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Abstract 
 

        Under the NASA Aeronautics Research Mission Directorate (ARMD) Convergent 

Aeronautical Solutions (CAS) project, NASA Glenn Research Center has been leading 

Multifunctional Structures for High Energy Lightweight Load-bearing Storage (M-SHELLS) 

research efforts. The technology of integrating load-carrying structures with electrical 

energy storage capacity has the potential to reduce the overall weight of future electric 

aircraft. The proposed project goals were to develop M-SHELLS in the form of honeycomb 

coupons and subcomponents, integrate them into the structure, and conduct low-risk flight-

tests onboard a remotely piloted small aircraft. Experimental M-SHELLS energy-storing 

coupons were fabricated and tested in the laboratory for their electrical and mechanical 

properties. In this report, finite element model development and structural analyses of two 

small test aircraft candidates are presented. The finite element analysis of the initial two-

spar wing is described for strain, deflection, and weight estimation. After a test aircraft 

Tempest was acquired, a load-deflection test of the wing was conducted. A finite element 

model of the Tempest was then developed based on the test aircraft dimensions and 

construction detail. The component weight analyses from the finite element model and test 

measurements were correlated. Structural analysis results with multifunctional energy 

storage panels in the fuselage of the test vehicle are presented. Although the flight test was 

cancelled because of programmatic reasons and time constraints, the structural analysis 

results indicate that the mid-fuselage floor composite panel could provide structural 

integrity with minimal weight penalty while supplying electrical energy. To explore potential 

future applications of the multifunctional structure, analyses of the NASA X-57 Maxwell 

electric aircraft and a NASA N+3 Technology Conventional Configuration (N3CC) fuselage 

are presented. Secondary aluminum structures in the fuselage sub-floor and cargo area were 

partially replaced with reinforced five-layer composite panels with M-SHELLS honeycomb 

core. The N3CC fuselage weight reduction associated with each design without risking 

structural integrity are described. The structural analysis and weight estimation with the 

application of composite M-SHELLS panels to the N3CC fuselage indicate a 3.2% reduction 

in the fuselage structural weight, prior to accounting for the additional weight of core 

material required to complete the energy storage functionality. 

 

Introduction 

       Under the NASA Aeronautics Research Mission Directorate (ARMD) Convergent Aeronautical Solutions 

(CAS) project, NASA Glenn Research Center (GRC) has been leading Multifunctional Structures for High Energy 

Lightweight Load-bearing Storage (M-SHELLS) research efforts. The technology of integrating load-carrying 

structures with electrical energy storage capacity has the potential to reduce the overall weight of future electric 

aircraft. NASA Langley Research Center (LaRC) is working with GRC to fabricate and test lightweight, laminated 

honeycomb composites with special anode, cathode, and separator materials that will be dually capable of 

generating electrical power and carrying mechanical loads. Storing and releasing electrical energy with hybrid 

super-capacitors combined with advanced composite structures has the potential to reduce both the charging time 

and overall weight. Krause and Loyselle [ref. 1] at GRC proposed developing, analyzing, and testing this 

multifunctional structures technology. The Materials & Electro-chemistry Division at GRC has conducted extensive 

research on multifunctional structural composites that are capable of generating electrical power and carrying 

mechanical loads.  

 

Figure 1 shows a roadmap of the multifunctional structures technology development and systems analysis [ref. 2]. 

At GRC, advanced multifunctional composite laminate, and hybrid super-capacitor energy storage systems are 
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being developed. Numerical models of electrochemical reactions and energy storage concepts are also being 

developed at GRC. Newman [ref. 3] presented the specific energy and specific power characteristics of existing 

fuel cell and battery technologies and conventional energy sources in the Ragone plot (Figure 1a). The initial 

performance goal for the M-SHELLS system was to demonstrate a specific energy of 75 Wh/kg at a specific power 

of 1000 W/kg. These modest M-SHELLS specific energy and power targets are also shown in Figure 1a. An 

expanded view of the Ragone plot is shown in Figure 2 for additional discussion. The honeycomb sandwich 

structure for the M-SHELLS concept is shown in Figure 1b. Specimens were fabricated and tested in the structures 

concept laboratory at GRC and LaRC to characterize both the electrochemical and mechanical properties. Figure 

1c shows one tensile test result of an initial single layer experimental M-SHELLS honeycomb specimen. 

 

 

Figure 1.  Multifunctional load bearing structure and systems analysis roadmap. 

The remotely piloted small airplane, named Tempest, developed by UASUSA Inc., was acquired for retrofitting 

with a multifunctional system to provide partial power and augment the existing Lithium-Polymer (Li-Po) battery 

(Figure 1d). The Li-Po battery provides 4 amperes of current for peak power during catapult launching and 2 

amperes of continuous current for cruise power. A separate battery supplies steady power to the flight control 

system. The objective of the flight test project was to augment the present 18.5-volt Li-Po battery with an M-

SHELLS power pack to demonstrate its functionality and flight worthiness. Although the planned flight test was 

eventually cancelled due to project constraints, the initial structural model development and associated structural 

analyses are presented.  

