "gpm_fl_loa")]; 
    Pro [Var ("gpm1", "gpm_fl_loa"); Var ("hdd4", "display_fl_loa")]; 
    Pro [Var ("gpm2", "gpm_fl_loa"); Var ("hdd2", "display_fl_loa")]; 
    Pro [Var ("hdd2", "display_fl_loa");Var ("hdd4", "display_fl_loa")]; 
    Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_ES2", "es_fl_loa")]; 
    Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_Right", "sen_fl_loa")]; 
    Pro [Var ("adc_ES2", "es_fl_loa"); Var ("adc_Left", "sen_fl_loa")]; 
    Pro [Var ("adc_Left","sen_fl_loa");Var ("adc_Right", "sen_fl_loa")]; 
    Pro [Var (...); ...]; ...] 
 

Loss of L. GGM ES & R. GPM 
Loss of L. GGM ES & R. Nav Disp 
Loss of R. GGM ES & L. GPM 
Loss of R. GGM ES & L. Nav Disp 
Loss of L. GPM & R. GPM 
Loss of L. GPM & R. Nav Disp 
Loss of L. GPM & L. Nav Disp 
Loss of L. & R. Nav Disp 
Loss of L. & R. ADC ES 
Loss of L. ADC ES & R. ADC  
Loss of R. ADC ES & L. ADC 
Loss of L. ADC & R. ADC 
and more … 

 

Finally, below are the cut sets for loss of all seven displays. Similar to the previous example, the cut sets 

are ANDs of a left-hand side component with a right-hand side component. The added difference here 

from the previous example is in the cut sets for loss of display components, where the sets are made up 

of loss of all displays on one side with the loss of one other component from the other side (i.e., loss of 

all right-hand side displays with the loss of the left-hand side GPM ES. 

Loss of All Displays Comments 
  Sum 
   [Var ("dcm", "dcm_fl_loa"); 
    Var ("dcm_ES", "es_fl_loa"); 
    Pro [Var ("ges1", "ges_fl_loa"); Var ("ges2", "ges_fl_loa")]; 
    Pro [Var ("ges1", "ges_fl_loa"); Var ("ggm2", "ggm_fl_loa")]; 
    Pro [Var ("ges1", "ges_fl_loa"); Var ("ggm_ES2", "es_fl_loa")]; 
    Pro [Var ("ges1", "ges_fl_loa"); Var ("gpm2", "gpm_fl_loa")]; 
    Pro [Var ("ges2", "ges_fl_loa"); Var ("ggm1", "ggm_fl_loa")]; 
    Pro [Var ("ges2", "ges_fl_loa"); Var ("ggm_ES1", "es_fl_loa")]; 
    Pro [Var ("ges2", "ges_fl_loa"); Var ("gpm1", "gpm_fl_loa")]; 
    Pro [Var ("ggm1", "ggm_fl_loa"); Var ("ggm2", "ggm_fl_loa")]; 
    Pro [Var ("ggm1", "ggm_fl_loa"); Var ("ggm_ES2", "es_fl_loa")]; 
    Pro [Var ("ggm1", "ggm_fl_loa"); Var ("gpm2", "gpm_fl_loa")]; 
    Pro [Var ("ggm2", "ggm_fl_loa"); Var ("ggm_ES1", "es_fl_loa")]; 
    Pro [Var ("ggm2", "ggm_fl_loa"); Var ("gpm1", "gpm_fl_loa")]; 
    Pro [Var ("ggm_ES1", "es_fl_loa"); Var ("ggm_ES2", "es_fl_loa")]; 
    Pro [Var ("ggm_ES1", "es_fl_loa"); Var ("gpm2", "gpm_fl_loa")]; 
    Pro [Var ("ggm_ES2", "es_fl_loa"); Var ("gpm1", "gpm_fl_loa")]; 
    Pro [Var ("gpm1", "gpm_fl_loa"); Var ("gpm2", "gpm_fl_loa")]; 
    Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_ES2", "es_fl_loa")]; 
    Pro [Var ("adc_ES1", "es_fl_loa"); Var ("adc_Right", "sen_fl_loa")]; 
    Pro [Var ("adc_ES2", "es_fl_loa"); Var ("adc_Left", "sen_fl_loa")]; 
    Pro [Var ("adc_Left","sen_fl_loa");Var ("adc_Right", "sen_fl_loa")]; 
    Pro [Var ("sw1a", "sw_fl_loa"); Var ("sw1b", "sw_fl_loa")]; 
    Pro [Var ("iru_Ctr", "sen_fl_loa"); 
      Var ("iru_Left", "sen_fl_loa"); Var ("iru_Right", "sen_fl_loa")]; 
    Pro [Var ("ges1", "ges_fl_loa"); Var ("hdd4", "display_fl_loa"); 
      Var ("hdd5","display_fl_loa");Var ("hud_Right","display_fl_loa")]; 
    Pro [Var ("ges2", "ges_fl_loa"); Var ("hdd1", "display_fl_loa"); 
      Var ("hdd2","display_fl_loa");Var ("hud_Left", "display_fl_loa")]; 
    Pro [Var ("ggm1", "ggm_fl_loa"); Var ("hdd4", "display_fl_loa"); 
      Var ("hdd5","display_fl_loa");Var ("hud_Right","display_fl_loa")]; 
    Pro [Var ("ggm2", "ggm_fl_loa"); Var ("hdd1", "display_fl_loa"); Var 
(...); 
      ...]; 
    ...] 

 
Loss of DCM 
Loss of DCM ES 
Loss of L. GPM ES & R. GPM ES 
Loss of L. GPM ES & R. GGM 
Loss of L. GPM ES & R. GGM ES 
Loss of L. GPM ES & R. GPM ES 
Loss of R. GPM ES & L. GGM 
Loss of R. GPM ES & L. GGM ES 
Loss of R. GPM ES & L. GPM 
Loss of L. GGM & R. GGM 
Loss of L. GGM & R. GGM ES 
Loss of L. GGM & R. GPM 
Loss of R. GGM & L. GGM ES 
Loss of R. GGM & L. GPM 
Loss of L. GGM ES & R. GGM ES 
Loss of L. GGM ES & R. GPM 
Loss of R. GGM ES & L. GPM 
Loss of L. GPM & R. GPM 
Loss of L. & R. ADC ES 
Loss of L. ADC ES & R. ADC  
Loss of R. ADC ES & L. ADC 
Loss of L. ADC & R. ADC 
Loss of L. SW & R. SW 
Loss of Ctr Aisle Disp,  

L. IRU & R. IRU 
Loss of L. GPM ES, R. Nav Disp,  

R. Nav Disp, R. HUD 
Loss of R. GPM ES, L. PFD, L. 

Nav Disp, L. HUD 
Loss of L. GGM, R. Nav Disp, R. 

PFD, R. HUD 
and more … 



 

SOTERIA Contractor Report Page 80 
 

9.4 Wheel Brake and Landing Gear System 
A Wheel brake and Landing Gear system was defined for the purposes of stress testing our modeling 

capabilities. This system represents a sample system architecture for Landing Gear, Wheel Brakes, and 

Spoiler Control based on publicly available information, which contain both IMA based components and 

federated components. The intent of this example is to provide a more complex architecture to model, 

not generate a real system architecture. 

The following sources were used as reference material for the system description and analysis: 

• SAE AIR6110 (2011) 

• Formal Design and Safety Analysis for AIR6110 Wheel Brake System (2015) 

• Spoilers aeronautics (Wikipedia) 

• Lufthansa Flight 2904 Incident Description (Wikipedia) 

• Another A320 WBS incident (AAIB (UK)) 

9.4.1 System Description 

The Wheel Brake and Landing Gear system is an electronically controlled hydraulic system that is used to 
partially implement the following Aircraft functions: 

• Provide Control on the Ground 
o Extend & Retract Landing Gear 

▪ Extend Landing Gear 
▪ Retract Landing Gear 
▪ Provide Landing Gear Status 

o Control Speed 
▪ Decelerate aircraft on the ground (stopping on the runway) 

• Provide Primary Stopping Force 

• Provide Secondary Stopping Force 

• Decrease Lift / Create Drag / Enhance Braking Effectiveness 

• Remove Forward Thrust 

• Transfer Stopping Forces to Structural Integrity Components 
o Control Direction 

▪ Provide Pilot Steering 

The Landing Gear System consists of subsystems including the Wheel Braking System (WBS) that provide 

the primary stopping force for the aircraft.  There are other aircraft systems used to decelerate the 

aircraft in support of the Landing Gear’s WBS. 

Figure 29 shows the complete Landing Gear, Wheel Brake, and Spoiler system architecture. For the 

purposes of this report, we initially modelled the system that handles deployment of the landing gear 

and deployment of the spoilers (IMA portion of the system), followed by the wheel braking system 

(Federated portion), and finished by combining both models into one. The green box on the diagram 

indicates the federated components that control the wheel braking function. The orange box shows the 

IMA portion of this example that control the landing gear and spoilers deployment functions. 



 

SOTERIA Contractor Report Page 81 
 

9.4.1.1 Landing Gear 

The Landing Gear System consists of two pairs of wheels (two left and two right).  Each pair has one 

inner, and one outer wheel.  Each pair is connected to a single strut connecting it to the fuselage.  

Each wheel consists of a tire on a hub.  Within each hub is a hydraulically actuated brake that is 

controlled by the Wheel Brake System (WBS).   Each wheel has a single set of sensors as follows: Wheel 

Speed, Tire Temperature, and Tire Pressure. 

Gear Actuation 

Each strut has an actuator which extends and retracts the gear from the gear bay.  Actuation is 

controlled by a push-button Landing Gear Switch in the cockpit.  The switch illuminates green when both 

gear sensors indicate the gear are down and locked.  The switch is not illuminated when both gear 

sensors indicate the gear is up and locked.  The switch flashes green when the gear is neither locked up 

or down (indicating the gear is in transition). 

Weight on Wheels (on-ground) Detection 

Each strut has a WOW sensor that will activate (indicating the aircraft is on-ground) when the weight on 

the strut is greater than or equal to 12,000 lbs. (6 tons). 

Landing Gear Bay Doors 

Each landing gear bay has a door that opens when the gear is down (extracted). The doors are activated 

by the Landing Gear Switch.  The door sensor must indicate open and locked before the landing gear is 

extracted down.  Similarly, the landing gear must be up and locked before the bay door is closed. 

9.4.1.2 Spoiler System 

The spoiler system consists of hydraulically actuated plates on the top of each wing that extend to 

“spoil” the airflow over the wing.  The purpose of spoilers is to reduce lift, create drag, and provide 

additional downward force by the aircraft on the landing gear to enhance braking effectiveness. 

There are spoilers on each wing.  Spoiler activation is controlled by applications hosted on a high 

integrity avionics platform IMA. 

Spoiler Command / Monitor Function 

One Spoiler Control Application has primary control of the spoilers. The other application monitors the 

primary application by reading the spoiler sensors.  If erroneous spoiler control is detected, the 

secondary monitor application will send a command to the spoilers.  The RIU detects when the 

secondary application is issuing a command to the spoilers and ignores the primary spoiler command.  

The pilots are notified of this condition so that they can take precautionary measures such as notifying 

air traffic control (ATC), apply more braking, and plan to utilize more of the runway. 

Dependency on the WOW sensors and Airspeed  

The spoilers are deployed automatically when both the left and right gear’s WOW sensors indicate the 

aircraft is on-ground, and the airspeed is greater than 40 knots. 



 

SOTERIA Contractor Report Page 82 
 

If there is a detected fault of a WOW sensor, the spoiler system will rely on the remaining WOW sensor 

for activation. 

9.4.1.3 Wheel Brake System 

The WBS is used as the primary means to stop the aircraft on the runway in a variety of conditions. The 

system consists of hydraulically actuated brakes on each wheel. The hydraulic brakes are controlled by a 

Braking System Control Unit (BSCU) which activates a hydraulic meter valve on the wheel. The meter 

valve controls the hydraulic pressure for a wheel brake. The WBS supports both manual and automatic 

brake modes.  

Manual Braking Mode 

Manual braking is activated by the pilot applying the left and/or right brake pedals.  The left pedal 

controls the left gear and the right pedal controls the right gear.  The BSCU senses the brake pedal 

position and sends a command to the meter valve which controls the hydraulic pressure to the brakes 

on the wheel. 

Auto-Brake Mode 

Automatic braking mode is activated by a selector switch and braking is controlled by pair of BSCUs with 

no pilot or co-pilot brake pedal assistance. The pilot may select one of three auto-braking levels (Low, 

Medium, Max) depending on run-way length and conditions. If auto-braking is not selected, the pilot 

must manually apply brake pedals to engage the brakes. The Auto-Brake feature engages when the 

wheel rotation is equal to or greater than 72 knots.   The pilot can override the auto brake at any time 

by manually applying either (left or right) brake pedal. 

Dependency on Spoiler System 

The WBS is most effective when the aircraft’s Spoiler System is activated.  The downward force of the 

spoilers help the landing gear by reducing tire skidding and increasing wheel brake effectiveness. If a 

failure to deploy one or more spoilers is detected, then Max auto braking will be used unless overridden 

by the pilot. 

Anti-Skid Feature 

The Anti-skid feature senses a lack of wheel rotation (less than 40 knots) and automatically reduces the 

braking force applied to the wheel until the wheel rotation increases (greater than 40 knots).  Once the 

wheel rotation has increased, the commanded braking force is re-applied to the wheel.  This feature is 

activated when the WOW sensor reads on-ground. 



 

SOTERIA Contractor Report Page 83 
 

IMA Portion

Federated Portion

 
Figure 29. WBS and Land Gear Architecture Diagram 



 

SOTERIA Contractor Report Page 84 
 

9.4.2 Landing Gear Deployment and Spoiler Deployment Modeling Work 

The following sections contain comprehensive details of the exercise of modeling the Landing Gear 

Deployment and Spoiler Deployment functions in our tool. A briefer approach was taken in regards to 

the Wheel Brake function, and the combination of both models as the exercise of defining components, 

instances and connection is fully demonstrated while discussing the first two functions. A summary is 

provided at the end with all findings and observations. 

9.4.2.1 Component Models 

The modeling started with building component models for each of the components that support the 

landing gear deployment and spoiler deployment functions. The Sensors and Effectors (effectors are the 

actuators in this example) can be modeled generically as they all have the same basic failure 

propagation properties.  Any differences in failure rates or exposure times can be specified at the point 

the components are instantiated in the model. 

 
Figure 30. Sensor and Effector component models 

The RIUs are modeled based on the number of inputs and outputs similar to previous examples. The 

major difference in this example is that the RIUs have inputs from Sensors that are sent to A664 outputs 

and have A664 inputs that are sent to the Effectors connected to the RIUs.  To simplify the overall 

system model, we also modeled the RIU A664 End System as part of the RIU model.  The following 

inputs and output definitions were used for RIU 1 and RIU 2: 

A664 Inputs / Outputs to other equipment: 

1. Spoiler Actuator  

2. Gear Door Actuator 

3. Gear Position Actuator 

A664 Outputs / Inputs from other equipment: 

1. Spoiler Sensor 

2. WOW Sensor 

  {name          = "Sen"; (*Sensor*) 

    faults       = ["ued"; "loa"]; 

    input_flows  = []; 

    basic_events = ["sen_flt_ued";"sen_flt_loa"]; 

    event_info   = [(1.0e-6, 1.0);(1.0e-5, 1.0)]; 

    output_flows = ["out"];  

    formulas     = [(["out"; "ued"], F["sen_flt_ued"]); 

                    (["out"; "loa"], F["sen_flt_loa"])] 

  }; 

 

  {name          = "Eff"; (*Effector*) 

    faults       = ["ued"; "loa"]; 

    input_flows  = ["in"]; 

    basic_events = ["eff_flt_ued";"eff_flt_loa"]; 

    event_info   = [(1.0e-6, 1.0);(1.0e-5, 1.0)]; 

    output_flows = ["out"]; (* output represents the action of effector *)  

    formulas     = [(["out";"ued"], Or[ F["in";"ued"]; F["eff_flt_ued"]]) ; 

                    (["out";"loa"], Or[ F["in";"loa"]; F["eff_flt_loa"]])] 

  };     



 

SOTERIA Contractor Report Page 85 
 

3. Gear Door Position Sensor 

4. Gear Position Sensor 

The A664 inputs to the RIU and the A664 outputs from the RIU need to be duplicated since there are A 

and B network channels.  The A664 inputs also need additional duplication to represent the multiple 

application sources.  The numbering scheme is captured in the comments embedded in the model 

shown in Figure 31. Each “rin<n>” is mapped to “outa<n>” and “outb<n>”. Each “out<n>” is driven by 

inputs from each copy of the application and each A664 channel.  This system uses source selection 

between the A and B A664 channels (e.g. both must be lost to have loss of function; either being 

erroneous can cause undetected erroneous functionality).  This system also relies on the RIU to perform 

the redundancy management between the commands from each copy of the controlling application.  In 

this example, the same source selection logic was applied for the application redundancy (both must be 

lost to have loss of function; either being erroneous can cause undetected erroneous functionality). 



