
Mars Ascent Vehicle

MARS ASCENT VEHICLE HYBRID PROPULSION DEVELOPMENT

George Story, Ashley Karp, Barry Nakazono, George Whittinghill, & Greg Zilliac

June 2019

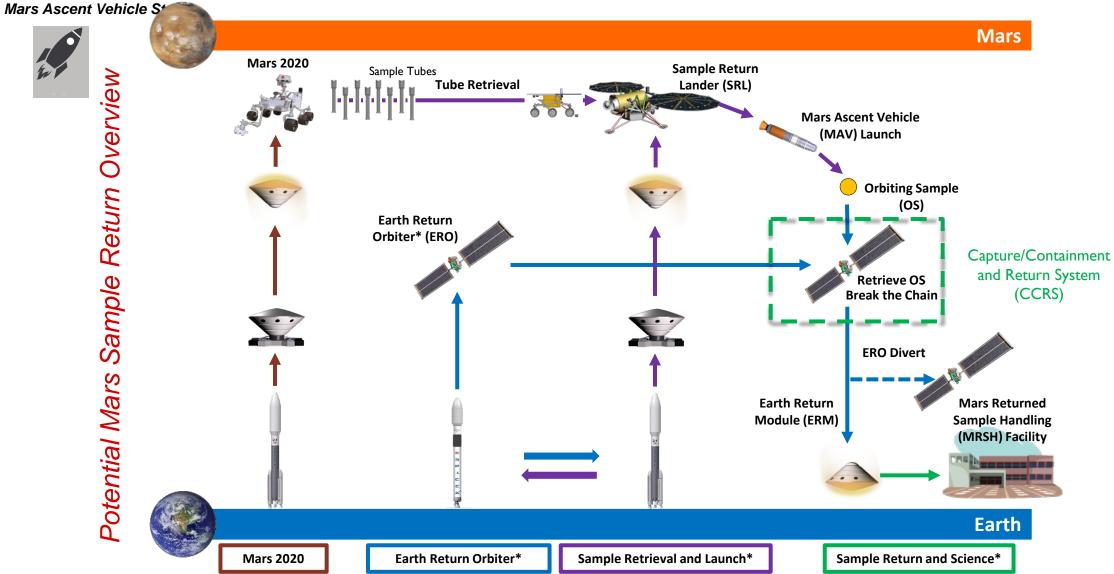
Pre-Decisional

Mars Ascent Vehicle Study

Potential Mars Sample Return (MSR)

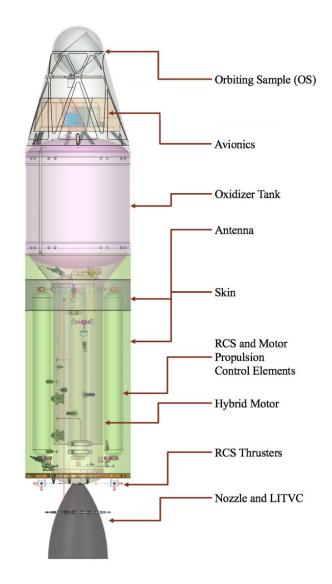
- Potential Hybrid Design
- 2019 Preliminary Architecture Assessment
- Propellant Combination: Fuel
- Propellant Combination: Oxidizer
- Full Scale Testing thru 2018
- Hypergolic Ignition
- TEA/TEB Ignition
- Solid Hypergolic Additives
- 2018 test longest duration test
- 2019 test
- Liquid Injection Thrust Vector Control
- White Sands Test Facility
- FY19 and Future Work
- Summary

Mars Ascent Vehicle Study

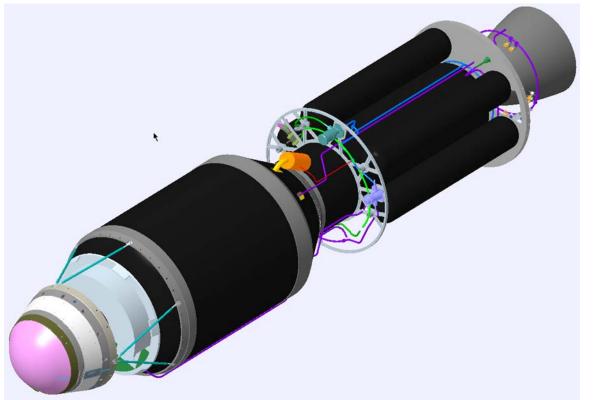


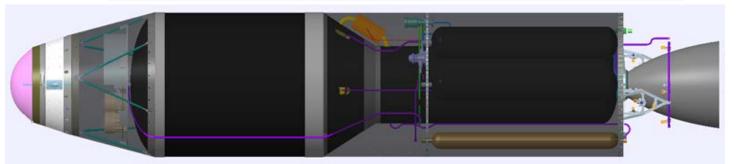
Potential Mars Sample Return (MSR)