Figure 1e shows the NASA X-57 Maxwell experimental test aircraft concept [Borer, 2015] with a distributed 

electric propulsion system that has 12 electric-motor-driven propellers on the high-lift wing. The synchronized 

motors are powered by a 358 kg battery pack. Presently, construction of the X-57 Maxwell test vehicle is occurring 

under the Scalable Convergent Electric Propulsion Technology Operational Research (SCEPTOR) project. The X-

57 Maxwell vehicle will test the performance of this specially designed wing with distributed electric propulsion to 

evaluate mission benefits for this class of vehicle. Structural analysis of the fuselage floor modeled with a reinforced 

M-SHELLS composite panel is briefly described.  

As a final application, structural and aircraft systems analysis for the NASA N+3 Technology Conventional 

Configuration (N3CC) derivative with hybrid-electric propulsion (Figure 1f) were conducted by Olson and 

Ozoroski [2018] in order to predict the multifunctional performance and weight benefits of the M-SHELLS 

technology (Figure 1g). Secondary aluminum structure in the N3CC fuselage sub-floor and cargo area are partially 

replaced with M-SHELLS composite panels for structural stress and weight analysis. 
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Newman [ref. 3] presented an extensive feasibility and design study of a small, manned aircraft with electric 

powered propulsion. His report included the range of specific energy and specific power characteristics for existing 

Lithium-based batteries, Proton-Exchange Membrane Fuel Cells (PEMFC), Solid Oxide Fuel Cells (SOFC), and 

aviation fuel. Figure 2 is his summary plot of the specific power and energy specifications, which is often referred 

to as a Ragone plot. Newman concluded that, besides conventional combustion, PEMFC and SOFC were the only 

two feasible energy source devices given the selected set of mission and aerodynamic (weight and power) 

constraints and the design specifications for his project. The initial performance goal for the M-SHELLS battery 

system was to demonstrate a specific energy of 75 Wh/kg at a specific power of 1000 W/kg. These M-SHELLS 

energy and power targets are superimposed on Newman’s plot in Figure 2. While this target is modest compared to 

Li-Ion, Li-Fe, and Li-S based batteries, the main advantage of the M-SHELLS technology is that it could replace 

part of the load bearing structure, particularly in small drones and in lightly loaded fuselage structure of 

experimental electric aircraft such as the X-57 Maxwell. 

 

Figure 2. Ragone plot for specific energy and specific power characteristics of energy source devices. 

M-SHELLS Coupon Tests 

The proposed M-SHELLS research goals were to develop test specimens and subcomponents, integrate them 

into a small test vehicle structure, and conduct low-risk flight tests. The M-SHELLS test coupons in the form of 

honeycomb panels were fabricated and tested by Russell Smith (LaRC) and Brett Bednarcyk (GRC) for mechanical 

and electrical properties. Figure 3 shows the normal-compression load shakedown test of a small, stabilized 

aluminum honeycomb coupon fabricated for mechanical property assessment. The compressive crushing strength 

and compressive modulus were computed and compared with the published characteristics of a Hexcel 1/4-5052-

0.002 honeycomb. The flatwise compression modulus of the aluminum honeycomb coupon with 1/4-in cell and 

0.002-in foil thickness is 139,000 psi and the crushing strength is 436 psi. The published in-plane shear modulus of 

the Hexcel 1/4-5052-0.002 honeycomb is 66,000 psi and the shear strength is 300 psi in the length direction. In the 

width direction, the in-plane shear modulus is 30,000 psi and the shear strength is 120 psi. Since the normal 

compression strength test result were very close to the published Hexcel data, the mechanical properties of Hexcel 

honeycomb were used by Olson and Ozoroski [ref. 2] for the initial structural and multifunctional performance 

benefit analysis of the N3CC derivative with hybrid-electric propulsion. They also accounted for the additional 

weight of reactive material required to complete the energy storage functionality. 
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Figure 3. Normal-compression load shakedown test of a small, stabilized aluminum honeycomb 

coupon fabricated for mechanical property assessment. 

 

Figure 4. Initial tensile test result of an experimental M-SHELLS coupon prototype. 