 

SOTERIA Contractor Report Page 86 
 

 
Figure 31. RIU 1 and 2 component model 

RIU 3, shown in Figure 32, is quite a bit simpler due to the fact it only has inputs from sensors to output 

to the A664 network. 

  {name          = "RIU_i4o3"; (* includes the RIU End System *) 

    faults       = ["ued"; "loa"]; 

    input_flows  = ["rin1";"rin2";"rin3";"rin4"; 

                    (* ina<n>/inb<n> are A664 inputs for each RIU output  

                     * to other equipment; "x"/"y" represent the different  

                     * applications *) 

                    "ina1x";"inb1x";"ina2x";"inb2x";"ina3x";"inb3x"; 

                    "ina1y";"inb1y";"ina2y";"inb2y";"ina3y";"inb3y"];  

    basic_events = ["riu_flt_ued";"riu_flt_loa"]; 

    event_info   = [(1.0e-6, 1.0);(1.0e-5, 1.0)]; 

    output_flows = ["out1";"out2";"out3";     

                    (* outa<n>/outb<n> are A664 outputs for each RIU input 

                     * from other equipment*)  

                    "outa1";"outb1";"outa2";"outb2";"outa3";"outb3"; 

                    "outa4";"outb4"];                        

    formulas     = [(* A664 Outputs - Note the patterns show up*)                      

                    (["outa1"; "ued"], Or[F["rin1"; "ued"];F["riu_flt_ued"]]); 

                    (["outa1"; "loa"], Or[F["rin1"; "loa"];F["riu_flt_loa"]]); 

                    (["outb1"; "ued"], Or[F["rin1"; "ued"];F["riu_flt_ued"]]); 

                    (["outb1"; "loa"], Or[F["rin1"; "loa"];F["riu_flt_loa"]]); 

                    (["outa2"; "ued"], Or[F["rin2"; "ued"];F["riu_flt_ued"]]); 

                    (["outa2"; "loa"], Or[F["rin2"; "loa"];F["riu_flt_loa"]]); 

                    (["outb2"; "ued"], Or[F["rin2"; "ued"];F["riu_flt_ued"]]); 

                    (["outb2"; "loa"], Or[F["rin2"; "loa"];F["riu_flt_loa"]]); 

                    (["outa3"; "ued"], Or[F["rin3"; "ued"];F["riu_flt_ued"]]); 

                    (["outa3"; "loa"], Or[F["rin3"; "loa"];F["riu_flt_loa"]]); 

                    (["outb3"; "ued"], Or[F["rin3"; "ued"];F["riu_flt_ued"]]); 

                    (["outb3"; "loa"], Or[F["rin3"; "loa"];F["riu_flt_loa"]]); 

                    (["outa4"; "ued"], Or[F["rin4"; "ued"];F["riu_flt_ued"]]); 

                    (["outa4"; "loa"], Or[F["rin4"; "loa"];F["riu_flt_loa"]]); 

                    (["outb4"; "ued"], Or[F["rin4"; "ued"];F["riu_flt_ued"]]); 

                    (["outb4"; "loa"], Or[F["rin4"; "loa"];F["riu_flt_loa"]]); 

                    (* RIU outputs to other equipment *) 

                    (* Modeled so that RIU only listens to one source.  

                     * Either could be erroneous; both need to be lost  *) 

                    (["out1";"ued"],Or[F["ina1x";"ued"];F["inb1x";"ued"]; 

                      F["ina1y";"ued"];F["inb1y";"ued"];F["riu_flt_ued"]]); 

                    (["out1";"loa"],Or[And[F["ina1x";"loa"];F["inb1x";"loa"];F["ina1y";"loa"]; 

                      F["inb1y";"loa"]];F["riu_flt_loa"]]);    

                    (["out2";"ued"],Or[F["ina2x";"ued"];F["inb2x";"ued"];F["ina2y";"ued"]; 

                      F["inb2y";"ued"];F["riu_flt_ued"]]); 

                    (["out2";"loa"],Or[And [F["ina2x";"loa"];F["inb2x";"loa"];F["ina2y";"loa"]; 

                      F["inb2y";"loa"]];F["riu_flt_loa"]]); 

                    (["out3";"ued"],Or[F["ina3x";"ued"];F["inb3x";"ued"];F["ina3y";"ued"]; 

                      F["inb3y";"ued"];F["riu_flt_ued"]]); 

                    (["out3";"loa"],Or[And [F["ina3x";"loa"];F["inb3x";"loa"];F["ina3y";"loa"]; 

                      F["inb3y";"loa"]];F["riu_flt_loa"]]);    

                   ] 

  }; 

Inputs from sensors that 

are then send out the A664 

outputs  

Data from apps arriving on 

shared A664 network.  

Simplifying assumption. The fault state/mode 

of the RIU applies to all its outputs  

 



 

SOTERIA Contractor Report Page 87 
 

 
Figure 32. RIU 3 component model 

During the modeling, we determined that the GPM component models needed to be specific to the 

applications they are hosting. This is because the failure propagation logic is dependent on how the 

application uses the inputs to generate the output commands.  In section 9.4.5 we follow up on this 

topic and discuss other possible modeling techniques. 

The following inputs and output definitions were used for GPM 1 and 3, the GPMs hosting the Spoiler 

Control Application: 

Spoiler Control Application Inputs: 

1. WOW Left 

2. WOW Right 

3. Spoiler Sensor Left 

4. Spoiler Sensor Right 

5. Airspeed 

Spoiler Control Application Outputs: 

1. Spoiler Actuator Left 

2. Spoiler Actuator Right 

The A664 inputs to the GPM and the A664 outputs from the GPM need to be duplicated since there are 

A and B network channels. While working the failure propagation logic in the GPM we found there were 

subtle aspects of the system description that needed to be refined.  This is similar to other examples we 

have done and in our opinion shows some of the potential value of this type of modeling. This type of 

modeling forces the designer to think about the system at the data item level and usually results in the 

need to refine their understanding of how the system functions work. The following assumptions were 

   {name         = "RIU_i2o0"; 

    faults       = ["ued"; "loa"]; 

    input_flows  = ["rin1";"rin2"];  

    basic_events = ["riu_flt_ued";"riu_flt_loa"]; 

    event_info   = [(1.0e-6, 1.0);(1.0e-5, 1.0)]; 

    output_flows = [(* outa<n>/outb<n> are A664 outputs for each RIU input 

                     * from other equipment*)  

                    "outa1";"outb1";"outa2";"outb2"]; 

    formulas     = [(* A664 Outputs - Note the patterns show up*) 

                    (["outa1"; "ued"], Or[F["rin1"; "ued"];F["riu_flt_ued"]]); 

                    (["outa1"; "loa"], Or[F["rin1"; "loa"];F["riu_flt_loa"]]); 

                    (["outb1"; "ued"], Or[F["rin1"; "ued"];F["riu_flt_ued"]]); 

                    (["outb1"; "loa"], Or[F["rin1"; "loa"];F["riu_flt_loa"]]); 

                    (["outa2"; "ued"], Or[F["rin2"; "ued"];F["riu_flt_ued"]]); 

                    (["outa2"; "loa"], Or[F["rin2"; "loa"];F["riu_flt_loa"]]); 

                    (["outb2"; "ued"], Or[F["rin2"; "ued"];F["riu_flt_ued"]]); 

                    (["outb2"; "loa"], Or[F["rin2"; "loa"];F["riu_flt_loa"]]); 

                    ] 

  }; 



 

SOTERIA Contractor Report Page 88 
 

captured during the modeling process of the Spoiler Control Application and were fed back to the 

systems description: 

• Assume LOA means inability to deploy spoilers when needed for braking and UED means 

erroneous deployment of spoilers. 

• Assume either WOW R and L indicating on ground means spoilers can be deployed. Either one 

being erroneous could cause UED for the spoiler output. Both need to be lost to lose spoiler 

output. 

• Assume Spoiler Position Sensor is defined as follows: 1 = not-deployed, 0 is deployed.  Loss of = 

stuck at 0, UED = stuck at 1. 

• Assume Spoiler Position Sensor feedback is used in application to determine when to command 

actuator to move. Loss of Spoiler Position contributes to loss of ability to deploy.  Undetected 

Erroneous Spoiler Position does not impact loss of ability to deploy or erroneous deploy.5 

Figure 33 shows the component model used for GPM 1 and GPM 3. 

                                                            
5 This is due to the way we defined LOA and UED for this sensor. We defined UED as stuck at 1; sensor at 1 means 
not deployed. If the function is to deploy the spoiler and the system always thinks the spoiler is not deployed (due 
to the stuck at 1 fault), the system still can drive the actuator. On the erroneous deployment side, the command to 
move the actuator also requires an actual application to see an aircraft state where the spoilers are needed. 



 

SOTERIA Contractor Report Page 89 
 

 
Figure 33. GPM 1 and 3 component model 

The following inputs and output definitions were used for GPM 2 and 4, the GPMs hosting the Landing 

Gear Control Application: 

Landing Gear Control Application Inputs: 

1. Gear Lever 

2. Gear Door Position Sensor Left 

3. Gear Door Position Sensor Right 

4. Gear Position Sensor Left 

5. Gear Position Sensor Right 

Landing Gear Control Application Outputs: 

1. Gear Door Actuator Left 

2. Gear Door Actuator Right 

3. Gear Position Actuator Left 

4. Gear Position Actuator Right 

  {name          = "GPM_Spoiler"; 

    faults       = ["ued"; "loa"]; 

    input_flows  = ["gin1a";"gin2a";"gin3a";"gin4a";"gin1b";"gin2b";"gin3b"; 

                    "gin4b";"gin5a";"gin5b"]; 

    basic_events = ["gpm_flt_ued"; "gpm_flt_loa"]; 

    event_info   = [(3.0e-10, 1.0); (3.0e-5, 1.0)]; 

    output_flows = ["out1a";"out1b";"out2a";"out2b"];  

    formulas     = [(["out1a"; "ued"],Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gin2a"; "ued"];  

                      F["gin2b"; "ued"]; F["gin5a"; "ued"]; F["gin5b"; "ued"];F["gpm_flt_ued"]]); 

                    (["out1b"; "ued"],Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gin2a"; "ued"];  

                      F["gin2b"; "ued"]; F["gin5a"; "ued"]; F["gin5b"; "ued"];F["gpm_flt_ued"]]); 

                    (["out2a"; "ued"],Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gin2a"; "ued"];  

                      F["gin2b"; "ued"]; F["gin5a"; "ued"]; F["gin5b"; "ued"];F["gpm_flt_ued"]]); 

                    (["out2b"; "ued"],Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gin2a"; "ued"];  

                      F["gin2b"; "ued"]; F["gin5a"; "ued"]; F["gin5b"; "ued"];F["gpm_flt_ued"]]); 

                    (["out1a"; "loa"],Or[And[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]]; 

                      And[F["gin2a"; "loa"]; F["gin2b"; "loa"]]];  

                      And[F["gin5a"; "loa"]; F["gin5b"; "loa"]];  

                      And[F["gin3a"; "loa"]; F["gin3b"; "loa"]];F["gpm_flt_loa"]]); 

                    (["out1b"; "loa"],Or[And[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]]; 

                      And[F["gin2a"; "loa"]; F["gin2b"; "loa"]]];  

                      And[F["gin5a"; "loa"]; F["gin5b"; "loa"]];  

                      And[F["gin3a"; "loa"]; F["gin3b"; "loa"]];F["gpm_flt_loa"]]); 

                    (["out2a"; "loa"],Or[And[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]]; 

                      And[F["gin2a"; "loa"]; F["gin2b"; "loa"]]];  

                      And[F["gin5a"; "loa"]; F["gin5b"; "loa"]];  

                      And[F["gin4a"; "loa"]; F["gin4b"; "loa"]];F["gpm_flt_loa"]]); 

                    (["out2b"; "loa"],Or[And[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]]; 

                      And[F["gin2a"; "loa"]; F["gin2b"; "loa"]]];  

                      And[F["gin5a"; "loa"]; F["gin5b"; "loa"]];  

                      And[F["gin4a"; "loa"]; F["gin4b"; "loa"]];F["gpm_flt_loa"]]); 

                    ] 

  }; 



 

SOTERIA Contractor Report Page 90 
 

The A664 inputs to the GPM and the A664 outputs from the GPM need to be duplicated since there are 

A and B network channels. The following assumptions were captured during the modeling process of the 

Landing Gear Control Application and were fed back to the systems description: 

• Assume LOA means inability to deploy gear when needed and UED means erroneous deployment 

of gear. 

• Assume Gear Door Position Sensor is defined as follows: 1 = open, 0 is closed. Loss of = stuck at 0, 

UED = stuck at 1. 

• Assume Door Position Sensor Loss means gear can't be deployed (not sure door is open) and Door 

Position Sensor UED does not impact Erroneous Deployment. 

• Assume Gear Position Sensor is defined as follows: 1 = up, 0 is down. Loss of = stuck at 0, UED = 

stuck at 1. 

• Assume Gear Position Sensor feedback is used in application to determine when to command 

actuator to move. Loss of Gear Position contributes to loss of ability to deploy.  Undetected 

erroneous Gear Position does not impact loss of ability to deploy or erroneous deploy. 

Figure 34 shows the component model used for GPM 2 and GPM 4. 



 

SOTERIA Contractor Report Page 91 
 

 
Figure 34. GPM 2 and 4 component model 

The final components modeled were the A664 switches.  There are six switches in the architecture (1A, 

1B, 2A, 2B, 3A, 3B). A and B network connections are symmetrical, so there are no cross A and B channel 

links. The switch-to-switch connections shown are the trunk links that would be the same on both 

network A and B. The Wheel Brake portion of the architecture will be modeled in the future. Like other 

examples, the A664 switch component models are based on the number of inputs and outputs at the 

data item level.  Since all data is duplicated on the A and B networks, the switch models can be 

instantiated on either channel and provide the correct data flows.  For Switch 1 and Switch 2 it was 

determined that there were 19 signals that needed to be modeled as inputs and outputs. Four of the 

signals end up getting multicast to multiple destinations so they are modeled to flow to two different 

outputs each.  These switch models also include the 32-bit CRC protection mechanism that we have 

modeled in previous examples. 

Figure 35 shows the component model used for Switch 1 (A and B) and Switch 2 (A and B). In16 through 

in19 are the inputs that are multicast to two different outputs. 

  {name          = "GPM_Gear"; 

    faults       = ["ued"; "loa"]; 

    input_flows  = ["gin1a";"gin2a";"gin3a";"gin4a";"gin5a";"gin1b";"gin2b"; 

                    "gin3b";"gin4b";"gin5b"]; 

    basic_events = ["gpm_flt_ued"; "gpm_flt_loa"]; 

    event_info   = [(3.0e-10, 1.0); (3.0e-5, 1.0)]; 

    output_flows = ["out1a";"out1b";"out2a";"out2b";"out3a";"out3b";"out4a"; 

                    "out4b"];  

    formulas     = [ 

                    (["out1a"; "ued"], Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gpm_flt_ued"]]); 

                    (["out1b"; "ued"], Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gpm_flt_ued"]]); 

                    (["out2a"; "ued"], Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gpm_flt_ued"]]); 

                    (["out2b"; "ued"], Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gpm_flt_ued"]]); 

                    (["out3a"; "ued"], Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gpm_flt_ued"]]); 

                    (["out3b"; "ued"], Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gpm_flt_ued"]]); 

                    (["out4a"; "ued"], Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gpm_flt_ued"]]); 

                    (["out4b"; "ued"], Or[F["gin1a"; "ued"]; F["gin1b"; "ued"]; F["gpm_flt_ued"]]); 

                    (["out1a"; "loa"],Or[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]];F["gpm_flt_loa"]]); 

                    (["out1b"; "loa"],Or[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]];F["gpm_flt_loa"]]); 

                    (["out2a"; "loa"],Or[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]];F["gpm_flt_loa"]]); 

                    (["out2b"; "loa"],Or[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]];F["gpm_flt_loa"]]); 

                    (["out3a"; "loa"],Or[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]]; 

                      And[F["gin2a"; "loa"]; F["gin2b"; "loa"]];And[F["gin4a"; "loa"];  

                      F["gin4b"; "loa"]];F["gpm_flt_loa"]]); 

                    (["out3b"; "loa"],Or[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]]; 

                      And[F["gin2a"; "loa"]; F["gin2b"; "loa"]];And[F["gin4a"; "loa"];  

                      F["gin4b"; "loa"]];F["gpm_flt_loa"]]); 

                    (["out4a"; "loa"],Or[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]]; 

                      And[F["gin3a"; "loa"]; F["gin3b"; "loa"]];And[F["gin5a"; "loa"];  

                      F["gin5b"; "loa"]];F["gpm_flt_loa"]]); 

                    (["out4b"; "loa"],Or[And[F["gin1a"; "loa"]; F["gin1b"; "loa"]]; 

                      And[F["gin3a"; "loa"]; F["gin3b"; "loa"]];And[F["gin5a"; "loa"];  

                      F["gin5b"; "loa"]];F["gpm_flt_loa"]]); 

                    ] 

  }; 



 

SOTERIA Contractor Report Page 92 
 

 
Figure 35. Switch 1 and 2 component model 

  {name          = "Switch1";  

    faults       = ["ued";"loa"]; 

    input_flows  = ["in01";"in02";"in03";"in04";"in05";"in06";"in07";"in08";"in09";"in10"; 