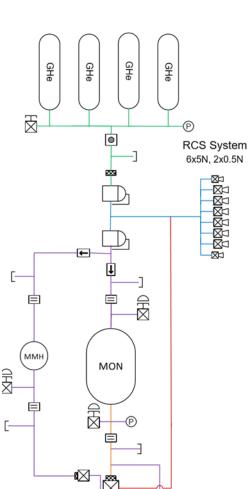
- A potential MSR campaign is being studied jointly by NASA and ESA for launch as early as 2026.
 - Technology development for a hybrid propulsion system that could meet this challenging schedule.
- Sample Retrieval Lander
 - Studying a Propulsive Platform Lander and Skycrane Delivered Lander
 - Notional requirements of 400 kg and <3 m



Mars Ascent Vehicle Study


Potential Hybrid Design

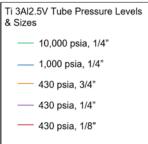

- The main focus for the hybrid propulsion team has remained on the technology development of the novel propellant combination and the design has matured along with the tests.
- Additionally, preliminary work on the Sample Retrieval Lander has started to drive mass and geometric constraints.
 - Mass: maximum of 400 kg GLOM for a payload of 14 kg(30 samples).
 - Geometry: 2.8 m by 0.57 m



2019 Preliminary Architecture Assessment

LITVC

(x4 at 90


deg angles)

Hybrid MAV

Ashley Karp, v. 4/19/2019

Mars Ascent Vehicle Study

Propellant Combination: Fuel

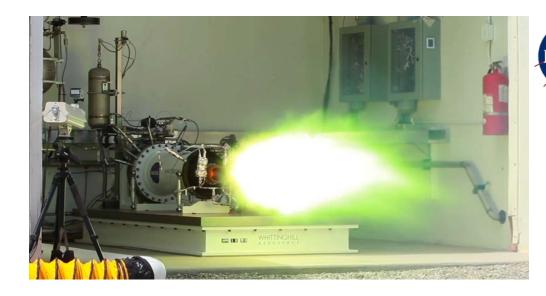
- SP7 is a wax-based (but higher melt temperature/viscosity than paraffin)
- Residual stresses
 - SP7 shrinks 15-20% in the liquid to solid phase transition
 - The material cools from the outside inward, leaving residual stresses within the segment.
 - Grains were first allowed to cool at ambient conditions → cracking
 - Later grains were cooled at a controlled rate with success, however minor changes to the cooling process have resulted in issues, implying residual stresses are still high.
 - Southern Research is carrying out material testing on SP7 to obtain material properties for modeling
- Reformulated SP7 to get 85% regression rate version, called SP7A

Mars Ascent Vehicle Study

Propellant Combination: Oxidizer

- Mixed Oxides of Nitrogen (MON) is a common space storable oxidizer, but has not been used for a hybrid motor in the past.
 - Most existing propulsion systems use MON-0.5 to MON-25, where the number stands for the percentage of NO in the mixture (by mass).
 - Previous hybrid MAV concepts used MON-30 because of it's low freezing point, <-80C.
 - The curve relating freezing temperature to the amount of NO in the mixture is very steep, with a difference of about 25 C between MON-25 and MON-30.
 - The current mission design indicates that the MAV and oxidizer could be kept above -40
 C (the updated mission timeline does not require the MAV to be on Mars in winter)
 - A move to MON-25 was made in 2018 based on the new mission timeline and the availability of the oxidizer.
- One of the challenges (and benefits) of MON is that it is reactive with many materials. All
 potential components are being evaluated for compatibility and hypergolic ignition.

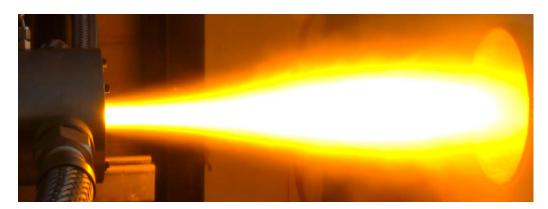
Mars Ascent Vehicle Study



Hypergolic Ignition

- Previous studies suggested that hypergolic ignition, with solids mixed in the SP7, would be the lightest mass option for MAV.
- Two methods of hypergolic ignition are currently being considered.
 - Liquid: Triethyl Aluminum and Triethyl Borane (TEA/TEB) with the MON oxidizer.
 - Commonly used (with oxygen) in rocket applications
 - Purdue completed a drop test with N₂O₄ that indicated it is hypergolic with TEA
 - Other hypergolic liquids are available and some have been tested in ignition tests
 - Solid: Solid materials are added to the hybrid fuel grain that are hypergolic with MON.