     

Figure 4 shows the in-plane tensile load versus extension plot from an initial tensile test of an early M-

SHELLS active coupon prototype with anode/cathode elements and electrolytes. The honeycomb test 

coupon dimensions were 6.0 in (150 mm) in length, 2.0 in (50.8 mm) in width, and 1.0 in (25.4 mm) in 

depth. The face-sheets were 0.002 in thin aluminum foil. The electrical tests were conducted at NASA 

Glenn Research Center. Considering only the linear part of the deformation, a 90 lb (400 N) load produces 

an extension of 0.6 mm. Thus, relative to the unloaded specimen, the linear elastic strain was 0.004 at the 

90 lb (400 N) load. The specimen yielded beyond the 400 N load and developed a crack at 480 N. The 

linear Young’s Modulus (stress/strain) was computed to be 11,188 psi (77.52  106 N/m2). The 

corresponding in-plane shear modulus was 4024 psi for the Poisson’s ratio of 0.39. The in-plane tensile 

and shear modulus computed from the coupon test results were very low for flight application. Hence, for 

the present analysis, additional outer face-sheets were added on each side to add strength to the honeycomb 

core (Figure 1b). Several detailed finite element models (FEM) of three flight vehicles were developed 

having certain fuselage areas replaced with this reinforced composite panel having a honeycomb core. 

Structural analyses of these models are described. The complete summary of all material properties used 

is presented in Appendix A. The Hexcel honeycomb core and M-SHELLS sandwich panel description and 

density are presented in Appendix B. 

 

Flight Test Vehicle Structural Model Development 

Initially, several low-cost, small model aircraft were considered for finite element analysis and 

simulation, with multifunctional lightweight composite panels replacing part of the wing and fuselage 

structure. A remotely piloted small aircraft was selected with a 127 in wingspan and a takeoff weight of 
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16 lb. Adequate details about the internal structure and fabrication of this model airplane were not known, 

so a notional FEM of this small aircraft was quickly developed for initial structural analysis with design 

flight loads. Figure 5 shows a preliminary structural model development of a similarly sized small hobby 

model airplane, which offered an initial low-risk candidate for flight-testing of the M-SHELLS specimen. 

A typical wing FEM with a standard two-spar and rib configuration was initially developed. This structural 

arrangement would enable easy integration of small test coupons, between the two spars in the inboard 

section, close to the electric motor in the fuselage nose. The test specimen could also be integrated to 

replace the fuselage floor. 

 

Figure 5. Preliminary structural model development of the two-spar wing airplane. 

 

Figure 6. Wing deflection and strain of the two-spar wing model airplane. 

Figure 6 shows the wing deflection and strain distribution from initial structural analysis of the wing 

in level flight. The analysis assumed front and rear spar thicknesses of 0.15 inch with advanced composite 

material properties [ref. 5]. The linear elastic property values used for the front and rear spar are as follows: 

Young’s Modulus 9,750,000 psi, shear modulus 2,570,000 psi, and mass density 0.0526 lb/in3. The wing, 

fuselage, horizontal tail, and vertical tail skin thicknesses were 0.04 inch and were made of standard 

thermoplastic material. The linear elastic properties are as follows: Young’s modulus 290,075 psi, shear 

modulus 46,250 psi, and mass density 0.04 lb/in3. The wing deflections and skin strain distributions shown 

are with a fixed wing root and a 16 lb lift load, distributed elliptically along the wing. The maximum 

deflection and nodal strain were 1.95 inches at the wing tip and 0.00106 at the wing root, respectively. 

With this two-spar wing construction, the maximum wing-tip deflection and strain values at level cruise 

flight were considered high for a model airplane. The two-spar wing FEM weight was calculated to be 

4.63 lb. The fuselage weight, with empennage, was calculated to be 3.8 lb. 

When NASA Langley acquired two UASUSA-manufactured remotely piloted aircraft named 

‘Tempest’ for the planned flight test, additional information on the internal construction of the physical 

model was available. A Tempest model was dismantled to observe the internal construction at the wing 
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root. The weight of each component of the disassembled model was also measured. Since the material 

properties of the Tempest wing and other model parts were not known, a bench test was performed to 

evaluate the wing deflection and stiffness under a simulated lift load. Gregory Howland and David Hare 

performed the bench load-deflection test at the NASA Langley model shop on a layout table. The loading 

configuration was based on the test setup scheme shown in Figure 7. The model was inverted and then 

leveled and supported by two foam blocks. The wing load application points were positioned at 24 inches 

from the centerline. Eight-pound weights were placed on the right and left wings symmetrically at those 

reference points. The average wing-tip displacement was approximately 0.94 of an inch. The load was 

removed from each wing and then the loading was repeated. The second time, the average wing-tip 

deflection was 0.96 of an inch. The inset photos in Figure 7 show the bench test arrangement in the NASA 

Langley model shop. 

 

Figure 7. Wing deflection test of the Tempest aircraft with 16 lb total lift load on the wing. 

Upon close examination of the model with the canopy removed, it was observed that the Tempest wing 

is constructed as two symmetric pieces of hollow, molded composite that are joined together with a short 

central stub-spar and two solid root-rib pieces, each 2 inches wide. Figure 8 shows the Tempest wing 

construction. A new finite element model of the wing was developed to represent this construction. The 

central stub-spar and two wide ribs were modeled with solid advanced composite material properties as 

before. The molded fiberglass skin of the two wings was modeled with advanced composite material 

having 0.025 inch thickness. The rest of the model used custom thermoplastic material. 