                    "in11";"in12";"in13";"in14";"in15";"in16";"in17";"in18";"in19"]; 

    basic_events = ["sw_flt_ued";"sw_flt_loa";"crc32_flt"]; 

    event_info   = [(1.0e-6, 1.0); (1.0e-5, 1.0); (2.**(-32.), 1.0)]; 

    output_flows = ["out01";"out02";"out03";"out04";"out05";"out06";"out07"; 

                    "out08";"out09";"out10";"out11";"out12";"out13";"out14"; 

                    "out15";"out16m1";"out17m1";"out18m1";"out19m1"; 

                    "out16m2";"out17m2";"out18m2";"out19m2"]; 

    formulas     = [(["out01";"ued"],Or[F["in01";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]);  

                    (["out02";"ued"],Or[F["in02";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out03";"ued"],Or[F["in03";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out04";"ued"],Or[F["in04";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out05";"ued"],Or[F["in05";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out06";"ued"],Or[F["in06";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out07";"ued"],Or[F["in07";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out08";"ued"],Or[F["in08";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out09";"ued"],Or[F["in09";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out10";"ued"],Or[F["in10";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out11";"ued"],Or[F["in11";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]);  

                    (["out12";"ued"],Or[F["in12";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out13";"ued"],Or[F["in13";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out14";"ued"],Or[F["in14";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out15";"ued"],Or[F["in15";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out16m1";"ued"],Or[F["in16";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out17m1";"ued"],Or[F["in17";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out18m1";"ued"],Or[F["in18";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out19m1";"ued"],Or[F["in19";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out16m2";"ued"],Or[F["in16";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out17m2";"ued"],Or[F["in17";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out18m2";"ued"],Or[F["in18";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out19m2";"ued"],Or[F["in19";"ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]);    

                    (["out01"; "loa"], Or[F["in01"; "loa"];F["sw_flt_loa"]]); 

                    (["out02"; "loa"], Or[F["in02"; "loa"];F["sw_flt_loa"]]); 

                    (["out03"; "loa"], Or[F["in03"; "loa"];F["sw_flt_loa"]]); 

                    (["out04"; "loa"], Or[F["in04"; "loa"];F["sw_flt_loa"]]); 

                    (["out05"; "loa"], Or[F["in05"; "loa"];F["sw_flt_loa"]]); 

                    (["out06"; "loa"], Or[F["in06"; "loa"];F["sw_flt_loa"]]); 

                    (["out07"; "loa"], Or[F["in07"; "loa"];F["sw_flt_loa"]]); 

                    (["out08"; "loa"], Or[F["in08"; "loa"];F["sw_flt_loa"]]); 

                    (["out09"; "loa"], Or[F["in09"; "loa"];F["sw_flt_loa"]]); 

                    (["out10"; "loa"], Or[F["in10"; "loa"];F["sw_flt_loa"]]); 

                    (["out11"; "loa"], Or[F["in11"; "loa"];F["sw_flt_loa"]]); 

                    (["out12"; "loa"], Or[F["in12"; "loa"];F["sw_flt_loa"]]); 

                    (["out13"; "loa"], Or[F["in13"; "loa"];F["sw_flt_loa"]]); 

                    (["out14"; "loa"], Or[F["in14"; "loa"];F["sw_flt_loa"]]); 

                    (["out15"; "loa"], Or[F["in15"; "loa"];F["sw_flt_loa"]]); 

                    (["out16m1"; "loa"], Or[F["in16"; "loa"];F["sw_flt_loa"]]); 

                    (["out17m1"; "loa"], Or[F["in17"; "loa"];F["sw_flt_loa"]]); 

                    (["out18m1"; "loa"], Or[F["in18"; "loa"];F["sw_flt_loa"]]); 

                    (["out19m1"; "loa"], Or[F["in19"; "loa"];F["sw_flt_loa"]]); 

                    (["out16m2"; "loa"], Or[F["in16"; "loa"];F["sw_flt_loa"]]); 

                    (["out17m2"; "loa"], Or[F["in17"; "loa"];F["sw_flt_loa"]]); 

                    (["out18m2"; "loa"], Or[F["in18"; "loa"];F["sw_flt_loa"]]); 

                    (["out19m2"; "loa"], Or[F["in19"; "loa"];F["sw_flt_loa"]]); 

                    ] 

  }; 



 

SOTERIA Contractor Report Page 93 
 

The model for Switch 3 is similar to the previous component model, but it only includes two input flows. 

Both inputs are multicast to different outputs. 

Figure 36 shows the component model used for Switch 3 (A and B). 

 
Figure 36. Switch 3 component model 

In addition to the components of the system, we determined we needed to create component models 

to represent the different failure conditions we were modeling. Like other examples we have done, 

these dummy components allow for us to calculate system level effects that are the combination of 

multiple outputs.  In this example, we needed to be able to model a condition where any 1 of 4 effectors 

failed to operate correctly. We also needed to model a condition where two effectors were required to 

fail to operate to cause the failure condition.  

Figure 37 shows the dummy component models used for connecting multiple effector outputs to 

support top-level failure condition determination. 

 
Figure 37. Top-level logic component models 

  {name          = "Switch3";   

    faults      = ["ued"; "loa"]; 

    input_flows  = ["in1"; "in2"]; 

    basic_events = ["sw_flt_ued"; "sw_flt_loa"; "crc32_flt"]; 

    event_info  = [(1.0e-6, 1.0); (1.0e-5, 1.0); (2.**(-32.), 1.0)]; 

    output_flows = ["out1m1"; "out1m2"; "out2m1"; "out2m2"];  

    formulas  = [(["out1m1"; "ued"],Or[F["in1"; "ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out1m2"; "ued"],Or[F["in1"; "ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out2m1"; "ued"],Or[F["in2"; "ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]); 

                    (["out2m2"; "ued"],Or[F["in2"; "ued"];And[F["sw_flt_ued"];F["crc32_flt"]]]);   

                    (["out1m1"; "loa"],Or[F["in1"; "loa"];F["sw_flt_loa"]]); 

              (["out1m2"; "loa"],Or[F["in1"; "loa"];F["sw_flt_loa"]]); 

              (["out2m1"; "loa"],Or[F["in2"; "loa"];F["sw_flt_loa"]]); 

              (["out2m2"; "loa"],Or[F["in2"; "loa"];F["sw_flt_loa"]]); 

              ] 

  }; 

  {name          = "And2"; (* A AND B - both need to fail *) 

    faults       = ["ued"; "loa"]; 

    input_flows  = ["a";"b"]; 

    basic_events = []; 

    event_info   = []; 

    output_flows = ["z"];  

    formulas     = [ (["z"; "ued"], And[F["a"; "ued"]; F["b"; "ued"]]); 

                     (["z"; "loa"], And[F["a"; "loa"]; F["b"; "loa"]])  

                    ] 

  }; 

  {name          = "Or4"; (* A OR B OR C OR D - Any 1 needs to fail *) 

    faults       = ["ued"; "loa"]; 

    input_flows  = ["a";"b";"c";"d"]; 

    basic_events = []; 

    event_info   = []; 

    output_flows = ["z"];  

    formulas     = [ (["z"; "ued"], Or[F["a"; "ued"]; F["b"; "ued"];F["c"; "ued"];F["d"; "ued"]]); 

                     (["z"; "loa"], Or[F["a"; "loa"]; F["b"; "loa"];F["c"; "loa"];F["d"; "loa"]]) 

                    ]  }; 



 

SOTERIA Contractor Report Page 94 
 

9.4.2.2 System Model 

The system modeling involved instantiating each component model. 

Figure 38 shows the component instantiations used in the system model. 

 
Figure 38. Component Instantiations 

The following figures show the connections required to support the system model. 

(*Sensors*) 

    makeInstance ~i:"SpoilerSenL" ~c:"Sen" ~l:[("sen_flt_ued", 5.0e-7)] (); 

    makeInstance ~i:"WOWSenL" ~c:"Sen" ~l:[("sen_flt_ued", 2.0e-7)] (); 

    makeInstance ~i:"GearDoorSenL" ~c:"Sen" ~l:[("sen_flt_ued", 6.0e-7)] (); 

    makeInstance ~i:"GearPosSenL" ~c:"Sen" ~l:[("sen_flt_ued", 6.0e-7)] (); 

    makeInstance ~i:"SpoilerSenR" ~c:"Sen" ~l:[("sen_flt_ued", 5.0e-7)] (); 

    makeInstance ~i:"WOWSenR" ~c:"Sen" ~l:[("sen_flt_ued", 2.0e-7)] (); 

    makeInstance ~i:"GearDoorSenR" ~c:"Sen" ~l:[("sen_flt_ued", 6.0e-7)] (); 

    makeInstance ~i:"GearPosSenR" ~c:"Sen" ~l:[("sen_flt_ued", 6.0e-7)] (); 

    makeInstance ~i:"GearLeverSen" ~c:"Sen" ~l:[("sen_flt_ued", 1.0e-6)] (); 

    makeInstance ~i:"AirspeedSen" ~c:"Sen" ~l:[("sen_flt_ued", 1.0e-6)] (); 

(*Effectors*) 

    makeInstance ~i:"SpoilerEffL" ~c:"Eff" ~l:[("eff_flt_ued", 5.0e-7)] (); 

    makeInstance ~i:"GearDoorEffL" ~c:"Eff" ~l:[("eff_flt_ued", 6.0e-7)] (); 

    makeInstance ~i:"GearPosEffL" ~c:"Eff" ~l:[("eff_flt_ued", 6.0e-7)] (); 

    makeInstance ~i:"SpoilerEffR" ~c:"Eff" ~l:[("eff_flt_ued", 5.0e-7)] (); 

    makeInstance ~i:"GearDoorEffR" ~c:"Eff" ~l:[("eff_flt_ued", 6.0e-7)] (); 

    makeInstance ~i:"GearPosEffR" ~c:"Eff" ~l:[("eff_flt_ued", 6.0e-7)] (); 

(*IMA Components*) 

    makeInstance "riu1" "RIU_i4o3" (); 

    makeInstance "riu2" "RIU_i4o3" (); 

    makeInstance "riu3" "RIU_i2o0" (); 

    makeInstance "sw1a" "Switch1" ();  

    makeInstance "sw1b" "Switch1" ();  

    makeInstance "sw2a" "Switch1" ();  

    makeInstance "sw2b" "Switch1" ();  

    makeInstance "sw3a" "Switch3" ();  

    makeInstance "sw3b" "Switch3" ();  

    makeInstance "gpm1" "GPM_Spoiler" ();  

    makeInstance "gpm2" "GPM_Gear" (); 

    makeInstance "gpm3" "GPM_Spoiler" (); 

    makeInstance "gpm4" "GPM_Gear" (); 

(*Define top-level failure conditions*) 

(*FC1 - Inability to deploy gear (loss of either) *) 

    makeInstance "FC1" "Or4" (); 

(*FC2 - Loss of Spoilers (loss of both) *) 

    makeInstance "FC2" "And2" (); 



 

SOTERIA Contractor Report Page 95 
 

 
Figure 39. Connections – RIU to Sensor/Effector 

(* Sensor to RIU *) 

    (("riu1", "rin1"), ("SpoilerSenL", "out")); 

    (("riu1", "rin2"), ("WOWSenL", "out")); 

    (("riu1", "rin3"), ("GearDoorSenL","out")); 

    (("riu1", "rin4"), ("GearPosSenL","out")); 

    (("riu2", "rin1"), ("SpoilerSenR", "out")); 

    (("riu2", "rin2"), ("WOWSenR", "out")); 

    (("riu2", "rin3"), ("GearDoorSenR","out")); 

    (("riu2", "rin4"), ("GearPosSenR","out")); 

    (("riu3", "rin1"), ("GearLeverSen","out")); 

    (("riu3", "rin2"), ("AirspeedSen","out")); 

(* RIU to Effector *) 

    (("SpoilerEffL","in"), ("riu1","out1")); 

    (("GearDoorEffL","in"), ("riu1","out2")); 

    (("GearPosEffL","in"), ("riu1","out3")); 

    (("SpoilerEffR","in"), ("riu2","out1")); 

    (("GearDoorEffR","in"), ("riu2","out2")); 

    (("GearPosEffR","in"), ("riu2","out3")); 



 

SOTERIA Contractor Report Page 96 
 

 
Figure 40. Connections – Switch-Switch Trunk Links 

(* A664 - Switch-Switch Trunk Links *) 

    (("sw1a", "in09"), ("sw2a", "out03")); 

    (("sw1a", "in10"), ("sw2a", "out05")); 

    (("sw1a", "in11"), ("sw2a", "out07")); 

    (("sw1a", "in12"), ("sw2a", "out20")); 

    (("sw1a", "in13"), ("sw2a", "out21")); 

    (("sw1a", "in14"), ("sw2a", "out22")); 

    (("sw1a", "in15"), ("sw2a", "out23")); 

 

    (("sw1b", "in09"), ("sw2b", "out03")); 

    (("sw1b", "in10"), ("sw2b", "out05")); 

    (("sw1b", "in11"), ("sw2b", "out07")); 

    (("sw1b", "in12"), ("sw2b", "out20")); 

    (("sw1b", "in13"), ("sw2b", "out21")); 

    (("sw1b", "in14"), ("sw2b", "out22")); 

    (("sw1b", "in15"), ("sw2b", "out23")); 

 

    (("sw2a", "in09"), ("sw1a", "out04")); 

    (("sw2a", "in10"), ("sw1a", "out06")); 

    (("sw2a", "in11"), ("sw1a", "out08")); 

    (("sw2a", "in12"), ("sw1a", "out20")); 

    (("sw2a", "in13"), ("sw1a", "out21")); 

    (("sw2a", "in14"), ("sw1a", "out22")); 

    (("sw2a", "in15"), ("sw1a", "out23")); 

 

    (("sw2b", "in09"), ("sw1b", "out04")); 

    (("sw2b", "in10"), ("sw1b", "out06")); 

    (("sw2b", "in11"), ("sw1b", "out08")); 

    (("sw2b", "in12"), ("sw1b", "out20")); 

    (("sw2b", "in13"), ("sw1b", "out21")); 

    (("sw2b", "in14"), ("sw1b", "out22")); 

    (("sw2b", "in15"), ("sw1b", "out23")); 

 

    (("sw1a", "in01"), ("sw3a", "out1")); 

    (("sw1a", "in02"), ("sw3a", "out3")); 

    (("sw1b", "in01"), ("sw3b", "out1")); 

    (("sw1b", "in02"), ("sw3b", "out3")); 

    (("sw2a", "in01"), ("sw3a", "out2")); 

    (("sw2a", "in02"), ("sw3a", "out4")); 

    (("sw2b", "in01"), ("sw3b", "out2")); 

    (("sw2b", "in02"), ("sw3b", "out4")); 



 

SOTERIA Contractor Report Page 97 
 

 
Figure 41. Connections – Switch-Input Links 

(* A664 - Switch 1A inputs *) 

    (("sw1a", "in03"), ("gpm1", "out1a")); 

    (("sw1a", "in04"), ("gpm1", "out2a")); 

    (("sw1a", "in05"), ("gpm2", "out1a")); 

    (("sw1a", "in06"), ("gpm2", "out2a")); 

    (("sw1a", "in07"), ("gpm2", "out3a")); 

    (("sw1a", "in08"), ("gpm2", "out4a")); 

    (("sw1a", "in16"), ("riu1", "outa1")); 

    (("sw1a", "in17"), ("riu1", "outa2")); 

    (("sw1a", "in18"), ("riu1", "outa3")); 

    (("sw1a", "in19"), ("riu1", "outa4")); 

(* A664 - Switch 1B inputs *) 

    (("sw1b", "in03"), ("gpm1", "out1b")); 

    (("sw1b", "in04"), ("gpm1", "out2b")); 

    (("sw1b", "in05"), ("gpm2", "out1b")); 

    (("sw1b", "in06"), ("gpm2", "out2b")); 

    (("sw1b", "in07"), ("gpm2", "out3b")); 

    (("sw1b", "in08"), ("gpm2", "out4b")); 

    (("sw1b", "in16"), ("riu1", "outb1")); 

    (("sw1b", "in17"), ("riu1", "outb2")); 

    (("sw1b", "in18"), ("riu1", "outb3")); 

    (("sw1b", "in19"), ("riu1", "outb4")); 

(* A664 - Switch 2A inputs *) 

    (("sw2a", "in03"), ("gpm3", "out1a")); 

    (("sw2a", "in04"), ("gpm3", "out2a")); 

    (("sw2a", "in05"), ("gpm4", "out1a")); 

    (("sw2a", "in06"), ("gpm4", "out2a")); 

    (("sw2a", "in07"), ("gpm4", "out3a")); 

    (("sw2a", "in08"), ("gpm4", "out4a")); 

    (("sw2a", "in16"), ("riu2", "outa1")); 

    (("sw2a", "in17"), ("riu2", "outa2")); 

    (("sw2a", "in18"), ("riu2", "outa3")); 

    (("sw2a", "in19"), ("riu2", "outa4")); 

(* A664 - Switch 2B inputs *) 

    (("sw2b", "in03"), ("gpm3", "out1b")); 

