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Nomenclature 

0    Initial vortex circulation (m2/s) 

F    Following aircraft wing taper ratio 

    Bank angle of the following aircraft (rad) 
(AR)G   Aspect ratio of the generating aircraft wing 

Fb    Following aircraft wing span (m) 

Gb    Generating aircraft wing span (m) 

Fc    Following aircraft wing chord (m) 

CLF   Three-dimensional lift-curve slope of following aircraft (rad-1) 
CLG   Lift coefficient of the generating aircraft 
Clv   Vortex-induced rolling moment coefficient 
CLv   Vortex-induced lift coefficient 

q    Freestream dynamic pressure (kg/m2) 

rc   Vortex-core radius (m) 
s   Half of the vortex pair separation distance (m) 
SF   Following aircraft wings planform area (m2) 
VF   Velocity of the following aircraft (m/s) 
VG   Generating aircraft velocity (m/s) 
Y   Inertial lateral coordinate (m) 
YF   Lateral location of the following aircraft (m) 
Z   Inertial vertical coordinate (m) 
ZF   Vertical location of the following aircraft (m) 
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1. Introduction 
Wake vortex spacing standards constrict the terminal area throughput and impose severe constraints on the overall 

capacity and efficiency of the National Airspace System. For more than two decades starting in the early 1990s, the 
National Aeronautics and Space Administration conducted extensive research on characterizing the formation and 
evolution of aircraft wakes. This multidisciplinary work included comprehensive field experiments (Pruis et al. 2016), 
flight tests (Vicroy et al. 1998), and wind tunnel tests (Rossow 1994; Chow et al. 1997). Parametric studies using large 
eddy simulations (Proctor 1998; Proctor et al. 2006) were conducted in order to develop fast-time models for the 
prediction of wake transport and decay (Ahmad et al. 2016).  Substantial effort was spent on the formulation of 
acceptable vortex hazard metrics (Tatnall 1995; Hinton and Tatnall 1997). 

Several wake encounter severity metrics have been suggested in the past, which include the wake circulation 
strength, vortex-induced rolling moment coefficient (Clv), bank angle, and the roll control ratio (Tatnall 1995; Hinton 
and Tatnall 1997; Van der Geest 2012). The vortex-induced rolling moment coefficient introduced by Bowles and 
Tatnall (Tatnall 1995; Gloudemans et al. 2016) has been used extensively for risk and safety analysis of newly 
proposed air traffic management concepts and procedures. The original method of Bowles and Tatnall assumed a 
constant wing loading (the wing lift-curve slope, CL is constant), which resulted in an overestimation of the vortex-
induced rolling moment coefficient. Bowles (2014) suggested a correction to the original method that provides more 
accurate values of Clv and which is also consistent with the underlying physics of the problem. The overestimation of 
Clv in the original method can be corrected by assuming an elliptical lift distribution.  Figure 1.1 illustrates the 
correction in Clv achieved by the modified method. 

 

     

Figure 1.1: Comparison of the vortex-induced rolling moment coefficient using constant and elliptical wing 
loadings with the wind tunnel data (Rossow 1994). Dashed line denotes a constant wing loading and solid line 
denotes an elliptical wing loading. The wind tunnel data are given by points in the plots. Results are shown for 
two different wings used in the wind tunnel test. 

 

The assumption of constant wing loading in their original formulation had allowed Bowles and Tatnall to derive a 
closed-form analytical solution, which was computationally efficient and convenient to use. The addition of elliptical 
loading term added complexity that required numerical integration. This brief note presents a closed-form analytical 
solution to the modified Bowles-Tatnall method. The analytical solutions for both the vortex-induced rolling moment 
coefficient and the vortex-induced lift are compared with results obtained using numerical integration. The resulting 
analytical method is robust, computationally efficient (more than ten times faster compared to numerical integration), 
and convenient to use. The simplicity of the method will allow efficient calculations of large leader-follower aircraft 
matrices in the safety analyses of new procedures. It can also be used on the flight deck for future operations such as 
dynamic self-separation of aircraft. 
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2. Vortex-Induced Rolling Moment and Lift Coefficients 
The derivation of the analytical expression for the vortex-induced rolling moment and lift coefficients is given in 

this section. The axis conventions follow Tatnall (1995) and are shown in Figure 2.1. 

 

 
Figure 2.1. Axis conventions and nomenclature as defined by Tatnall (1995). 

 

 

The Bowles-Tatnall vortex-induced rolling moment coefficient (Tatnall 1995) is given by: 
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 , (2.1) 

where, 
GL

C  is the lift coefficient of the vortex generator, 
FLC 

 is the three-dimensional lift-curve slope of the follower, 

VF and VG are the airspeeds of the follower and the vortex generator, respectively, bF and bG are the wingspans of the 
follower and generator, respectively.  