 

 
Figure 8. Structural model and wing root internal detail of the Tempest aircraft. 
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The horizontal tail skin and ribs were modeled with 0.02-inch thin molded thermoplastic. The fuselage 

and vertical tail skins and ribs were modeled with 0.04-inch thin thermoplastic. The horizontal and vertical 

tail twin-spar thicknesses were 0.10 in and 0.15 in, respectively. Figure 9 shows the wing deflection and 

nodal strain distributions from the FEM analysis with level flight load, assuming a 16 lb takeoff gross 

weight. See Appendix A for all material elastic properties and densities used in the FEM analysis. With 

the improved FEM of the wing structure, the wing-tip deflection was 1.11 in and the maximum strain at 

the wing root was 0.00067. The strain values were noted to be well within the allowable limits. The wing-

tip deflection was closer to the experimental results than the preliminary FEM analysis results with the 

two-spar wing (Figure 6). This improved FEM analysis result was considered satisfactory for the structural 

component weight estimation. 

 

Figure 9. Wing deflection and strain of the improved finite-element model of the test vehicle in 

level flight. 

Table 1. Comparison of Component Weights of the Tempest Test Vehicle, Initial Two-Spar Wing 

Model, and Improved Tempest FEM. 

   

 

Table 1 shows the measured component weights of the test vehicle and estimated weight for the initial 

two-spar wing model and the improved model of the Tempest wing. Some of the structural component 

weights and the electronic system weight inside the fuselage could not be measured separately, since the 

fuselage and vertical tails are molded as a single part. Hence, the weights of those components are grouped 

together in Table 1. The two-spar wing weight was estimated to be 4.63 lb. With the better FEM of 

Tempest, the estimated total wing weight of 3.54 lb is closer to the measured combined weight of 3.46 lb 

for its right and left wings and stub spar. The measured fuselage weight, 5.62 lb, included the co-molded 

vertical tail and electronic components inside the fuselage. It compared well with the improved FEM 

combined weight of the fuselage and vertical tail, including an estimated 2 lb weight for electronic 

components, telemetry system, and motors.  

Component

Measured 

Weight 

(lbs)

FEM model 

with two spar 

wing (lb)

Improved 

Tempest 

FEM (lb)

Notes

Electronic 2.00 lb 2.00 lb Estimated

Fuselage + vtail 5.62 lb 3.01 lb 3.01 lb fus+vt w/o electronic

Canopy 0.27 lb 0.18 lb 0.18 lb Estimated

Horizontal Tail 0.43 lb 0.66 lb 0.66 lb

Wing 3.14 lb 4.63 lb 3.54 lb   R+L wingwith stub spar

Stub Spar 0.32 lb

Flight Battery 2.30 lb 2.30 lb 2.30 lb from 1st col.

Ballast Required for C.G 1.23 lb 1.23 lb 1.23 lb from 1st col.

Baseline Op. Wt Total 13.30 lb 14.00 lb 12.91 lb lb with electronic
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     The performance goal for the M-SHELLS development was to demonstrate a specific power of 1000 

W/kg at a specific energy of 75 Wh/kg. The flight test goal was to augment the existing Li-Po battery with 

33% of the required energy for 30 minutes of flight or, equivalently, to supply the full electrical energy 

for 10 minutes of level flight. The Li-Po battery capacity is 7600 mAh and it provides 7.4 volts with two 

3.7 volt cells in series. With a gross weight of 2.3 lb (1.04 kg), the specific energy of the Li-Po battery is 

55 Wh/kg. The ideal power required by the aircraft at cruise is computed from weight  velocity / (L/D), 

where L/D is the lift-to-drag ratio. Considering the propeller and motor efficiencies, the total power 

required to be supplied to the electric motor spinning the propeller is:  

 

Power Required = weight x velocity / [L/D  (propeller efficiency)  (motor efficiency)].  

 

For the Tempest test vehicle, let us assume a baseline cruise weight of 20 lb (88 N), a cruise velocity of 40 

mph (17.9 m/s), and a typical L/D of 20. Assuming a motor efficiency of 85% and a propeller efficiency 

of 80%, the power required = 88  17.9 / (20  0.85  0.80) = 116 W and the total energy required for 10 

minutes of  straight, level flight is (116  10/60) = 19.33 Wh (~ 20 Wh). Hence, ideally, 0.26 kg (19.33/75 

kg) or 0.57 lb of M-SHELLS material could theoretically provide full power for 10 minutes of level flight. 

The total weight of the M-SHELLS battery would depend on the voltage demand of the electric motor and 

the number of units required to match the demand. Each M-SHELLS battery has a maximum voltage 

capacity of 3.7 volt. In order to supplement the 7.4 volts of the existing Li-Po battery, two M-SHELLS 

batteries have to be connected in series. That doubles the M-SHELLS package weight to (0.26  2) = 0.52 

kg or (0.57  2) = 1.14 lb for 10 minutes of level flight at full power. 