    (("sw2b", "in04"), ("gpm3", "out2b")); 

    (("sw2b", "in05"), ("gpm4", "out1b")); 

    (("sw2b", "in06"), ("gpm4", "out2b")); 

    (("sw2b", "in07"), ("gpm4", "out3b")); 

    (("sw2b", "in08"), ("gpm4", "out4b")); 

    (("sw2b", "in16"), ("riu2", "outb1")); 

    (("sw2b", "in17"), ("riu2", "outb2")); 

    (("sw2b", "in18"), ("riu2", "outb3")); 

    (("sw2b", "in19"), ("riu2", "outb4")); 

(* A664 - Switch 3A inputs *) 

    (("sw3a", "in1"), ("riu3", "outa1")); 

    (("sw3a", "in2"), ("riu3", "outa2")); 

(* A664 - Switch 3B inputs *) 

    (("sw3b", "in1"), ("riu3", "outb1")); 

    (("sw3b", "in2"), ("riu3", "outb2")); 



 

SOTERIA Contractor Report Page 98 
 

 
Figure 42. Connections – GPM-Input Links 

(* A664 - GPM1 inputs *) 

    (("gpm1", "gin1a"), ("sw1a", "out17")); 

    (("gpm1", "gin2a"), ("sw1a", "out13")); 

    (("gpm1", "gin3a"), ("sw1a", "out16")); 

    (("gpm1", "gin4a"), ("sw1a", "out12")); 

    (("gpm1", "gin5a"), ("sw1a", "out02")); 

    (("gpm1", "gin1b"), ("sw1b", "out17")); 

    (("gpm1", "gin2b"), ("sw1b", "out13")); 

    (("gpm1", "gin3b"), ("sw1b", "out16")); 

    (("gpm1", "gin4b"), ("sw1b", "out12")); 

    (("gpm1", "gin5b"), ("sw1b", "out02")); 

(* A664 - GPM2 inputs *) 

    (("gpm2", "gin1a"), ("sw1a", "out01")); 

    (("gpm2", "gin2a"), ("sw1a", "out18")); 

    (("gpm2", "gin3a"), ("sw1a", "out14")); 

    (("gpm2", "gin4a"), ("sw1a", "out19")); 

    (("gpm2", "gin5a"), ("sw1a", "out15")); 

    (("gpm2", "gin1b"), ("sw1b", "out01")); 

    (("gpm2", "gin2b"), ("sw1b", "out18")); 

    (("gpm2", "gin3b"), ("sw1b", "out14")); 

    (("gpm2", "gin4b"), ("sw1b", "out19")); 

    (("gpm2", "gin5b"), ("sw1b", "out15")); 

(* A664 - GPM3 inputs *) 

    (("gpm3", "gin1a"), ("sw2a", "out13")); 

    (("gpm3", "gin2a"), ("sw2a", "out17")); 

    (("gpm3", "gin3a"), ("sw2a", "out12")); 

    (("gpm3", "gin4a"), ("sw2a", "out16")); 

    (("gpm3", "gin5a"), ("sw2a", "out02")); 

    (("gpm3", "gin1b"), ("sw2b", "out13")); 

    (("gpm3", "gin2b"), ("sw2b", "out17")); 

    (("gpm3", "gin3b"), ("sw2b", "out12")); 

    (("gpm3", "gin4b"), ("sw2b", "out16")); 

    (("gpm3", "gin5b"), ("sw2b", "out02")); 

(* A664 - GPM4 inputs *) 

    (("gpm4", "gin1a"), ("sw2a", "out01")); 

    (("gpm4", "gin2a"), ("sw2a", "out14")); 

    (("gpm4", "gin3a"), ("sw2a", "out18")); 

    (("gpm4", "gin4a"), ("sw2a", "out15")); 

    (("gpm4", "gin5a"), ("sw2a", "out19")); 

    (("gpm4", "gin1b"), ("sw2b", "out01")); 

    (("gpm4", "gin2b"), ("sw2b", "out14")); 

    (("gpm4", "gin3b"), ("sw2b", "out18")); 

    (("gpm4", "gin4b"), ("sw2b", "out15")); 

    (("gpm4", "gin5b"), ("sw2b", "out19")); 



 

SOTERIA Contractor Report Page 99 
 

 
Figure 43. Connections – RIU-A664 Input Links 

The final connections are modeled to define the top-level failure conditions. Once these are in the 

model, we just needed to map the output “z” of the appropriate failure condition component to the top 

fault to get the results.  This shows how easy it is to model multiple failure conditions using the same 

exact system model. 

 
Figure 44. Connections – Define top-level failure conditions 

9.4.3 Model Results and Comparison 

We ran the model in our tool to generate the top-level probability result for each failure condition and 

the cut sets that contribute to the top fault.  The tool also generates some interesting graphic 

representations that we included here. In parallel, we built a fault tree for each failure condition using 

more traditional safety methods so we had some results to compare against what the tool generated. 

The details are provided in the following sections, but in summary the results out of our modeling tool 

were very good relative to the human generated fault trees. In the case of failure condition 2 we 

discovered an error in the human generated fault tree (one of the sensor inputs was not included) by 

(* A664 - RIU1 inputs *) 

    (("riu1", "ina1x"), ("sw1a", "out03")); 

    (("riu1", "ina1y"), ("sw1a", "out09")); 

    (("riu1", "ina2x"), ("sw1a", "out05")); 

    (("riu1", "ina2y"), ("sw1a", "out10")); 

    (("riu1", "ina3x"), ("sw1a", "out07")); 

    (("riu1", "ina3y"), ("sw1a", "out11")); 

    (("riu1", "inb1x"), ("sw1b", "out03")); 

    (("riu1", "inb1y"), ("sw1b", "out09")); 

    (("riu1", "inb2x"), ("sw1b", "out05")); 

    (("riu1", "inb2y"), ("sw1b", "out10")); 

    (("riu1", "inb3x"), ("sw1b", "out07")); 

    (("riu1", "inb3y"), ("sw1b", "out11")); 

(* A664 - RIU2 inputs *) 

    (("riu2", "ina1x"), ("sw2a", "out04")); 

    (("riu2", "ina1y"), ("sw2a", "out09")); 

    (("riu2", "ina2x"), ("sw2a", "out06")); 

    (("riu2", "ina2y"), ("sw2a", "out10")); 

    (("riu2", "ina3x"), ("sw2a", "out08")); 

    (("riu2", "ina3y"), ("sw2a", "out11")); 

    (("riu2", "inb1x"), ("sw2b", "out04")); 

    (("riu2", "inb1y"), ("sw2b", "out09")); 

    (("riu2", "inb2x"), ("sw2b", "out06")); 

    (("riu2", "inb2y"), ("sw2b", "out10")); 

    (("riu2", "inb3x"), ("sw2b", "out08")); 

    (("riu2", "inb3y"), ("sw2b", "out11")); 

(* FC1 - Inability to deploy gear (loss of either gear door or either gear) *) 

    (("FC1", "a"), ("GearDoorEffL", "out")); 

    (("FC1", "b"), ("GearDoorEffR", "out")); 

    (("FC1", "c"), ("GearPosEffL", "out")); 

    (("FC1", "d"), ("GearPosEffR", "out")); 

(* FC2 - Loss of Spoilers (loss of both) *) 

    (("FC2", "a"), ("SpoilerEffL", "out")); 

    (("FC2", "b"), ("SpoilerEffR", "out")) 



 

SOTERIA Contractor Report Page 100 
 

performing the comparison of the results.  In both cases, though the top-level results matched, the 

model generate more cut sets than the hand fault trees. This highlights the fact that the safety engineer 

is more likely to make assumptions during the fault tree development process to simplify the tree where 

they know there is negligible impact to the top-level result.  Since the model is looking at the actual data 

flows in the architecture, the resulting cut sets are more complete because the model doesn’t make 

these assumptions. 

Figure 45 is a visualization generated by the tool of the physical model. Figure 46 is a visualization 

generated by the tool of the individual connections within the model. This diagram isn’t very practical to 

read in detail, but it does give a visual appreciation for the complexity of this model. 

 

Figure 45. Visualization - physical model 



 

SOTERIA Contractor Report Page 101 
 

 

 

Figure 46. Visualization – connection model 

 



 

SOTERIA Contractor Report Page 102 
 

 

9.4.3.1 Failure Condition 1 – Loss of Landing Gear Deployment 

The hand generated fault tree generated the following cut sets: 

ID Event 1 Event 2 

1 Left Door Actuator 
 

2 Right Door Actuator 
 

3 Left Door Sensor 
 

4 Right Door Sensor 
 

5 L. Gear Switch Push-button 
 

6 Left L. Gear Actuator 
 

7 Right L. Gear Actuator 
 

8 Left L. Gear Sensor 
 

9 Right L. Gear Sensor 
 

10 RIU1 
 

11 RIU2 
 

12 RIU3 
 

13 GPM2  GPM4 

14 Switch1A  Switch1B 

15 Switch2A  Switch2B 

16 Switch3A  Switch3B 

 

The tool generated the following cut sets based on the model: 

ID Event 1 Event 2 Event 3 

1 ("GearDoorEffL","eff_flt_loa"),   

2 ("GearDoorEffR","eff_flt_loa"),   

3 ("GearDoorSenL","sen_flt_loa"),   

4 ("GearDoorSenR","sen_flt_loa"),   

5 ("GearLeverSen","sen_flt_loa"),   

6 ("GearPosEffL","eff_flt_loa"),   

7 ("GearPosEffR","eff_flt_loa"),   

8 ("GearPosSenL","sen_flt_loa"),   

9 ("GearPosSenR","sen_flt_loa"),   

10 ("riu1","riu_flt_loa"),   

11 ("riu2","riu_flt_loa"),   

12 ("riu3","riu_flt_loa"),   

13 ("gpm2","gpm_flt_loa"); ("gpm4","gpm_flt_loa")],  

14 ("sw1a","sw_flt_loa"); ("sw1b","sw_flt_loa")],  

15 ("sw2a","sw_flt_loa"); ("sw2b","sw_flt_loa")],  

16 ("sw3a","sw_flt_loa"); ("sw3b","sw_flt_loa")],  



 

SOTERIA Contractor Report Page 103 
 

17 ("gpm2","gpm_flt_loa"); ("sw1a","sw_flt_loa"); ("sw2b","sw_flt_loa")], 

18 ("gpm2","gpm_flt_loa"); ("sw1b","sw_flt_loa"); ("sw2a","sw_flt_loa")], 

19 ("gpm4","gpm_flt_loa"); ("sw1a","sw_flt_loa"); ("sw2b","sw_flt_loa")], 

20 ("gpm4","gpm_flt_loa"); ("sw1b","sw_flt_loa"); ("sw2a","sw_flt_loa")], 

21 ("gpm2","gpm_flt_loa"); ("sw2a","sw_flt_loa"); ("sw3b","sw_flt_loa")], 

22 ("gpm2","gpm_flt_loa"); ("sw2b","sw_flt_loa"); ("sw3a","sw_flt_loa")], 

23 ("gpm4","gpm_flt_loa"); ("sw1a","sw_flt_loa"); ("sw3b","sw_flt_loa")], 

24 ("gpm4","gpm_flt_loa"); ("sw1b","sw_flt_loa"); ("sw3a","sw_flt_loa")], 

25 ("sw1a","sw_flt_loa"); ("sw2a","sw_flt_loa"); ("sw3b","sw_flt_loa")], 

26 ("sw1a","sw_flt_loa"); ("sw2b","sw_flt_loa"); ("sw3a","sw_flt_loa")], 

27 ("sw1a","sw_flt_loa"); ("sw2b","sw_flt_loa"); ("sw3b","sw_flt_loa")], 

28 ("sw1b","sw_flt_loa"); ("sw2a","sw_flt_loa"); ("sw3a","sw_flt_loa")], 

29 ("sw1b","sw_flt_loa"); ("sw2a","sw_flt_loa"); ("sw3b","sw_flt_loa")], 

30 ("sw1b","sw_flt_loa"); ("sw2b","sw_flt_loa"); ("sw3a","sw_flt_loa")], 

 

Cut sets 1-16 are the same between the model and the hand generated fault tree. The additional cut 

sets 17-30 identified by the model show that the model is more accurate than the hand generated fault 

tree. Both analyses resulted in the same top-probability of 1.2E-4 per flight hour (pfh), so these 

additional cut sets don’t impact the result within the accuracy that safety is concerned. 

9.4.3.2 Failure Condition 2 – Loss of Spoiler Deployment 

The hand generated fault tree generated the following cut sets: 

ID Event 1 Event 2 Event 3 Event 4 

1 Airspeed Sensor    

2 RIU3    

3 GPM1  GPM3   

4 RIU1  Right Spoiler Actuator   

5 Left Spoiler Actuator  RIU2   

6 Left Spoiler Actuator  Right Spoiler Actuator   

7 Left Spoiler Actuator  Right Spoiler Sensor   

8 Left Spoiler Sensor  RIU2   

9 Left Spoiler Sensor  Right Spoiler Actuator   

10 RIU1  RIU2   

11 RIU1  Right Spoiler Sensor   

12 RIU1  Right WOW Sensor   

13 RIU2  Left WOW Sensor   

14 Switch3A  Switch3B   

15 Left WOW Sensor  Right WOW Sensor   

16 Left Spoiler Sensor  Right Spoiler Sensor   

17 Switch1A  GPM3  Switch1B  



 

SOTERIA Contractor Report Page 104 
 

18 GPM1  Switch2A  Switch2B  

19 RIU2  Switch1A  Switch1B  

20 RIU1  Switch2A  Switch2B  

21 Left Spoiler Sensor  Switch2A  Switch2B  

22 Left Spoiler Actuator  Switch2A  Switch2B  

23 Right Spoiler Actuator  Switch1A  Switch1B  

24 Right Spoiler Sensor  Switch1A  Switch1B  

25 Switch1A  Switch2A  Switch1B  Switch2B 

 

The tool generated a total of 73 cut sets which include 48 cut sets not identified by the hand fault tree. 

Of these 48, 8 are 3rd order cut sets and 40 are 4th order cut sets. Since the driving cut sets are first order 

cut sets, these additional cut sets have no mathematical impact on the top gate result. 

Both analyses resulted in the same top-probability of 2.0E-5 pfh, so these additional cut sets don’t 

impact the result within the accuracy that safety is concerned. 

The following tables includes the additional 3rd order cut sets based on the model: 

ID Event 1 Event 2 Event 3 

1 ("WOWSenL", "sen_flt_loa") ("sw2a", "sw_flt_loa") ("sw2b", "sw_flt_loa")] 

2 ("WOWSenR", "sen_flt_loa") ("sw1a", "sw_flt_loa") ("sw1b", "sw_flt_loa")] 

3 ("gpm1", "gpm_flt_loa") ("sw2a", "sw_flt_loa") ("sw3b", "sw_flt_loa")] 

4 ("gpm1", "gpm_flt_loa") ("sw2b", "sw_flt_loa") ("sw3a", "sw_flt_loa")] 

5 ("gpm3", "gpm_flt_loa") ("sw1a", "sw_flt_loa") ("sw3b", "sw_flt_loa")] 

6 ("gpm3", "gpm_flt_loa") ("sw1b", "sw_flt_loa") ("sw3a", "sw_flt_loa")] 

7 ("sw1a", "sw_flt_loa") ("sw2a", "sw_flt_loa")  ("sw3b", "sw_flt_loa")] 

8 ("sw1b", "sw_flt_loa") ("sw2b", "sw_flt_loa")  ("sw3a", "sw_flt_loa")] 

 

The additional 4th order cut sets are omitted from the report. 

9.4.4 Wheel Brake Model and the Combination of Both Models 

The following failure conditions related to the braking function and the combined model were identified 

and analyzed: 

• FC3 – Total Loss of Wheel Braking 

• FC4 – Symmetric Partial Loss of Braking 

• FC5 – Asymmetric Partial Loss of Braking 

• FC6 – Partial Loss of Wheel Braking in combination with Loss of Spoilers 

The component models needed include generic types, such as sensors and effectors, and specific types 

such as a BSCU, a selector valve, a hydraulic source, and effectors with multiple inputs to use for the 

brake actuator, meter and shutoff valve.   



 

SOTERIA Contractor Report Page 105 
 

The instances and connections were modeled similar to other examples, refer to Section 9.4.2.2. The 

connections in the federated portion of this system were simpler to model than the connections in the 

IMA portion. Connection lines on the diagram (Figure 29) and the model connections map 1:1. 

The dummy logic gates needed to define the top faults are the following:  

• FC3 – Loss of all 4 brakes (A * B * C * D) 

• FC4 – Loss 2 brakes, but only one on each side ((A + B) * (C + D)) 

• FC5 – Loss of any single brake (A + B + C + D) 

• FC6 – FC2 in combination with FC4. (FC2 + FC4) 

where A, B, C, and D represent each of the 4 brake actuators. 