G
AR  is the wing aspect ratio of the generator, 

F is the wing taper ratio of the 

follower, s is the half of vortex pair separation, rc is the vortex core radius size,   is the bank angle of the follower, 
and (YF, ZF) is the follower’s center of gravity in inertial coordinates. The overbar symbol implies normalization by 
the generator wingspan, bG. 

Eq. (2.1) can be rewritten by substituting 

  0

2
GL G G

G

C b V

AR
  , (2.2) 

where, 
0  is the circulation strength of the generator’s wake vortex, 
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The integrals in Eq. (2.1) and (2.3) assume a constant lift distribution across the wingspan, which simplifies the 
integral and allows closed-form solution for the rolling moment coefficient: 

  1 2lv lvC K I I  , (2.4) 

where, 

 0
2

1
1

L F G
lv

FF F

C b
K

b V


 

                      
. (2.5) 

I1 and I2 are defined as follows: 
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. (2.6) 

The parameters, C1, C2, A1, A2, B, and  in Eq. (2.6) are given by 

  1 cos( ) sin( ),F FC Y s Z      (2.7) 

  2 cos( ) sin( ),F FC Y s Z      (2.8) 

   22 2
1 sin( ) cos( ) ,F F cA Y s Z r          (2.9) 

   22 2
2 sin( ) cos( ) ,F F cA Y s Z r          (2.10) 
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   (2.12) 

The overbar symbol implies normalization by the generator wingspan, bG, e.g., F
F

G

Z
Z

b
 . 

The modification to Eq. (2.3) with elliptical wing loading proposed by Bowles is given in Eq. (2.13). This addition 
complicated the integral by introducing a square root term and until now required numerical integration for its solution, 
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The analytical solution of Eq. (2.13) can be found by first separating the integral given in Eq. (2.13) according to 

      0

0
, 0

a a

a a
f x dx f x dx f x dx if a

 
      . (2.14) 

The resulting integrands are factored into terms of the form 
   

 
1 2

2

p x p x

p x
, where  np x  is a polynomial of degree 

n. Applying rule-based integration (Rich et al. 2018) leads to an analytical solution. These rules are described below: 

If 2 4 0e df  , 
1
2

p  , and 1q   , then 
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If 2n  , and 
1
2

p  , then 

       1

1 1

pn
p pn n

x a bx anpa bx dx a bx dx
np np


   

   . (2.16) 

If 2 4 0b ac  , then 
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Let  2 2q cd af b df   , and if 2 4 0b ac  , then 
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Let 
2

2 ( 2 )gb ah bh gc xu
d fx

  


, and if 2 4 0b ac  , and  2 22 0bh d gh cd af g bf    , then 
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If 0a  , and 0b  , then 
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2
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After applying these rules in Mathematica® and simplifying, the vortex-induced rolling moment coefficient can 
be written as, 

    4 2 2 1
1 2 2

1 2 2 tanh
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where, 

    2
2( 1) sin( ) cos( ) cos sin ( 1) cos( ) sin( )

2 2
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. (2.24) 

Complex numbers have been used to condense Eq. (2.23)-(2.24).  An equivalent but less elegant form with only 
real terms can be obtained by using the conversion formulae, e.g., 

               1 1tanh ln 1 ln 1 , ln ln , and cos sin
2

iz z z z r i z x iy re r i                 .  

The modified vortex-induced lift coefficient with elliptical loading is given by, 
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An analytical expression can be found for the lift coefficient by using the same substitution rules described earlier 
in Eq. (2.14)-(2.22), 

 4 2 2 1
1 2 2
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where, jI is defined as in Eq. (2.24), and KLv is given by: 

     2

2

/ 1
GL L F G

Lv
F G F FG

C C V
K

AR b b V


 



. (2.27) 

Figures 2.2 and 2.3 show the comparison of analytical method with the results obtained using numerical integration 
for the vortex-induced rolling moment and lift coefficients, respectively. 

 

     

Figure 2.2: Comparison of vortex-induced rolling moment coefficient using analytical method and numerical 
integration. Dashed line denotes the results obtained using numerical integration and the solid line denotes the 
analytical solution. Results are shown for the two different wings used in the wind tunnel test. 

 

 

     

Figure 2.3: Comparison of vortex-induced lift coefficient using analytical method and numerical integration. 
Dashed line is used for numerical integration and solid line for the analytical solution. Results are shown for 
the two different wings used in the wind tunnel test. 
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Summary 
A computationally efficient analytical solution for the modified Bowles-Tatnall method has been derived. The 

computational efficiency of the method will be valuable in performing wake turbulence risk mitigation and safety 
analyses of newly proposed air traffic management concepts and procedures. These analyses require a significant 
amount of computations based on large generator-follower matrices of aircraft. It can be also used on the flight deck 
for advanced future operations such as dynamic self-separation of aircraft. 
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