 

 

Figure 10. Tempest FEM analysis with M-SHELLS composite panel fuselage floor. 

This 0.52 kg (1.14 lb) M-SHELLS battery weight is only the weight of the core that supplies the power. 

One must add the weight of the two top and two bottom layers of the 5-layer sandwich, which are required 

to reinforce and insulate the core. The M-SHELLS specimen density is 0.0039 lb/in3. The five-layer 

bonded sandwich panel consists of 0.02 in thermoplastic sheet for insulation on the outer faces, 0.002 in 

aluminum sheet on the inner faces and 1.0 inch deep honeycomb M-SHELLS core. This reinforced 

sandwich panel density is 0.0069 lb/in3. Thus, the total M-SHELL battery package weight is (1.14  

0.0069/0.0039) = 2.01 lb for 10 minutes of cruise.  

The original fuselage floor weight of the Tempest was 0.32 lb. One stack of this five-layer energy 

storage panel, replacing 180 in2 of mid-fuselage floor, would weigh 1.24 lb. Two stacks of the energy 

storage panel, each with 3.7-volt delivery, are required in series to deliver 7.4 volts. Hence, the total weight 

of the M-SHELLS battery is estimated to be 2.48 lb. This weight was distributed over the fuselage for the 

structural analysis. The structural deflection and nodal strain distribution from the FEM analysis results of 

the Tempest vehicle with the 2.5 lb M-SHELLS composite panel replacing the fuselage floor are shown in 

Figure 10. This multifunctional battery panel would provide both structural integrity of the fuselage floor 

and supply electrical energy to supplement the Li-Po battery. 



 

 
15 

  

NASA X-57 Maxwell Test Vehicle 

Under the Scalable Convergent Electric Propulsion Technology Operational Research (SCEPTOR) 

project, the X-57 Maxwell test vehicle wing is presently being constructed at NASA Armstrong Flight 

Research Center. Figure 1e showed the NASA X-57 Maxwell experimental test aircraft concept [ref. 4] 

with a distributed electric propulsion system featuring 12 electric-motor-driven propellers on an innovative 

high-lift wing. The X-57 Maxwell vehicle will test the performance of this specially designed wing with 

distributed electric propulsion in order to evaluate mission benefits for this class of vehicle.  

Figure 11 shows the weight breakdown of the NASA X-57 Maxwell experimental test aircraft. The 

original wing of the Italian Tecnam P2006T aircraft will be replaced with a specially designed distributed 

electric propulsion wing with 12 electric-motor-driven propellers. The wing-tip propellers help reduce the 

induced drag from the tip vortex. The synchronized motors are powered by a 358 kg Nickel-Cobalt-

Aluminum (NCA) battery pack. The electric power system is organized into eight battery modules, split 

into two packs with four battery modules and a control module each. Cooling is provided through 18,650 

cells spaced evenly, 4 mm apart. The NCA cells provide sufficient energy density and the required 

discharge rate for the flight test mission. Each pack supplies 47 kWh of useful energy, with a peak 

discharge power of 132 kW. The total battery package weight is estimated to be 790 lb (358 kg), or 26% 

of the total aircraft takeoff gross weight of 3006 lb (1364 kg). The aluminum fuselage weight is 302 lb 

(136 kg), and the total estimated structure weight without the landing gear is 738 lb (335 kg).  

 

Figure 11. Component weight fractions for the X-57 Maxwell electric distributed propulsion 

vehicle. 

 

Figure 12. X-57 Maxwell standard mission power requirement estimates. 
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Figure 12 shows initial power requirement estimates for the standard mission of the X-57 Maxwell [ref. 

6] flight-test vehicle. The energy requirement for each phase of the mission is obtained by integrating the 

power requirement over time (area under the power requirement curve). For example, during the cruise 

time interval of 800 seconds (0.22 hour), at constant power the energy required is 120 x 0.22 = 26.4 kWh 

with the X-57 wing (blue line). Based on the current mission analysis utilizing the original Tecnam wing, 

38 kWh is required to meet the peak power demand of 145 kW (red line).  

Assuming M-SHELLS could produce 1000 W/kg specific power at a 75 Wh/kg specific energy, a 120 

kg M-SHELLS package would ideally provide 120 kW of power and 9 kWh of energy. Given the 120 kW 

of power required during cruise with the X-57 wing (blue line), the M-SHELLS package could supply 

energy for a duration of 0.075 hours, or 270 seconds, at level cruise.  

 

 

Figure 13. X-57 floor deflection and shear stress analysis with 265 lb (120 kg) M-SHELLS 

distributed over the forward fuselage floor area. 