    (* FC6 - Partial Loss of Braking in combination with Loss of Spoilers Mapping*) 

    (("FC6", "a"), ("FC4", "z")); 

    (("FC6", "b"), ("FC2", "z")) 

 

9.4.4.1 Results 

Failure condition 3 initially created a stack overflow performance issue with our SOTERIA tool, which we 

were able to resolve. This was likely caused by the logic equation getting very large with the 4-input AND 

gate at the top. The probability obtained for failure condition 3 is 1.2E-4phf. There were 30 cut sets 

identified (1st order – 12, 2nd order – 4, 3rd order 14). The following are the top cutsets: 

ID Event 1 Event 2 Probability 

1 GearDoorEffL--eff_flt_loa  1.00E-05 

2 GearDoorEffR--eff_flt_loa  1.00E-05 

3 GearDoorSenL--sen_flt_loa  1.00E-05 

4 GearDoorSenR--sen_flt_loa  1.00E-05 

5 GearLeverSen--sen_flt_loa  1.00E-05 

6 GearPosEffL--eff_flt_loa  1.00E-05 

7 GearPosEffR--eff_flt_loa  1.00E-05 

8 GearPosSenL--sen_flt_loa  1.00E-05 

9 GearPosSenR--sen_flt_loa  1.00E-05 

10 riu1--riu_flt_loa  1.00E-05 

11 riu2--riu_flt_loa  1.00E-05 

12 riu3--riu_flt_loa  1.00E-05 

 

The probability obtained for failure condition 4 is 1.4E-9 pfh. There were 485 cut sets identified (1st 

order – 1; 2nd order – 4; 3rd order 224; higher order – 256). The following are the top cut sets: 

ID Event 1 Event 2 Probability 

1 SelectorValve--flt_loa  1.00E-09 

2 LInWBAct--eff_flt_loa RInWBAct--eff_flt_loa 1.00E-10 



 

SOTERIA Contractor Report Page 106 
 

3 LInWBAct--eff_flt_loa ROutWBAct--eff_flt_loa 1.00E-10 

4 LOutWBAct--eff_flt_loa RInWBAct--eff_flt_loa 1.00E-10 

5 LOutWBAct--eff_flt_loa ROutWBAct--eff_flt_loa 1.00E-10 

 

The probability obtained for failure condition 5 is 4.0E-5 pfh. There were 107 cut sets identified (1st 

order – 5; 2nd order – 72; 3rd order 28; higher order – 2) The following are the top cut sets: 

ID Event 1 Event 2 Probability 

1 LInWBAct--eff_flt_loa  1.00E-05 

2 LOutWBAct--eff_flt_loa  1.00E-05 

3 RInWBAct--eff_flt_loa  1.00E-05 

4 ROutWBAct--eff_flt_loa  1.00E-05 

5 SelectorValve--flt_loa  1.00E-09 

 

It can be noted that the driving cut sets are first order cut sets, second order cut sets can have some 

contribution but in these examples, additional cut sets after the first 5 have no mathematical impact on 

the top gate result. 

The probability obtained for failure condition 6 is 2.0E-5 pfh. There were 558 cut sets identified (1st 

order – 3; 2nd order – 18; 3rd order 259; higher order – 289). The contribution from FMC2 was 2.05e-5 

and the contribution from FMC4 was 1.4e-9. We noted that the activity to combine two existing models 

was rather quick, it took about 30 minutes. This shows the flexibility of the tool and effectiveness at 

allowing combination of existing models.  

All the results were validated by cut set review.  

9.4.5 Discussion 

The modeling of the Wheel Brake and Landing Gear System led to the question of how we account for 

applications with different computing logic.  In this example, the applications were physically located on 

different GPMs, but we identified some new considerations that would allow modeling different 

applications on the same GPM. We determined there are three options for modeling Applications: 

o Option 1 (currently used for this example) – Develop a unique GPM model for each 
application. 
• Disadvantage is that we can’t easily move applications from GPM to GPM 

o Option 2 – Develop a generic GPM model to capture GPM faults and have downstream 
models for the applications that model the logic. 
• This is more complex to model and still needs to handle the I/O routing to the GPM to 

move with the application 
o Option 3 - Develop a method of recognizing repeated events across different instantiations 

within the tool. 
• Each application could model the GPM failures, but the tool would be able to 

recognize repeated GPM failures 



 

SOTERIA Contractor Report Page 107 
 

• Effectively each Application is modeled as a separate GPM even though they could be 
on the same physical hardware. 

• This method requires changes to the tool. 
 

While building the GPM fault models, we found that we needed to be specific about the states of 

different data items to ensure that they fit within the LOA and UED flows that are currently allowed in 

the tool. One example is the states for a discrete signal.  If a discrete can be High or Low, we shouldn’t 

need to worry about how those states feed LOA or UED at the system level. Rather, we should only need 

to consider the state based on the logic in one of the elements included in the model.  Future tool 

changes to allow mixing UED and LOA could also be used to allow new states to allow certain data items. 

Another example of mixing UED and LOA is discussed in section 9.5.   

When developing the network connections for the model, we noticed that this was a very pain-staking 

task, but it seems like a good candidate to provide a method to generate these connection definitions 

based on existing system development tools.  This is outside the scope of the current SOTERIA project, 

but it does highlight an area for future work that would help streamline the development of models. 

When running the model for failure condition 2, we identified a performance issue with the cut set 

generation algorithm.  The logic for this specific failure condition led us to make changes to the tool to 

more efficiently determine the cut sets. 

9.5 Models with Fault Dependencies  
We introduce another interesting example where the top-level 

availability (LOA) is dependent on both LOA and UED (integrity) basic 

events. We kept the example simple so we can focus on the 

capability of the tool to use intermediate variables. We considered 

the impact of sensor UED on loss of ability to vote.  

Here is a description of the data flows: Two sensors are fed into 

separate remote interface units (RIUs). Data from each sensor is 

routed to the network channel A and B via the RIU. Once the data 

has traversed the network to the GPM, redundancy management is 

used to pass a single copy of each sensor’s data to the voting logic in 

the GPM. In this example, the GPM compares (by voting) the 2 

sensor values and checks their reading for equality. Loss of integrity 

(or undetected erroneous data) occurs when the data is equal, but 

erroneous. In other words, both sensors’ values are corrupted in a 

way that the comparison does not detect the erroneous data.  Loss 

of availability occurs when both copies of at least one sensor 

propagate LOA and, since the values are voted, when either one of 

the sensor values is erroneous. 

 

Figure 47 shows the architecture. The GPM has 4 inputs:  Figure 47 Functional architecture 



 

SOTERIA Contractor Report Page 108 
 

• gin1 is from Sensor1 → RIU1 → SwitchA → GPM 

• gin2 is from Sensor2 → RIU2 → SwitchA → GPM 

• gin3 is from Sensor1 → RIU1 → SwitchB → GPM 

• gin4 is from Sensor1 → RIU2 → SwitchB → GPM 

 

In the GPM, the propagation logic of LOA refers to UED logic. Here is the component library. 

 

 
The redundancy management selects a Sensor1 reading from either gin1 or gin3 and a Sensor2 reading 

from either gin2 or gin4. The voting logic checks the equality of the readings. UED is then when the GPM 



 

SOTERIA Contractor Report Page 109 
 

has a UED fault, or when data is equal but erroneous. LOA is then when the GPM has a LOA fault, or 

when both copies of at least one sensor propagate LOA or there is a UED fault. 

10 Architecture Synthesis 
The goal of the SOTERIA program is to advance the techniques and tools available for safety analysis. In 

addition to automating the generation of fault analysis from models, another powerful concept is to 

automate the generation of an architecture knowing what the safety requirements are. In this way, a 

computer is used to synthesize safety-informed architectures. This also provides the ability to do rapid 

design space exploration for trade-off analysis, especially important when there are competing safety 

objectives like integrity (UED) and availability (LOA). 

10.1 Challenge Architectures 
To ground our work, we developed two challenge problems that capture real word issues when trying to 

synthesize an architecture to satisfy different safety requirements.  These examples are designed to 

exercise the tool in the following ways: 

1. Support sufficient user input to define the function being performed (e.g. without any additional 

redundancy considerations, how are the inputs used to perform the specified function?) 

2. Apply redundancy at multiple stages in the data flow 

3. Where redundancy is applied, capture the functional operation of the redundancy management 

in a way that will support the development and provide the correct failure model 

4. Support different types of data flows based on interface types 

5. Support dataflows that revisit the same physical equipment 

6. Handle aspects of the system that cannot be changed during synthesis 

If the synthesis tool works for these simple examples and supports the capabilities listed above, the 

same tool should be able to support much more complex architecture situations. 

The first architecture, shown in Figure 48, is an IMA based Navigation System architecture where two 

different sensors, both with different interface types, are used as inputs to determining the position of 

the aircraft.  The base architecture is defined such that both sensor input types are required to perform 

the function (e.g. Loss of function if either sensor type is missing, Undetected Erroneous function if 

either sensor type is erroneous).  In this architecture, redundancy can be added for any block, but the 

GPM fault formulas (along with the functional operation of the software on the GPM) need to be 

modified to handle the redundancy management.  For example, if a second Air Data Computer is added, 

the GPM logic needs to either vote the redundant sources or source select between them depending on 

which safety measure is trying to be improved with the redundancy (integrity or availability). 



 

SOTERIA Contractor Report Page 110 
 

Air Data 

Computer 

(ADC)

A664 Switch
GPM

(FM App)

-Loss of Position (all sources) (HAZ) <1E-7pfh

-UED Position (single source) (HAZ) <1E-7pfh

LOA = 3E-5

UED = 2E-10

LOA = 2E-5

UED = 2E-8

LOA = 1E-5

UED = 1E-6

Data 

Conversion 

Module (DCM)

Inertial Ref 

Unit
A664A429

A664

A664

LOA = 1E-5

UED = 1E-6

LOA = 1E-5

UED = 1E-6

Position requires both IRU and ADC 

data to determine position, but not 

voted (Loss of either = LOA, Either 

UE = UED)

Redundancy 

option

Redundancy 

option

Redundancy 

option

Redundancy 

option

-Assume Network 

End-to-End CRC

-Redundancy option 

(network channels)

 

Figure 48. Challenge Problem #1 – Navigation Position 

The second architecture, shown in Figure 49, is an IMA based Display System architecture where data 

flows from a sensor (Air Data Computer), into a GPM for processing, and then display commands are 

sent to the Displays.  In this example, the A664 network switch is used twice in the data flow.  

Redundancy can be added for everything except the Displays.  In this example, the addition of 

redundancy could affect the fault equations for the GPMs (handling redundant sensors) as well as the 

Displays (handling redundant Display commands). 

Air Data 

Computer 

(ADC)

A664 Switch
GPM

(Disp App)

Display - Left

Display - 

Right

A664 A664

A664

A664

1

2

3

3

-Loss of Both Displays (HAZ) <1E-7pfh

-UED on Both Displays (CAT) <1E-9pfh

LOA = 3E-5

UED = 2E-10

LOA = 2E-5

UED = 5E-8

LOA = 2E-5

UED = 5E-8

LOA = 2E-5

UED = 5E-8

LOA = 1E-5

UED = 1E-6

-Dataflow shown in numbered black lines.

-Assume Application takes Airspeed data, 

performs any voting/source selection, and 

generates display commands

Redundancy 

option Redundancy 

option

No option to 

change

-Assume End to End 

CRC

-Redundancy option 

(network channels)

 

Figure 49. Challenge Problem #2 – Display of Airspeed 



 

SOTERIA Contractor Report Page 111 
 

 

10.2 Inputs from User and Roles 
To perform architecture synthesis, we defined several inputs to SOTERIA based on observations from 

the challenge problems. The challenge problems contain a wealth of information that are expressed 

explicitly and implicitly. We determined that the following inputs were required: 

• Library of parametrized components: 

Each challenge problem is made up of a list of components. More accurately, they can be 

thought of as classes of components. Therefore, we expand our idea of a component library 

into a library of parameterized components. For each component class, we developed a 

function with a well-defined, well-documented collection of parameters that can be used to 

create a component in the component class. Practically, what this means is that for each 

parameterized component, there will be a function that, given the appropriate set of 

parameter values, generates a component. We call the parameterized components Big-C 

functions, and the generated component little-c. 

• Component to component connection compatibility definition: 

To build an architecture, the tool needs to understand what components can and cannot be 

connected together. If two classes of components, A and B, are compatible, then they can 

be connected to one another. We model the constraints under which instances of A and B 

can be connected. This includes interface type compatibility (e.g. ARINC 664 vs ARINC 429). 

We also observed that there could be connection compatibility constraints that are either 

project agnostic, tied to the component library, or project specific that are independent 

from the library. 

• Definition of available, “must use”, and replicate-able components 

The user must be able to specify a white list of available components to use in the 

architecture. As part of this definition it may require that a subset of a class of component 

be available based on the parameters discussed above. For example, the user may specify 

that an architecture is allowed to use component A with parameter x set to less than 3. 

There may also be specific components that must be used for different reasons. For 

example, the Navigation Position example requires both and IRU and an ADC to calculate 

position. In addition, the tool needs information about what components can and cannot be 

replicated when trying to improve the probabilities of the failure conditions. 

• Failure conditions (Undesired events) and associated probability targets 

To determine if the safety objectives can be met by a given architecture, the failure 

conditions and target probabilities must be defined. We model the failure condition 

definition in the context of the components that directly drive the event (e.g. loss of display 



 

SOTERIA Contractor Report Page 112 
 

would need to tie to the output of a display component model).  Also, there may need to be 

failure condition logic modeled in the event of a failure condition relying on the output of 

multiple components (e.g. loss of all primary displays would need to AND the outputs of all 

available primary display components). 

We identified two distinguishing roles with separate responsibilities: the library owner and the end-user. 

The library owner defines a library of parameterized components. The library can be company-wide, 

project-specific, or product-specific. The library is reusable; the Big-C functions are reusable. Its 

definition is independent of the architecture synthesis task. The library owner is also responsible for 

defining compatibility constraints for the parameterized components that are project-agnostic. This 

person could be a safety engineer. The library owner needs to be a super-user of the tool, because 

writing Big-C functions requires familiarity with OCaml. 

The end-user is the consumer of the library and the Big-C functions. This person provides the inputs to 

the tool such as the desired probability targets, the usable components including the list of parameters 

that defines the exploration space, and the list of connection compatibility. This person is a safety 

engineer or a systems engineer familiar with SOTERIA modeling construct. 

10.2.1 Big-C functions 

We describe the Big-C functions by way of the Navigation Position example in Figure 48. Here’s a list of 

the Big-C functions needed for this problem.  

xirugen and xadcgen: These two functions generate the class of inertial reference units (IRU) and 

air data computer (ADC) little-c components, respectively. They have no inputs and one output. Their 

parameters are the user assigned component names (cn), a list of basic events and event info. See the 

file navigation_position.ml in the SOTERIA code repository, under examples. 

Here are example outputs from calling the Big-C functions xirugen and xadcgen. 

# 

# xirugen "IRU1" 

  [("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))] [[]];; 

- : xcomponent = 

{name = "IRU1"; faults = ["ued"; "loa"]; input_flows = []; input_metad = []; 

 basic_events = ["uedflt"; "loaflt"]; 

 event_info = [(1e-06, 1.); (1e-05, 1.)]; output_flows = ["o1"]; 

 output_metad = []; 

 formulas = [(["o1"; "ued"], F ["uedflt"]); (["o1"; "loa"], F ["loaflt"])]; 

 use_with = []; generator = "xriugen"} 

# 

# xadcgen "ADC1" 

  [("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))] [[]];; 

- : xcomponent = 

{name = "ADC1"; faults = ["ued"; "loa"]; input_flows = []; input_metad = []; 

 basic_events = ["uedflt"; "loaflt"]; 

 event_info = [(1e-06, 1.); (1e-05, 1.)]; output_flows = ["o1"]; 

 output_metad = []; 

 formulas = [(["o1"; "ued"], F ["uedflt"]); (["o1"; "loa"], F ["loaflt"])]; 

 use_with = []; generator = "xadcgen"} 

# 

 



 

SOTERIA Contractor Report Page 113 
 

xdcmgen: This function generates the class of data conversion module (DCM) component with n 

inputs and n outputs. The inputs propagate errors straight thru to the outputs. See the file 

navigation_position.ml in the SOTERIA code repository, under examples. 

Here are examples of calling xdcmgen. 