A preliminary structural analysis of the fuselage was conducted with the reinforced M-SHELLS 

multifunctional panel replacing the lightly loaded aluminum floor. Figure 13 shows an example of fuselage 

floor deflection and shear stress with the original floor replaced by a reinforced composite panel with the 

M-SHELLS core. The five-layer composite sandwich panel consisted of two 0.05 in thermoplastic sheets 

for reinforcement and insulation on the outer faces, which were bonded to the two 0.002 in aluminum 

sheets on the inner faces over the 1.0 in deep M-SHELLS honeycomb core. The specific weight of this 

reinforced M-SHELLS panel was computed to be 11.9 lb/ft3. For this example, the total distributed floor 

load is 265 lb (120 kg) distributed over the forward fuselage floor area. The fuselage floor deflection is 

nominal and the majority of the shear stresses are generally within the allowable limits except at the mid-

fuselage support areas, which will require local reinforcements. 

 

Hybrid-Electric Aircraft 

In the ARMD Advanced Air Transport Technology (AATT) project, several aircraft concepts are 

presently being studied to quantify the performance improvements and emissions reduction afforded by 

hybrid-electric propulsion. Jensen et al. [ref. 7] have conducted extensive systems analysis to evaluate the 
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risks and benefits of a conversion from an all-fuel turbofan to a hybrid-electric turbofan engine concept. 

Among the propulsion options considered by this study, the ‘hFan’ concept is a gas turbine-electric hybrid 

engine capable of operating in all-gas turbine, all-electric, or combined mode, depending on mission 

requirements. Bradley and Droney [refs. 8, 9] also investigated conventional and truss-braced wing 

concepts with hybrid-electric propulsion.  

 

Objectives of the NASA Electrified Aircraft Propulsion (EAP) research are to increase fuel efficiency 

and to reduce the emissions and noise levels of commercial transport aircraft. Primary EAP propulsion 

concepts include turboelectric, partially turboelectric, and hybrid-electric systems. Applications are 

presently being evaluated for regional jet and larger sized single-aisle aircraft. The overall goal is to 

demonstrate the viability of at least one of the EAP concepts. A hybrid-electric derivative of the N+3 

technology conventional configuration (N3CC) is an ideal candidate for future applications of the M-

SHELLS technology, by replacing lightly loaded portions of the fuselage structures where use of 

lightweight honeycomb panel is possible. The outer mold line (OML) of this aircraft concept [ref. 5] was 

developed using the Open Vehicle Sketch Pad tool [refs. 10, 11]. The internal structure of a fuselage 

segment of this vehicle was developed using SolidWorks [ref. 12] for finite element analysis. The 

structural analysis included a combination of aluminum and reinforced M-SHELLS composite panels for 

stress, deflection, and weight estimation. 

 

 

 

Figure 14. N3CC fuselage segment analysis with aluminum 7075-T6 material construction. 

Figure 14a shows the N3CC vehicle model with internal structure, and the detailed FEM of a fuselage 

segment is shown in Figure 14b. The fuselage section design loads consist of an internal cabin pressure of 

18.4 psi, passenger floor load of 1 psi, and cargo floor load of 2 psi. Table 2 shows the weight analysis of 

the N3CC fuselage segment with Al 7075-T6 construction. The total FEM weight of this all-aluminum 

fuselage segment is 4992 lb. This includes a passenger floor weight of 876 lb, an outer shell weight of 

3461 lb, a cargo floor weight of 342 lb, and the total keel-beam and cross-beam weight of 313 lb. Figure 

14c shows the all-aluminum fuselage deflection and Figure 14d shows the von Mises stress distribution. 
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Table 2. Weight Analysis of N3CC Fuselage Segment with Aluminum 7075-T6 Construction.  

 
 

Figure 15 shows the modified fuselage section in which the passenger and cargo subfloor cross-beams 

were replaced with the five-layer reinforced composite panels with honeycomb core (5LCHC). The 

sandwich panels consisted of 1-inch deep M-SHELLS honeycomb core with 0.002 in aluminum ply and 

0.05 in thermoplastic ply on each side. The specific weight of the reinforced M-SHELLS sandwich panel 

was 11.9 lb/ft3. Figure 15a shows the N3CC fuselage model and design load. As before, the fuselage 

section design loads consisted of an internal cabin pressure of 18.4 psi, passenger floor load of 1 psi, and 

cargo floor load of 2 psi. The passenger subfloor and cargo subfloor cross-beams are now replaced with 

this five-layer bonded composite panel with M-SHELLS honeycomb core (Figure 15b). Figure 15c shows 

a significant increase in the maximum floor deflection compared to the all-aluminum construction shown 

in Figure 14c. Figure 15d shows maximum von Mises stress distribution across all ply, which are 

significantly higher locally in the passenger sub-floor cross-beam. 
 

 

Figure 15. N3CC fuselage segment analysis with passenger and cargo subfloor cross-beams 

replaced by reinforced composite panels with M-SHELLS core. 

Fuselage Assembly height (in) 160 width (in) 148 length/segment 288 in frame spacing 24 in FEM fuselage 

Segment Structural 

Items
length width area thickness volume material density

item 

weight 

no. of 

items

total 

weight 

segment 

component

segment 1 inch inch  in2 in in3 lb/in3 lb 1 unit weight (lb)

fuselage frame (oval) segment 3699 0.208 769 AL 0.1015 78 13 1015 lb per segment

fuselage outer skin 288 493 141984 0.156 22150 AL 0.1015 2248 1 2248 lb pass floor

passenger floor 288 148 42624 0.104 4433 AL 0.1015 450 1 450 lb 876

passenger floor beam 148 12 1776 0.104 185 AL 0.1015 19 13 244 lb

passenger floor frame 288 12 3456 0.104 359 AL 0.1015 36 5 182 lb outer shell

cargo floor skin 288 99 28512 0.104 2965 AL 0.1015 301 1 301 lb 3461

cargo floor frames 3 99 297 0.104 31 AL 0.1015 3 13 41 lb Cargo floor

wing carry-thru beam 150 20 3000 0.104 312 AL 0.1015 32 2 63 lb 342

keel beam 288 19 5472 0.15 821 AL 0.1015 83 3 250 lb keel+wing beam

longitudinal stringers 288 5 1440 0.104 150 AL 0.1015 15 13 198 lb 313

fuselage segment weight 295 sq ft passenger floor area 16.9 lb/sq ft 4992 lb 4992
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Table 3. Weight Analysis of N3CC Fuselage Segment with Aluminum 7075-T6 and M-SHELLS 

Honeycomb Composite Panel. 

  
 

Table 3 shows the weight analysis of the N3CC fuselage segment with aluminum and M-SHELLS 

composite panels. The total FEM weight of this fuselage segment is 4830 lb. The passenger floor weight 

is reduced to 728 lb from 876 lb in the previous case. The aluminum outer shell weight remains 3461 lb. 

The cargo floor weight is reduced to 328 lb from 342 lb. The total keel-beam and cross-beam weight 

remains 313 lb. Thus, the weight reduction for one fuselage segment is 162 lb or 3.2%, at the cost of higher 

fuselage deflection and stress, but without risking the structural integrity (Figures. 15c and 15d). 

 

Figure 16. N3CC fuselage segment analysis with additional reinforced M-SHELLS panel added to 

the subfloor cargo area. 

      Since this substitution resulted in large increases in deflection and stress in the passenger floor 

(Figures. 15c, 15d), additional sub-floor support in the cargo hold area was examined as shown in Figure 

16a and 16b. The corresponding structural deflection and stress distribution are shown in Figures. 16c and 

16d. The maximum deflection was reduced significantly and the von Mises stress distributions were within 

the allowable limits. The additional M-SHELLS weight was 173.5 lb. Hence, the net weight increase was 

Fuselage Assembly height (in) 160 width (in) 148 length/segment 288 in frame spacing 24 in FEM fuselage 

Segment Structural 

Item
length width area thickness material property

item 

weight 

no. of 

items

total 

weight 

segment-1 

component

STARC_LEED.sldasm inch inch in 2 inch prop unit lb 1 unit weight (lb)

fuselage frames (oval) segment 1 3699 0.208 AL 0.1015 lb/in 
3 78 13 1015 lb per segment

fuselage outer skin 288 493 141984 0.156 AL 0.1015 lb/in 3 2248 1 2248 lb pass. floor

passenger floor 288 148 42624 0.104 AL 0.1015 lb/in3 450 1 450 lb 728

passenger floor beam 148 12 1776 1.104 5LCHC 0.00689 lb/in 
2 12 13 159 lb

passenger floor frame 288 12 3456 1.104 5LCHC 0.00689 lb/in 2 24 5 119 lb outer shell

cargo floor skin 288 99 28512 0.104 AL 0.1015 lb/in 3 301 1 301 lb 3461

cargo floor frame 3 99 297 1.104 5LCHC 0.00689 lb/in 2 2 13 27 lb cargo floor

wing carry-thru beam 150 20 3000 0.104 AL 0.1015 lb/in 
3 32 2 63 lb 328

keel beam 288 19 5472 0.15 AL 0.1015 lb/in 
3 83 3 250 lb keel+wing beam

longitudinal stringer 288 5 1440 0.104 AL 0.1015 lb/in 3 15 13 198 lb 313

one fuselage segment weight 295 sq ft passenger floor area 16.37 lb/sq ft 4830 lb 4830
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11.5 lb (0.23%) per segment, compared to all aluminum construction (without sub-floor side support), 

while adding 56 cubic foot of M-SHELLS storage volume and  22 kWh of energy capacity per fuselage 

segment. The fuselage section weight comparison summary for the three designs is presented in Figure 

17.  

 

Figure 17. Summary of weight comparison for the three fuselage segment designs.  