# xdcmgen "DCM1" 

  [("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))] [["1"]];; 

 

- : xcomponent = 

{name = "DCM1"; faults = ["ued"; "loa"]; input_flows = ["i1"]; 

 input_metad = []; basic_events = ["uedflt"; "loaflt"]; 

 event_info = [(1e-06, 1.); (1e-05, 1.)]; output_flows = ["o1"]; 

 output_metad = []; 

 formulas = 

  [(["o1"; "ued"], Or [F ["i1"; "ued"]; F ["uedflt"]]); 

   (["o1"; "loa"], Or [F ["i1"; "loa"]; F ["loaflt"]])]; 

 use_with = []; generator = "xdcmgen"} 

# 

# xdcmgen "DCM2" 

  [("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))] [["2"]];; 

 

- : xcomponent = 

{name = "DCM2"; faults = ["ued"; "loa"]; input_flows = ["i1"; "i2"]; 

 input_metad = []; basic_events = ["uedflt"; "loaflt"]; 

 event_info = [(1e-06, 1.); (1e-05, 1.)]; output_flows = ["o1"; "o2"]; 

 output_metad = []; 

 formulas = 

  [(["o1"; "ued"], Or [F ["i1"; "ued"]; F ["uedflt"]]); 

   (["o1"; "loa"], Or [F ["i1"; "loa"]; F ["loaflt"]]); 

   (["o2"; "ued"], Or [F ["i2"; "ued"]; F ["uedflt"]]); 

   (["o2"; "loa"], Or [F ["i2"; "loa"]; F ["loaflt"]])]; 

 use_with = []; generator = "xdcmgen"} 

#  

# xdcmgen "DCM3" 

  [("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))] [["3"]];; 

 

- : xcomponent = 

{name = "DCM3"; faults = ["ued"; "loa"]; input_flows = ["i1"; "i2"; "i3"]; 

 input_metad = []; basic_events = ["uedflt"; "loaflt"]; 

 event_info = [(1e-06, 1.); (1e-05, 1.)]; output_flows = ["o1"; "o2"; "o3"]; 

 output_metad = []; 

 formulas = 

  [(["o1"; "ued"], Or [F ["i1"; "ued"]; F ["uedflt"]]); 

   (["o1"; "loa"], Or [F ["i1"; "loa"]; F ["loaflt"]]); 

   (["o2"; "ued"], Or [F ["i2"; "ued"]; F ["uedflt"]]); 

   (["o2"; "loa"], Or [F ["i2"; "loa"]; F ["loaflt"]]); 

   (["o3"; "ued"], Or [F ["i3"; "ued"]; F ["uedflt"]]); 

   (["o3"; "loa"], Or [F ["i3"; "loa"]; F ["loaflt"]])]; 

 use_with = []; generator = "xdcmgen"} 

# 

# xdcmgen "DCM12" 

  [("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))] [["12"]];;     

 

- : xcomponent = 

{name = "DCM12"; faults = ["ued"; "loa"]; 

 input_flows = 

  ["i01"; "i02"; "i03"; "i04"; "i05"; "i06"; "i07"; "i08"; "i09"; "i10"; 

   "i11"; "i12"]; 

 input_metad = []; basic_events = ["uedflt"; "loaflt"]; 

 event_info = [(1e-06, 1.); (1e-05, 1.)]; 

 output_flows = 

  ["o01"; "o02"; "o03"; "o04"; "o05"; "o06"; "o07"; "o08"; "o09"; "o10"; 

   "o11"; "o12"]; 

 output_metad = []; 

 formulas = 

  [(["o01"; "ued"], Or [F ["i01"; "ued"]; F ["uedflt"]]); 

   (["o01"; "loa"], Or [F ["i01"; "loa"]; F ["loaflt"]]); 



 

SOTERIA Contractor Report Page 114 
 

   (["o02"; "ued"], Or [F ["i02"; "ued"]; F ["uedflt"]]); 

   (["o02"; "loa"], Or [F ["i02"; "loa"]; F ["loaflt"]]); 

   (["o03"; "ued"], Or [F ["i03"; "ued"]; F ["uedflt"]]); 

   (["o03"; "loa"], Or [F ["i03"; "loa"]; F ["loaflt"]]); 

   (["o04"; "ued"], Or [F ["i04"; "ued"]; F ["uedflt"]]); 

   (["o04"; "loa"], Or [F ["i04"; "loa"]; F ["loaflt"]]); 

   (["o05"; "ued"], Or [F ["i05"; "ued"]; F ["uedflt"]]); 

   (["o05"; "loa"], Or [F ["i05"; "loa"]; F ["loaflt"]]); 

   (["o06"; "ued"], Or [F ["i06"; "ued"]; F ["uedflt"]]); 

   (["o06"; "loa"], Or [F ["i06"; "loa"]; F ["loaflt"]]); 

   (["o07"; "ued"], Or [F ["i07"; "ued"]; F ["uedflt"]]); 

   (["o07"; "loa"], Or [F ["i07"; "loa"]; F ["loaflt"]]); 

   (["o08"; "ued"], Or [F ["i08"; "ued"]; F ["uedflt"]]); 

   (["o08"; "loa"], Or [F ["i08"; "loa"]; F ["loaflt"]]); 

   (["o09"; "ued"], Or [F ["i09"; "ued"]; F ["uedflt"]]); 

   (["o09"; "loa"], Or [F ["i09"; "loa"]; F ["loaflt"]]); 

   (["o10"; ...], ...); ...]; 

 use_with = ...; generator = ...} 

# 

 

xswitchgen: This function generates the class of switch (SW) components. The parameters are [k1, …, 

kn], where there are n sources and for source i the replication factor is ki. This component has k1 + k2 + k3 + 

… + kn inputs and outputs. The inputs propagate errors straight thru to the outputs. See the file 

navigation_position.ml in the SOTERIA code repository, under examples. 

Here are examples of calling xswitchgen_crc and xswitchgen. 

# xswitchgen_crc "A664sw1" 

  [("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))]  

  [["2";"2"]];; 

  - : xcomponent = 

{name = "A664sw1"; faults = ["ued"; "loa"]; 

 input_flows = ["i1"; "i2"; "i3"; "i4"]; input_metad = []; 

 basic_events = ["uedflt"; "loaflt"; "crc32_flt"]; 

 event_info = [(1e-06, 1.); (1e-05, 1.); (2.32830643654e-10, 1.)]; 

 output_flows = ["o1"; "o2"; "o3"; "o4"]; output_metad = []; 

 formulas = 

  [(["o1"; "ued"], Or [F ["i1"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 

   (["o1"; "loa"], Or [F ["i1"; "loa"]; F ["loaflt"]]); 

   (["o2"; "ued"], Or [F ["i2"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 

   (["o2"; "loa"], Or [F ["i2"; "loa"]; F ["loaflt"]]); 

   (["o3"; "ued"], Or [F ["i3"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 

   (["o3"; "loa"], Or [F ["i3"; "loa"]; F ["loaflt"]]); 

   (["o4"; "ued"], Or [F ["i4"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 

   (["o4"; "loa"], Or [F ["i4"; "loa"]; F ["loaflt"]])]; 

 use_with = []; generator = "xswitchgen"} 

# 

# xswitchgen "A664sw2" 

  [("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))] 

  [["2"]];; 

  - : xcomponent = 

{name = "A664sw2"; faults = ["ued"; "loa"]; input_flows = ["i1"; "i2"]; 

 input_metad = []; basic_events = ["uedflt"; "loaflt"]; 

 event_info = [(1e-06, 1.); (1e-05, 1.)]; output_flows = ["o1"; "o2"]; 

 output_metad = []; 

 formulas = 

  [(["o1"; "ued"], Or [F ["i1"; "ued"]; F ["uedflt"; "ued"]]); 

   (["o1"; "loa"], Or [F ["i1"; "loa"]; F ["loaflt"; "loa"]]); 

   (["o2"; "ued"], Or [F ["i2"; "ued"]; F ["uedflt"; "ued"]]); 

   (["o2"; "loa"], Or [F ["i2"; "loa"]; F ["loaflt"; "loa"]])]; 

 use_with = []; generator = "xswitchgen"} 

# 

 

xfmagen: This Big-C function generates the class of flight management application (FMA) components 

and is the most complex of the Big-C generators. The parameters are: 



 

SOTERIA Contractor Report Page 115 
 

• [s1, …, sn]: source replication factor per input type 

• [k1, …, kn]: channel replication factor per input type 

• [sv1, …, svn]: indicates the voting per source (svi out of sn) 

• [cv1, …, svn]: (boolean) indicates whether channel voting happens per input type 

This component has s1 * k1 + … + sn * kn inputs. 

This function must be smart enough to come up with the right formulas given the parameters. The 

number of possible formulas can be quite large depending on the values of the parameters. Here are 

some small examples of combinations of source replicas, s, and channel replicas, k. 

 

s=[2;2], k=[2,2]  s=[1;2], k=2,2] 

Source Replica Channel  Source Replica Channel 

1 1 1  1 1 1 

1 1 2  1 1 2 

1 2 1  2 1 1 

1 2 2  2 1 2 

2 1 1  2 2 1 

2 1 2  2 2 2 

2 2 1     

2 2 2     

 

Here’s an example of how the parameters affect the formulas. For s=[1;2], k=[2;2], sv=[1;1], and cv=[true; 

false], the UED formula is determined through the following steps. Figure 50 shows the source and channel 

replication relative to an architecture. 

• Step 1 - Channel Replication: 

o Source 1 Ch Vote = True, Source 2 Ch Vote = False 

o Source 1 UED = 111 AND 112 

o Source 2x UED = 211 OR 212 

o Source 2y UED = 221 OR 222 

• Step 2 - Source Voting: 

o Source 1 Vote 1 of 1, Source 2 Vote 1 of 2 

o Source 1 UED = Source 1 UED 

o Source 2 UED = Source 2x UED OR Source 2y UED 

• Step 3 - Multiple Sources – All used 

o UED = Source 1 UED OR Source 2 UED 

• Final Formula: 

o UED = Or[ And[ 111; 112]; Or [ Or[211; 212]; Or[221; 222] ] ] 



 

SOTERIA Contractor Report Page 116 
 

 

Figure 50 Parameters that define source and channel replications 

In the Big-C implementation, we add to the UED formula the N_of construct to make it more generally 

applicable for voting. The final formula is then: 

UED = Or[ [N_of( 1, And[ 111; 112] )]; [N_of( 1, [Or [ Or[211; 212]; Or[221; 222] ] ]])] 

The LOA formula is then: 

LOA = Or[ [N_of( 1, Or[ 111; 112] )]; [N_of( 1, [And [ Or[211; 212]; And[221; 222] ] ]])] 

We’ve explained how this function comes up with the right formulas given the parameters. See the file 

navigation_position.ml in the SOTERIA code repository, under examples. 

Here is an example of calling xfmagen. 

# xfmagen "FMA1" [("uedflt",(2.0e-10,1.0)); ("loaflt",(3.0e-5,1.0))] 

[["1";"2"];["2";"2"];["1";"1"];["true";"false"]];; 

- : xcomponent = 

{name = "FMA1"; faults = ["ued"; "loa"]; 

 input_flows = ["i1"; "i2"; "i3"; "i4"; "i5"; "i6"]; 

 input_metad = 

  [("i1", ["1"; "1"; "1"]); ("i2", ["1"; "1"; "2"]); ("i3", ["2"; "1"; "1"]); 

   ("i4", ["2"; "1"; "2"]); ("i5", ["2"; "2"; "1"]); ("i6", ["2"; "2"; "2"])]; 

 basic_events = ["uedflt"; "loaflt"]; 

 event_info = [(2e-10, 1.); (3e-05, 1.)]; output_flows = ["o1"]; 

 output_metad = [("o1", ["0"; "0"; "1"])]; 

 formulas = 

  [(["o1"; "ued"], 

    Or 

     [F ["uedflt"]; N_of (1, [And [F ["i1"; "ued"]; F ["i2"; "ued"]]]); 

      N_of (1, 

       [Or [F ["i3"; "ued"]; F ["i4"; "ued"]]; 

        Or [F ["i5"; "ued"]; F ["i6"; "ued"]]])]); 

   (["o1"; "loa"], 

    Or 

     [F ["loaflt"]; N_of (1, [Or [F ["i1"; "loa"]; F ["i2"; "loa"]]]); 

      N_of (2, 

       [And [F ["i3"; "loa"]; F ["i4"; "loa"]]; 

        And [F ["i5"; "loa"]; F ["i6"; "loa"]]])])]; 

 use_with = [<fun>; <fun>]; generator = "xfmagen"} 

 

There are two more things to notice with the xfmagen function. There is an input meta-data field, 

input_metad, which maps the input flows to source-replica-channel. This function needs to generate 

this information because the formula depends on the source being connected to the intended input. 



 

SOTERIA Contractor Report Page 117 
 

Meta-data will also be used by the architecture synthesis to generate parameters, as will be described in 

a later section. Notice also the use_with field (in the case of the FMA, use_with = [xirugen; 

xadcgen]. This field is for the library owner to specify what type of source is meant to be used with this 

FMA. As the composer of Big-C functions, the library owner has specific ideas about what classes of 

sources are intended for a class of application. 

10.2.2 End-User Inputs 

This section describes in detail the format of the end-user inputs to SOTERIA for architecture synthesis. 

Target Probabilities: The end-user lists the targets using 2 fields: target and prob. The target is a string 

with the end-user defined name and prob is a tuple with the fault and the probability target. The end-

user can list as many probability targets in this list. The targets do not have to all be from the same top-

level component. Here’s what the end-user specifies for the Navigation Position example. 

 

let user_probTargets = 

[  

    {target = "FMA"; prob = ("ued", 1e-7)}; 

    {target = "FMA"; prob = ("loa", 1e-7)};  

];; 

 

 

Components to Use: The end-user specifies what components to use. In the same data structure, the 

end-user specifies the Big-C function that generates the component, the min and max number of the 

component to include in the architecture, a Boolean specifying whether the component must be used, 

and the list of basic events and their event info. Below is an example of the usable list for the Navigation 

Position Example. 

 

let usables = 

[  

("FMA", xfmagen, xdummygen_al, (1,2), true, [("uedflt",(2.0e-10,1.0)); ("loaflt",(3.0e-5,1.0))]); 

("A664sw", xswitchgen_crc, xdummygen_al, (1,2), true, [("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))]); 

("DCM", xdcmgen, xdcmgen_al, (1,3), true, [("uedflt",(1.0e-7,1.0)); ("loaflt",(1.0e-5,1.0))]); 

("ADC", xadcgen, xdummygen_al, (1,4), true, [("uedflt",(2.0e-8,1.0)); ("loaflt",(2.0e-5,1.0))]); 

("IRU", xirugen, xdummygen_al, (1,3), true, [("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))]); 

];; 

 

(Note that there is another function after the Big-C function, which we call a helper function to generate 

the argument list. This function is only needed to assist the DCM generator, an issue in the architecture 

synthesis algorithm which we will describe in section 10.3 on the algorithm approach. Because OCaml is 

strongly typed, we needed to add dummy functions to the other components even though they are just 

empty placeholders.) 

Connection Compatibility: The end-user provides connection compatibility information to express what 

components can connect to what. This is a list of 3 fields: connectables which is the end-user defined 

name of the component, connectable_inputs which is a list of end-user defined names in the form of a 

string, and connectable_outputs which is also a list of end-user defined name in the form of a string. In 

the Navigation Position example, the processing unit that hosts the FMA is compatible with an A664sw. 



 

SOTERIA Contractor Report Page 118 
 

An ADC must go through a network switch, A664sw, to reach the FMA. Similarly, an IRU must go through 

a DCM before it connects to A664sw to reach the FMA.  

let user_connectables =  

[ 

   {connectable = "FMA";  

    connectable_inputs = ["A664sw"];  

    connectable_outputs = [] }; 

   {connectable = "A664sw";  

    connectable_inputs = ["ADC"; "DCM"];  

    connectable_outputs = ["FMA"] }; 

   {connectable = "ADC";  

    connectable_inputs = [];  

    connectable_outputs = ["A664sw"] }; 

   {connectable = "DCM";  

    connectable_inputs = ["IRU"];  

    connectable_outputs = ["A664sw"] }; 

   {connectable = "IRU";  

    connectable_inputs = [];  

    connectable_outputs = ["DCM"] }; 

];;  

 

 

10.2.2.1 Validation Checks 

We developed some validation checks to assist the end-user in providing valid inputs to SOTERIA for 

architecture synthesis. Below are the usables and user_connectable inputs with errors injected to 

demonstrate the validation checks. 

let usables_withErrors =  

[  

("FMA", xfmagen, xfmagen_al, (1,1), true, 

[("uedflt",(2.0e-10,1.0)); ("loaflt",(3.0e-5,1.0))]); 

("A664sw", xswitchgen, xswitchgen_al, (1,2), true,  

[("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))]); 

("DCM", xdcmgen, xdcmgen_al, (0,3), true,  

[("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))]); (* B2 Failure 1 *) 

("ADC", xadcgen, xadcgen_al, (2,1), true,  

[("uedflt",(2.0e-8,1.0)); ("loaflt",(2.0e-5,1.0))]); (* B2 Failure 2 *) 

("IRU", xirugen, xirugen_al, (1,1), true,  

[("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))]); 

("DCM", xdcmgen, xdcmgen_al, (1,4), true,  

[("uedflt",(2.0e-6,1.0)); ("loaflt",(3.0e-5,1.0))]); (* B1 Failue 1*) 

("MissingMod", xdcmgen, xdcmgen_al, (1,3), true,  

[("uedflt",(1.0e-6,1.0)); ("loaflt",(1.0e-5,1.0))]); (* B3a Failure *) 

];; 

 

let user_connectables_withErrors =  

[  

 {connectable = "FMA";   

  connectable_inputs = ["A664sw"];  

  connectable_outputs = []}; 

 {connectable = "A664sw"; 

  connectable_inputs = ["A664sw2"; "ADC"; "DCM";]; (* B3c Failure *) 

  connectable_outputs = ["A664sw"; "FMA"]}; 

 {connectable = "ADC"; 

  connectable_inputs = []; 

  connectable_outputs = ["A664sw"]}; 

 {connectable = "ADC2"; (* B3b Failure *) 

  connectable_inputs = []; 

  connectable_outputs = ["A664sw"]}; 

 {connectable = "DCM"; 

  connectable_inputs = ["IRU"]; 

  connectable_outputs = ["A664sw"]}; 

 {connectable = "IRU"; 

  connectable_inputs = []; 



 

SOTERIA Contractor Report Page 119 
 

  connectable_outputs = ["DCM2"]}; (* B3d Failure *) 

];; 

 

10.2.2.1.1 Names in Usable are Unique 

The validation check, checkNamesUnique, checks that all the user defined names of the usable 

components are unique.  Here, the check correctly detects that the name “DCM” was used twice. 

 

10.2.2.1.2 Min >= 1 and Max > Min 

The validation check, checkNamesUnique, checks that in the usables the user specified number of 

minimal components is greater than 0 and less than the specified number of maximal. Here, the check 

correctly finds that “DCM” minimum is less than 1, and finds that the “ADC” max was less than the min. 

 

10.2.2.1.3 Connectable Names Match Usable Names 

The validation check, checkConnectionNames, ensures that the information in the connectables list and 

usable list are congruent with each other. Here, the validation check correctly finds several things: 

“MissingMod” usable is not specified in the connectables, “ADC2” is listed in connectables, but is not 

part of usable list, “A664sw2” is listed as a possible input to a component, but is not in part of the usable 

list, “DCM2” is listed as a possible output to a component, but is not part of the usable list. 

 

10.3 Architecture Synthesis Goals and Approach  
The goal of our architecture synthesis is to automatically generate architectures that meet the end-user 

specified target probabilities. When there is more than one satisfying solution, our tool will report them 

# checkNamesUnique usables_withErrros;; 

Check B1: Duplicate Name: DCM 

Check B1: Failed - see above 

- : unit = () 

# 

# checkNamesUnique usables_withErrors;; 

Check B2: Failed – (Min < 1)... DCM min = 0 

Check B2: Failed – (Max < Min)... ADC (2,1) 

Check B2: Complete 

- : ‘a list = [] 

# 

# checkConnectionNames usables_withErrors user_connectables_withErrors;; 

Check B3a: Failed – Usable “MissingMod” Not Found in Connectable 

Check B3b: Failed – Conn “ADC2” Not Found in Usables 

Check B3c: Failed – InputConn “A664sw2” Not Found in Usables 

Check B3d: Failed – OutputConn “DCM2” Not Found in Usables 

- : ‘a list = [] 

# 



 

SOTERIA Contractor Report Page 120 
 

all. If all the target probabilities are not met, then our tool will return those that met at least one of the 

probabilities. Our tool also saves the results in a format that the end-user can further analyze, alter, and 

explore. Our tool will only offer solutions that “fit” and are usable. In other words, if the end-user 

specifies a maximum of 3 IRUs, then we don’t want to synthesize architectures that violate this 

constraint even if it satisfies the probability targets. Our tool will also generate well-formed 

architectures with legal connections, as specified by the end-user.  

To achieve these synthesis goals, we developed an algorithm that takes the end-user inputs (the list of 

usables, connections, and probability targets), determines the list of possible architectures given the 

minimum and maximum number of usable components, iterates through the list of possible 

architectures, and performs a top-down approach to synthesize well-formed architectures with legal 

connections. The algorithm then performs the safety analysis and calculates the top-level probability.  

The algorithm explores the space given the parameter constraints defined by the end-user expressed in 

usables. The space can be quite large! We gave an example of usables in the previous section, where the 

FMA can be replicated 1-2 times, the A664sw’s can be replicated 1-2 times, DCMs 1-3 times, ADCs 1-4 

times, and IRUs 1-3 times. Figure 51 shows the function that generates the list of all possible 

architectures under these constraints for which there are as many as 1,920. This includes all the 

component redundancy options combined with voting options.   

 

Figure 51 All possible architectures given the end-user defined exploration space 

Now let us describe our approach to architecture synthesis and our implementation by way of the 

Navigation Position example from Figure 48. Let’s also take one set of parameters from the list of 

possible architectures: app redundancy n=["1"], source redundancy s=["2"; "1"], channel redundancy 

k=["1"; "2"], source voting options sv=["1"; "1"], and channel voting options cv=["true"; "false"]. 

The algorithm starts from the top and works backward from the failure condition. So, in this example, 

we start with the FMA since the target probabilities specified by the end-user requires an FMA. There is 

a lot of information from the top: types of sources, since the library-owner specified this information 



 

SOTERIA Contractor Report Page 121 
 

when he composed the Big-C function with the “use-with” field, and the number of sources and 

switches from the set of architecture parameters. The algorithm will first automatically generate the 

library, then automatically generate the model with all the right connections, then iterate through the 

target probability list. 

To automatically generate the library, the algorithm recursively generates the list of library components 

(little-c’s) by calling the Big-C functions. The philosophy is that the auto generated library will be 

inclusive of every instance that will be used in the model. This is a slightly different use of the modeling 

language in SOTERIA in that when a model is constructed manually the end-user can make multiple 

instantiations of the same library component. For the synthesis algorithm, however, the ability to reuse 

little-c is not that important. In fact, creating all the component instantiations in the automated library 

simplifies the automatic model creation process, which will be apparent when we describe how the 

model is automatically generated. The most important thing about auto generating the library is to 

make sure that all instances of little-c’s specified for a set of parameters are generated. We break the 

process of auto generating the library into 3 smaller steps: 1) generate the apps, 2) generate the 

sources, 3) generate the switches. We decompose the problem into these 3 steps because we know that 

an architecture is always made up of these 3 classes of components. 

We use lookup tables to translate the end-user inputs into something that the algorithm can reference. 

We create a hash table to translate the user defined component name, cn, to the name of the Big-C 

function that generates it (Figure 52). (We use hash tables, but other data structures can also be used.) 

Creating this map is necessary because cn is a name that the end-user is free to choose, the Big-C 

function name is something that the library owner is also free to choose. Similarly, we create a hash 

table to create a map between cn to connections (Figure 53). Since we already have a validation check 

to make sure that everything in user_connectables is defined in usables, the algorithm doesn’t have to 

catch the case when the hash table lookup returns an empty list. 

 

Figure 52 Inputs to the cn to Big-C function lookup table 

 

Figure 53 Inputs to the cn connections lookup table 

The algorithm needs to keep track of source and channel replication information when allocating 

parameters for the downstream components.  For example, FMA has 2 sources (ADC and IRU) whose 



 

SOTERIA Contractor Report Page 122 
 

parameters are pushed down to the Big-C functions that generate them. The encoding for these sources 

needs to be consistent throughout the entire model. We use meta-data to specify this information, 

which was introduced in the FMA Big-C function description. The library owner generates the input 

meta-data information that maps the input flows to a tuple of (source, replica, channel). The algorithm 

replaces the generic source numbers with end-user defined component names. The FMA input_metad 

gets translated in the following way. The “use_with” information in the FMA component specifies which 

sources are used and in which order. 

{name         = "FMA1";  

 faults       = ["ued"; "loa"];  

 input_flows  = ["i1"; "i2"; "i3"; "i4"]; 

 input_metad  = [("i1",["1";"1";"1"]); ("i2",["1";"2";"1"]); ("i3",["2";"1";"1"]); ("i4",["2";"1";"2"])]; 

 basic_events = ["uedflt"; "loaflt"]; 

 event_info   = [(2e-10, 1.); (3e-05, 1.)]; output_flows = ["o1"]; 

 output_metad = [("o1", ["0"; "0"; "1"])]; 

 formulas     = [(["o1"; "ued"], Or [F ["uedflt"]; N_of (1, [And [F ["i1"; "ued"]]; And [F ["i2"; "ued"]]]);  

                                  N_of (1, [Or [F ["i3"; "ued"]]; [F ["i4"; "ued"]]])]); 

(["o1"; "loa"], Or[F ["loaflt"]; N_of (2, [Or [F ["i1"; "loa"]]; Or [F ["i2"; "loa"]]]);  

                                 N_of (1, [And [F ["i3"; "loa"]]; [F ["i4"; "loa"]]])])]; 

 use_with     = [<fun>; <fun>]; 

 generator    = "xfmagen"} 

 

{name         = "FMA1";  

 faults       = ["ued"; "loa"];  

 input_flows  = ["i1"; "i2"; "i3"; "i4"]; 

 input_metad  = [("i1",["IRU";"1";"1"]); ("i2",["IRU";"2";"1"]);  

                 ("i3",["ADC";"1";"1"]); ("i4",["ADC";"1";"2"])]; 

 basic_events = ["uedflt"; "loaflt"]; 

 event_info   = [(2e-10, 1.); (3e-05, 1.)]; output_flows = ["o1"]; 

 output_metad = [("o1", ["0"; "0"; "1"])]; 

 formulas     = [(["o1"; "ued"], Or [F ["uedflt"]; N_of (1, [And [F ["i1"; "ued"]]; And [F ["i2"; "ued"]]]);  

                                  N_of (1, [Or [F ["i3"; "ued"]]; [F ["i4"; "ued"]]])]); 

(["o1"; "loa"], Or[F ["loaflt"]; N_of (2, [Or [F ["i1"; "loa"]]; Or [F ["i2"; "loa"]]]);  

                                 N_of (1, [And [F ["i3"; "loa"]]; [F ["i4"; "loa"]]])])]; 

 use_with     = [<fun>; <fun>]; 

 generator    = "xfmagen"} 

 

The algorithm then uses the meta-data list from the app as parameters and recursively goes through the 

list to generate the sources. Notice that the meta-data list is of length 4, but there are only 3 sources: 

IRU1, IRU2, and ADC1. The algorithm is smart enough to figure out that there are only 3 sources, and so 

only generates 2 instances of IRU and 1 instance of ADC. The Big-C function for the sources generates a 

blank output meta-data list. The synthesis algorithm fills in the list with relevant information. Notice that 

the source meta-data information does not have channel information. 

{name = "IRU1"; faults = ["ued"; "loa"]; input_flows = []; input_metad = [];  

 basic_events = ["uedflt"; "loaflt"]; event_info = [(1e-06, 1.); (1e-05, 1.)];  

 output_flows = ["o1"]; output_metad = [("o1", ["IRU"; "1"])]; 

 formulas = [(["o1"; "ued"], F ["uedflt"]); (["o1"; "loa"], F ["loaflt"])]; 

 use_with = []; generator = "xriugen"}; 

{name = "IRU2"; faults = ["ued"; "loa"]; input_flows = []; input_metad = [];  

 basic_events = ["uedflt"; "loaflt"]; event_info = [(1e-06, 1.); (1e-05, 1.)];  

 output_flows = ["o1"]; output_metad = [("o1", ["IRU"; "2"])]; 

 formulas = [(["o1"; "ued"], F ["uedflt"]); (["o1"; "loa"], F ["loaflt"])]; 

 use_with = []; generator = "xriugen"}; 

{name = "ADC1"; faults = ["ued"; "loa"]; input_flows = []; input_metad = []; 

 basic_events = ["uedflt"; "loaflt"]; event_info = [(2e-08, 1.); (2e-05, 1.)];  

 output_flows = ["o1"]; output_metad = [("o1", ["ADC"; "1"])]; 

 formulas = [(["o1"; "ued"], F ["uedflt"]); (["o1"; "loa"], F ["loaflt"])];  

 use_with = []; generator = "xadcgen"}; 

The algorithm uses the meta-data list from the app as parameters to generate the switches as well. It 

parses the meta-data to figure out the network replication required for each source.  

[xirugen; xadcgen] 



 

SOTERIA Contractor Report Page 123 
 

Switch 1 List = [("i1", ["IRU"; "1"; "1"]); ("i2", ["IRU"; "2"; "1"]); ("i3", ["ADC"; "1"; "1"])]; 

Switch 2 List = [("i4", ["ADC"; "1"; “2"])]; 

It uses the connectables to find what connects to the app and gets the end-user defined cn names for 

the switches. The Big-C function for the switches generates a blank input and output meta-data lists. The 

synthesis algorithm fills in the lists with relevant information about the sources. 

{name = "A664sw2"; faults = ["ued"; "loa"]; input_flows = ["i1"]; 
 input_metad = [("i1", ["ADC"; "1"; "2"])]; 
 basic_events = ["uedflt"; "loaflt"; "crc32_flt"]; 
 event_info = [(1e-06, 1.); (1e-05, 1.); (2.32830643654e-10, 1.)]; 
 output_flows = ["o1"]; output_metad = [("o1", ["ADC"; "1"; "2"])]; 
 formulas = [(["o1"; "ued"], Or [F ["i1"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 
             (["o1"; "loa"], Or [F ["i1"; "loa"]; F ["loaflt"]])]; 
 use_with = []; generator = "xswitchgen"} 
 

{name = "A664sw1"; faults = ["ued"; "loa"]; input_flows = ["i1"; "i2"; "i3"]; 
 input_metad = 
  [("i1", ["IRU"; "1"; "1"]); ("i2", ["IRU"; "2"; "1"]); ("i3", ["ADC"; "1"; "1"])]; 
 basic_events = ["uedflt"; "loaflt"; "crc32_flt"]; 
 event_info = [(1e-06, 1.); (1e-05, 1.); (2.32830643654e-10, 1.)]; 
 output_flows = ["o1"; "o2"; "o3"]; 
 output_metad =  [("o1", ["IRU"; "1"; "1"]); ("o2", ["IRU"; "2"; "1"]); 
                  ("o3", ["ADC"; "1"; "1"])]; 
 formulas = [(["o1"; "ued"], Or [F ["i1"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 
             (["o1"; "loa"], Or [F ["i1"; "loa"]; F ["loaflt"]]); 
             (["o2"; "ued"], Or [F ["i2"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 
             (["o2"; "loa"], Or [F ["i2"; "loa"]; F ["loaflt"]]); 
             (["o3"; "ued"], Or [F ["i3"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 
             (["o3"; "loa"], Or [F ["i3"; "loa"]; F ["loaflt"]])]; 
 use_with = []; generator = "xswitchgen"} 

 

The auto generated library up to this point is shown below. 

# let auto_lib = generate_autoLibrary [] subarchL (List.nth_exn archParamList (i-1)) myhf myhc;; 

val auto_lib : xcomponent Core.Std.List.t = 

[{name = "FMA1"; faults = ["ued"; "loa"]; 
  input_flows = ["i1"; "i2"; "i3"; "i4"]; 
  input_metad = 
   [("i1", ["IRU"; "1"; "1"]); ("i2", ["IRU"; "2"; "1"]); 
    ("i3", ["ADC"; "1"; "1"]); ("i4", ["ADC"; "1"; "2"])]; 
  basic_events = ["uedflt"; "loaflt"]; 
  event_info = [(2e-10, 1.); (3e-05, 1.)]; output_flows = ["o1"]; 
  output_metad = [("o1", ["FMA"; "1"])]; 
  formulas = 
   [(["o1"; "ued"], 
     Or 
      [F ["uedflt"]; 
       N_of (1, [And [F ["i1"; "ued"]]; And [F ["i2"; "ued"]]]); 
       N_of (1, [Or [F ["i3"; "ued"]; F ["i4"; "ued"]]])]); 
    (["o1"; "loa"], 
     Or 
      [F ["loaflt"]; N_of (2, [Or [F ["i1"; "loa"]]; Or [F ["i2"; "loa"]]]); 
       N_of (1, [And [F ["i3"; "loa"]; F ["i4"; "loa"]]])])]; 
  use_with = [<fun>; <fun>]; generator = "xfmagen"}; 
 {name = "IRU1"; faults = ["ued"; "loa"]; input_flows = []; input_metad = []; 
  basic_events = ["uedflt"; "loaflt"]; 
  event_info = [(1e-06, 1.); (1e-05, 1.)]; output_flows = ["o1"]; 
  output_metad = [("o1", ["IRU"; "1"])]; 
  formulas = [(["o1"; "ued"], F ["uedflt"]); (["o1"; "loa"], F ["loaflt"])]; 
  use_with = []; generator = "xriugen"}; 
 {name = "IRU2"; faults = ["ued"; "loa"]; input_flows = []; input_metad = []; 
  basic_events = ["uedflt"; "loaflt"]; 
  event_info = [(1e-06, 1.); (1e-05, 1.)]; output_flows = ["o1"]; 
  output_metad = [("o1", ["IRU"; "2"])]; 
  formulas = [(["o1"; "ued"], F ["uedflt"]); (["o1"; "loa"], F ["loaflt"])]; 
  use_with = []; generator = "xriugen"}; 
 {name = "ADC1"; faults = ["ued"; "loa"]; input_flows = []; input_metad = []; 
  basic_events = ["uedflt"; "loaflt"]; 
  event_info = [(2e-08, 1.); (2e-05, 1.)]; output_flows = ["o1"]; 



 