These weight calculations were with the reinforced M-SHELLS panel having a density of 11.9 lb/ft3. They 

did not include reactive materials that are required to complete the energy storage functionality but do not 

add to the structural strength. Appendix B shows the Hexcel and M-SHELLS sandwich panel densities. 

The focus of this report was solely on the local structural aspects of the multifunctional storage. The full 

vehicle systems analysis for the  N3CC derivative with hybrid-electric propulsion was presented by Olson 

and Ozoroski [2]. Their objective was to predict the vehicle performance benefits with projected specific 

energy M-SHELLS panels replacing major primary structure of the wing and fuselage. Their study showed 

that by offsetting the weight of some of the vehicle’s primary batteries or mission fuel, an overall weight 

savings could be achieved through multifunctionality. 

 

Concluding Remarks 

The Multifunctional Structures for High Energy Lightweight Load-bearing Storage (M-SHELLS) 

research project is described. The proposed project goals were to develop M-SHELLS in the form of 

honeycomb coupons and subcomponents, integrate them into the structure, and conduct low-risk flight-

tests onboard a remotely piloted small aircraft. The M-SHELLS prototype power units were scheduled for 

flight testing onboard a remotely piloted small aircraft named Tempest. Detailed finite element models of 

this small test aircraft were developed for basic structural strength and accurate weight analysis. The 

Tempest wing FEM was refined to include the unique wing construction and provide a closer match with 

the wing deflection results from a bench test. The component weight analyses from the finite element 

analysis and load test data were correlated. Finite element analysis results of Tempest with a reinforced 

five-layer M-SHELLS composite panel replacing the mid-fuselage floor were presented. The M-SHELLS 

battery pack weighing approximately 2.0 lb could theoretically provide ~20 Wh of energy at 7.4 volt for 

10 minutes of cruise flight. Although the planned flight test was cancelled due to the project constraints, 

the analysis results indicate that the composite multifunctional panel could provide both structural integrity 

and electrical energy to supplement the existing battery. 

The NASA X-57 Maxwell distributed electric propulsion test vehicle was used as an example for 

potential application of the M-SHELLS technology. The fuselage floor structure was selected for 

augmenting the existing Li-Po battery substituting a reinforced composite panel with M-SHELLS core. A 

structural analysis of the fuselage floor indicated that it could self-support a 265 lb (120 kg) M-SHELLS 
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system, providing sufficient power and energy for 270 seconds of cruise flight. The fuselage floor 

deflection is nominal and the majority of the shear stresses are generally within the allowable limits. For 

future applications of M-SHELLS, structural analysis of an advanced transport aircraft fuselage segment 

is presented. Secondary aluminum structures in the fuselage sub-floor and cargo area were replaced with 

reinforced composite panels with M-SHELLS honeycomb core. Fuselage structural analyses associated 

with three cases were described. The weight estimation with the reinforced composite M-SHELLS panels 

replacing the passenger sub-floor indicated a 3.2% reduction in fuselage weight, at the cost of higher 

deflection and stresses, but without risking the structural integrity. With additional M-SHELLS panels in 

the cargo hold area, the deflection and stresses were reduced. But, the net weight of the fuselage segment 

increased by 0.23% compared to all aluminum construction (without sub-floor support), while adding 56 

cubic foot of M-SHELLS volume and 22 kWh of energy capacity per segment. These weight calculations 

were with the reinforced M-SHELLS panel having a density of 11.9 lb/ft3. They did not include reactive 

materials that are required to complete the energy storage functionality.  

 

 

Appendix A 

Material Elastic Property and Density 

 

 

Appendix B 

M-SHELLS Sandwich Panel Density 

 

 

 

 

 

Material property

Advanced 

stitched 

composite AL 7075 T6

ABS 

Thermoplastic

M-SHELLS 

test 

specimen unit

Elastic Modulus (T) 9750000 10442710 290075 11188 psi

Poisson's ratio 0.4 0.33 0.394 0.39

Shear mudulus 2570000 3901515 46250 4024 psi

Mass density 0.0526 0.0101 0.04 0.0039 lb/in 3

Tensile strength 105100 82760 4350 90 psi

Compressive strength 79200 80000 4000 120 psi

Yield strength 46500 73244 4355 90 psi

Sandwich  Panel Description cell density density unit

Hexcel Sandwich AL-Hexcel HC 1/4 5052-0.002 4.3 lb/ft 3 = 0.0025 lb/in 3

Hexcel Sandwich AL-Hexcel HC 1/4 5052-0.004 7.9 lb/ft 3 = 0.0046 lb/in 3

5 layer bonded MSHC 5LMSHC (0.002) core 1/4 5052-0.002 11.9 lb/ft 3= 0.0069 lb/in 3

5 layer bonded MSHC 5LMSHC (0.004) core 1/4 5052-0.004 16.19 lb/ft 3 = 0.0094 lb/in 3
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