SOTERIA Contractor Report Page 124 
 

  output_metad = [("o1", ["ADC"; "1"])]; 
  formulas = [(["o1"; "ued"], F ["uedflt"]); (["o1"; "loa"], F ["loaflt"])]; 
  use_with = []; generator = "xadcgen"}; 
 {name = "A664sw2"; faults = ["ued"; "loa"]; input_flows = ["i1"]; 
  input_metad = [("i1", ["ADC"; "1"; "2"])]; 
  basic_events = ["uedflt"; "loaflt"; "crc32_flt"]; 
  event_info = [(1e-06, 1.); (1e-05, 1.); (2.32830643654e-10, 1.)]; 
  output_flows = ["o1"]; output_metad = [("o1", ["ADC"; "1"; "2"])]; 
  formulas = 
   [(["o1"; "ued"], Or [F ["i1"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 
    (["o1"; "loa"], Or [F ["i1"; "loa"]; F ["loaflt"]])]; 
  use_with = []; generator = "xswitchgen"} 
 {name = "A664sw1"; faults = ["ued"; "loa"]; input_flows = ["i1"; "i2"; "i3"]; 
  input_metad = 
  [("i1", ["IRU"; "1"; "1"]); ("i2", ["IRU"; "2"; "1"]); 
   ("i3", ["ADC"; "1"; "1"])]; 
  basic_events = ["uedflt"; "loaflt"; "crc32_flt"]; 
  event_info = [(1e-06, 1.); (1e-05, 1.); (2.32830643654e-10, 1.)]; 
  output_flows = ["o1"; "o2"; "o3"]; 
  output_metad = 
   [("o1", ["IRU"; "1"; "1"]); ("o2", ["IRU"; "2"; "1"]); 
    ("o3", ["ADC"; "1"; "1"])]; 
  formulas = 
  [(["o1"; "ued"], Or [F ["i1"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 
   (["o1"; "loa"], Or [F ["i1"; "loa"]; F ["loaflt"]]); 
   (["o2"; "ued"], Or [F ["i2"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 
   (["o2"; "loa"], Or [F ["i2"; "loa"]; F ["loaflt"]]); 
   (["o3"; "ued"], Or [F ["i3"; "ued"]; And [F ["uedflt"]; F ["crc32_flt"]]]); 
   (["o3"; "loa"], Or [F ["i3"; "loa"]; F ["loaflt"]])]; use_with = [];  

  generator = "xswitchgen"}] 

 

There is an in-between layer missing, which is the DCM. The issue is that the set of parameters from the 

list of possible architectures (n=["1"], s=["2"; "1"], and k=["1"; "2"]) does not infer the parameters 

for the DCM. The end-user has described what components can connect to the DCM and the number of 

times the DCM can be replicated. With that information, the algorithm knows it has several choices for 

the DCM. In this example, because there are 2 IRUs that must connect to DCMs, it can generate 1 DCM 

with 2 inputs, or 2 DCMs with 1 input each. The way the algorithm adds these options to the auto 

generated library is to first go through the list of usables and determines what hasn’t been generated 

yet. Then it uses the lookup tables to find the Big-C generator for the missing components. Then, the 

parameters are generated with the use of a helper function. 

# xdcmgen_al 2;; 

- : string list list Core.Std.List.t Core.Std.List.t =[[[["1"]]; [["1"]]]; [[["2"]]]] 

Finally, the algorithm automatically generates the model. Recall that the model is made up of the 

following fields: 

model = 

{ instances 

  connections 

  top_fault 

} 

For the instances, all the algorithm does is take the auto generated library and makes an instance of 

each component. This is because of our philosophy that the auto generated library is inclusive of every 

instance that will be used in the model. For the connections, all the algorithm does is match the meta-

data. This is why there was so much effort in updating the meta-data when the components were being 



 

SOTERIA Contractor Report Page 125 
 

generated in the library. For the top_fault, since the library and connections are already generated, the 

algorithm just iterates through the list of end-user target probabilities and performs the FTA for each. 

The auto generate model is shown below. Notice that the top_fault is intentionally left empty to be 

filled when iterating through the targets. 

# let auto_model = generate_model upT auto_lib myhc myh_f2s_in myh_f2s_out myh_s2f_in myh_s2f_out;; 

val auto_model : model = 

  {instances = 

    [{i_name = "DCM1"; c_name = "DCM1"; exposures = []; lambdas = []}; 

     {i_name = "FMA1"; c_name = "FMA1"; exposures = []; lambdas = []}; 

     {i_name = "IRU1"; c_name = "IRU1"; exposures = []; lambdas = []}; 

     {i_name = "IRU2"; c_name = "IRU2"; exposures = []; lambdas = []}; 

     {i_name = "ADC1"; c_name = "ADC1"; exposures = []; lambdas = []}; 

     {i_name = "A664sw2"; c_name = "A664sw2"; exposures = []; lambdas = []}; 

     {i_name = "A664sw1"; c_name = "A664sw1"; exposures = []; lambdas = []}]; 

   connections = 

    [(("FMA1", "i1"), ("A664sw1", "o1")); 

     (("FMA1", "i2"), ("A664sw1", "o2")); 

     (("FMA1", "i3"), ("A664sw1", "o3")); 

     (("FMA1", "i4"), ("A664sw2", "o1")); 

     (("A664sw2", "i1"), ("ADC1", "o1")); 

     (("A664sw1", "i1"), ("DCM1", "o1")); 

     (("A664sw1", "i2"), ("DCM1", "o2")); 

     (("A664sw1", "i3"), ("ADC1", "o1")); 

     (("DCM1", "i1"), ("IRU1", "o1")); 

     (("DCM1", "i2"), ("IRU2", "o1"))]; 

   top_fault = ("", F [""; ""])} 

 

10.4 Results 
In this section, we show the results of using our special purpose architecture synthesis algorithm.  

We successfully synthesized a satisfying solution for the Navigation Position Example. Figure 54 shows a 

sampling of 3 out of the 1,920 possible architectures, including a visualization of the example from the 

set of parameters we demonstrated in the previous section. Figure 55 shows the architecture that 

satisfies both UED and LOA target probabilities. 

 

Figure 54 Sampling of the Navigation Position exploration 



 

SOTERIA Contractor Report Page 126 
 

 

Figure 55 Satisfying architecture for the Navigation Position example 

 

Since multiple architectures can satisfy the targets, the algorithm processes the results and sorts them 

based on a “goodness” factor, which we define as (result – objective) / objective = % better than target. 

The lower the goodness factor, the least viable the architecture. Figure 56 shows the results sorted for 

the Navigation Position example. Note that we artificially modified the targets to LOA = 3e-5 and UED = 

1e-6 to show more satisfying architectures to demonstrate the sorting. 



 

SOTERIA Contractor Report Page 127 
 

 

Figure 56 Solutions sorted based on a "goodness" factor 

The Display of Airspeed example (Figure 49) is a little different in that the meta-data changes mid-way in 

the architecture. The inputs to the Disp App are relevant to ADC outputs, while the inputs to the Cockpit 

Display are not relevant to ADC, but are relevant to the Disp App outputs. To handle this, we altered our 

algorithm to handle sub-architectures, where sub-architectures are defined as applications, switches, 

and sources. The Display of Airspeed example can be broken into two sub-architectures: Display App – 

A664 switches – ADCs; Cockpit Displays – A664 switches – Display App. Notice that the Display App is the 

top of the first sub-architecture, but becomes the source in the second sub-architecture. The Display 

App and the Cockpit Display components are similar in that they both take multiple inputs to formulate 

a single output. The Navigation Position example (Figure 48) can be thought of as just one sub-

architecture: FMA – A664 switches – ADC/DCM+IRUs. 

Despite the differences in the two challenge problems, we were able to synthesize architectures for 

both using the same algorithm. Figure 57 shows the synthesized architecture for the Display of Airspeed 

example. We were able to synthesize an architecture with all the legal connections, but we ran into 

limitations that we did not have time to resolve on this program. The synthesized architecture has two 

levels of switches, A664swA and A664swB. The challenge problem specified only one layer of switches. 

What’s missing in the synthesis algorithm is the ability to aggregate the layer of switches so that 

dataflow revisits a component. This is doable, but we simply ran out of time on this program. 



 

SOTERIA Contractor Report Page 128 
 

 

Figure 57 Synthesized architecture for Display of Airspeed example 

10.5 Possible Extensions 
There are several possible extensions to the work that we did on synthesizing architectures. We could 

alter the algorithm to optimize based on an objective function. Objectives could include minimizing the 

number of x component or minimizing based on the cost of a component. We could direct the 

exploration based on feedback from the cut-set, something that we did not have time to incorporate 

into our algorithm. The exploration could have been distinguished between architecture component 

changes versus logical computation/voting changes. Some of the architecture observations we did not 

get to exercise with our challenge problems include CRC compatibility, project-agnostic vs. project-

specific connection constraints, and elimination of compatible components whose fault does not 



 

SOTERIA Contractor Report Page 129 
 

contribute to the top-level target. Also, our algorithm only considered functional connections and not 

physical connection limitations. For example, we did not consider physical limitations on the number of 

ports in a switch. 

11 Conclusion 
In this report, we detailed the work we did to advance safety analysis techniques through model-based 

fault-tree synthesis and architecture synthesis. The modeling language we developed on SOTERIA is 

compositional and enables rapid development, modification, and evaluation of system architectures. On 

this program, we analyzed IMA systems, but we believe that our modeling language is generally 

applicable. Current safety analysis techniques require the manual construction of fault trees, which is an 

error prone process. The tool we developed on this program provides a new paradigm that automates 

much of the safety analysis process. 

Our architecture synthesis approach allows users to automatically explore possible architectures given 

constraints to a design space. The combination of component connections and voting options can lead 

to a large space, so automating the exploration process makes a lot of sense. We demonstrated that our 

tool can synthesize an architecture that meets the safety probability targets for one of our challenge 

problems, and can synthesize an architecture to our second challenge problem, but with some 

limitations. We proposed several possible extensions to further our architecture synthesis approach. 

12 Acknowledgements 
The team gratefully acknowledges the following people for their contributions to the project and for 

their unwavering support throughout the three years of this program: Hongwei Liao for his work on 

evaluating prior-art and coming up with the first incarnation of our architecture synthesis algorithm, 

Camila Rodriguez for her work in validating the B777 and B787 examples, Rich Haadsma for his work on 

the Wheel Brake/Landing Gear example, Michael Durling for his guidance, and Gary Quackenbush for his 

support. 

13 Works Cited 
AAIB (UK). (2003). AAIB Bulletin 2/2005 EW/C2003/08/11, Airbus A3320-200, C-FTDF, Cardiff UK, 3 Aug 

2003. Retrieved from Skybrary: http://www.skybrary.aero/bookshelf/books/376.pdf 

Aeronautical Radio Inc. (ARINC). (2014). ARINC Characteristic 702A Advance Flight Management 

Computer System.  

Andrews, J. (1998). Tutorial - Fault Tree Analysis. Retrieved July 2015, from Selected Papers on 

Reliability: http://www.ewp.rpi.edu/hartford/~ernesto/S2008/SMRE/Papers/Andrews-FTA-

tutor.pdf 

Banach, R., & Bozzano, M. (2006). Retrenchment, and the generation of fault trees for static, dynamic. 

SAFECOMP, 127-141. 



 

SOTERIA Contractor Report Page 130 
 

Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri, T., . . . Tonetta, S. (2015). 

Formal Design and Safety Analysis of AIR6110 Wheel Brake System. In Computer Aided 

Verification (pp. 518-535). Springer International Publishing. Retrieved from https://es-

static.fbk.eu/people/bozzano/publications/cav2015a.pdf 

Contini, S., & Squellati, G. (1984). Automated Fault Tree Construction. Luxembourg: Commission of the 

European Communities. 

DO-297. (2005). DO-297 IMA Development Guidance and Certification Issues Document. RTCA. 

Du-pont, A. (2013, August 21). 787-8 Dreamliner, AeroMexico [digital image]. Retrieved from http://cdn-

www.airliners.net/aviation-photos/photos/1/5/4/2314451.jpg 

Ericson II, C. (1999). Fault Tree Analysis: A tutorial, pdf. Retrieved July 2015, from TheCourse(TM) for 

Project Management - Course Materials: http://www.thecourse-

pm.com/Library/FaultTreeAnalysis2.pdf 

FAA. (2011). FAA Advisory Circular: Installation of Electronic Display in Part 23 Airplanes. FAA. 

FAA. (2014). FAA Advisory Circular: Electronic Flight Displays.  

github.com/vasilisp/inez. (n.d.). Retrieved from Inez: https://github.com/vasilisp/inez 

Hang, C., Manolios, P., & Papavasileiou, V. (2011). Synthesizing Cyber-Physical Architectural Models with 

Real-Time Constraints. International Conference on Computer Aided Verification (CAV) (pp. 441-

456). Snowbird, UT: Springer. 

janestreet.github.io. (n.d.). Retrieved from Open Source @ Jane Street: http://janestreet.github.io/ 

Jensen, D. (2005, November 1). B787 Cockpit: Boeing's Bold Move. Avionics. Retrieved from Access 

Intelligence. 

Majdara, A., & Wakabayashi, T. (2009). Component-based modeling of systems for automated fault tree 

generation. Reliability Engineering and System Safety, 1076-1086. 

Manolios, P., & Papavasileiou, V. (2013). ILP Modulo Theories. 25th International Conference on 

Computer Aided Verification (CAV) (pp. 662-677). Saint Petersburg, Russia: Springer. 

Manolios, P., Siu, K., Noorman, M., & Liao, H. (2017). A Model-Based Framework for Modeling, 

Visualizing, and Analyzing the Safety of System Architectures.  

Meister, J. (2014, July 15). Esper Tech Blog. Retrieved from Why We Use OCaml: 

https://tech.esper.com/2014/07/15/why-we-use-ocaml/ 

Minsky, Y. (2016, January 25). Why OCaml? Retrieved from Jane Street Tech Blog: 

https://blog.janestreet.com/why-ocaml/ 



 

SOTERIA Contractor Report Page 131 
 

Moir, I., Seabridge, A., & Jukes, M. (2013). Civil Avionics Systems, Second Edition. John Wiley & Sons, Ltd. 

(n.d.). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Spoiler_(aeronautics) 

(n.d.). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Lufthansa_Flight_2904 

NASA. (2002). Fault Tree Handbook with Aerospace Applications. NASA. 

S18. (1996). Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne 

Systems and Equipment. SAE International. 

SAE. (2011). SAE: AIR 6110, Contiguous Aircraft/System Development Process Example.  

Salem, S., Apostolakis, G., & Okent, D. (1976). A computer-oriented approach to fault tree construction. 

Palo Alto, TX: EPRI NP-288. 

U.S. Nuclear Regulatory Commission. (1981). Fault Tree Handbook. Washington, D.C.: NUREG. 

Waclena, K. (2006, June 17). OCaml for the Skeptical. Retrieved from Why OCaml: 

http://www2.lib.uchicago.edu/keith/ocaml-class/why.html 

Wang, Y. (2004). Develoment of a Computer-Aided Fault Tree Synthesis Methodology for Quantitative 

Risk Analysis in the Chemical Process Industry. Texas A&M University. 

Wolfig, R., & Jakovlijevic, M. (2008). Distributed IMA and DO-297: Archtictural, Communication and 

Certification Attributes. Digital Avionics Systems Conference, 2008 (pp. 1.E.4-1-1.E.4-10). St.Paul, 

MN: IEEE. 

www.ocaml.org. (n.d.). Retrieved from OCaml: www.ocaml.org 

 



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)

01-06-2019
2. REPORT TYPE
Contractor Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Safe and Optimal Techniques Enabling Recovery, Integrity, and Assurance 

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

Siu, Kit Y.; Herencia-Zapana, Heber; Manolios, Panagiots; 
Noorman, Michael

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/CR-2019-220283
12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified- 
Subject Category 62
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

136

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)
(757) 864-9658

Langley Technical Monitor:  Wilfredo Torres-Pomales

  340428.02.10.07.01 

14. ABSTRACT There is a trend in the aviation industry to go from federated to integrated computing systems. Combining a number of traditional stand-alone 
federated systems into an integrated common platform (called Integrated Modular Avionics, IMA) has the benefit of increased power efficiency, reduced 
support hardware, and reduced cabling. However, changing from federated to integrated has a significant impact on the system architecture and hence the 
process of how avionic systems are to be analyzed. Traditional approaches to safety analysis become inefficient when functional boundaries can no longer be 
assumed for failure independence and fault isolation. In this report, we describe a tool that we developed to accelerate the safety engineer's ability to perform 
safety analysis of IMA systems through modeling, as well as optimize the system engineer's ability to develop a system through architecture synthesis. This 
work was the result of a three-year research effort called SOTERIA (Safe and Optimal Techniques Enabling Recovery, Integrity, and Assurance). We 
developed a compositional modeling language that supports rapid development, modification, and evaluation of architectures. The modeling language is 
structured such that the end-user defines a library of components with information on component reliability, connectivity, and fault propagation logic. The 
system model is built by instantiating the components from the library, connecting the components, and identifying the top-level faults of interest. Our tool is 
compositional in that the end-user only needs to define safety aspects at the component level. The tool takes the model and automatically synthesizes both the 
qualitative and quantitative safety analyses. We go further by allowing users to describe system information such as components to use in an architecture and 
their connection compatibility and automatically synthesize an architecture that meets the top-level probability target adhering to end-user specified 
constraints. This capability allows users to rapidly explore a design space. 

NNL15AA02C 

Analysis; Architecture; Failure; Fault; Modeling; Safety; Synthesis