TEA/TEB Ignition

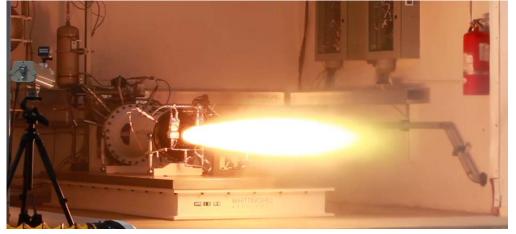

- TEA/TEB is currently being used with a small amount of GOx to ignite the motor and maintain stable combustion throughout the burn (vaporize the MON)
- Disadvantages:
 - The TEA/TEB system accounts for nearly 20% of the total component count in the feed system.
 - Safety considerations of carrying a hypergolic liquid
 - Performance at low temperatures may not be sufficient
- Using TEA/TEB and GOx for current testing until a different hypergolic, MMH, can be tested with MON-25. Historical data shows MMH/MON-25 thruster firings at -40C.

Mars Ascent Vehicle Study

Solid Hypergolic Additives

- Solid hypergolic materials simplify the design by not requiring additional tanks/plumbing
- Subscale hotfire testing (2 inch scale) at Purdue confirmed the performance of several solid hypergolic options using different amide formulations and MON.
- Unique processing steps were developed by Purdue to incorporate the material into SP7.
- The main disadvantage of this option is the additives sensitivity to moisture, complicating handling of the otherwise inert motor.

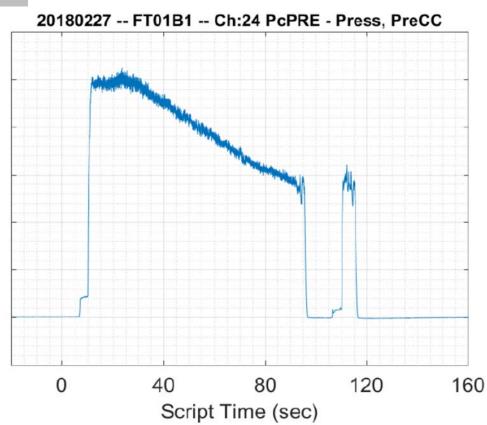
2" motor test at Purdue


Full Scale Testing thru 2018

- Two vendors have completed hybrid motor testing at full scale over the past year and a half.
 - Duration: almost full mission duration testing with a motor shutdown and restart without human intervention.
 - Performance: C* efficiency ~ 90% (goal 95%)
 - Concerns
 - Stability: using TEA/TEB to vaporize MON
 - Nozzle erosion
 - All testing was with MON-3 because it is less expensive, easier to acquire and is has similar vapor pressures at atmospheric conditions to MON-25 at -20 C.

Space Propulsion Group, of Butte, MT

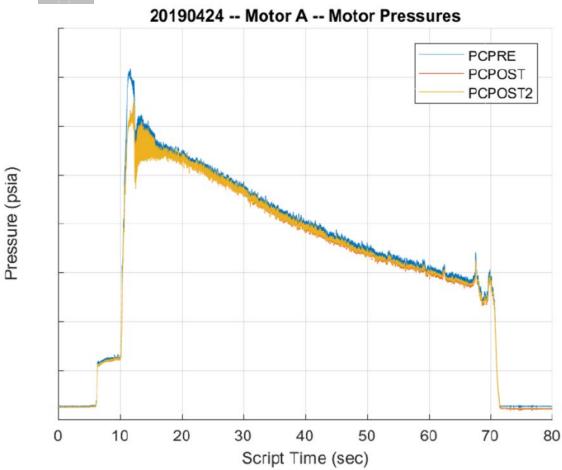
Whittinghill Aerospace, of Camarillo, CA



Mars Ascent Vehicle Study

Pressure (psig)

2018 test – longest duration test



- SP7 MON-3
- Ambient Temp
- Ignition source TEA/TEB w/ GOx
- Restart of the motor
- Higher than desired nozzle erosion
- Stable test
- 90 secs

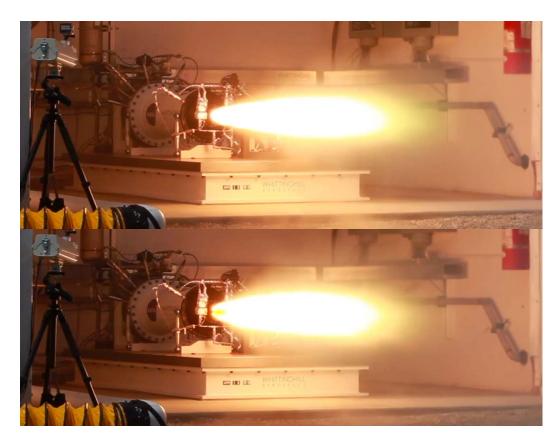
Mars Ascent Vehicle Study

2019 test

- Grain assembled into cartridge/liner and case at -20C
 - Keep the grain in compression at cold temperatures
- SP7 MON-25
- Conditioned to -20C
- Ignition source TEA/TEB w/ Gox
- Higher than desired nozzle erosion
- Stable test
- 60 secs

National Aeronautics and Space Administration Jet Propulsion Laboratory / Marshall Space Flight Center

Mars Ascent Vehicle Study


2019 test

Liquid Injection Thrust Vector Control

- Benefits led to selection
 - Low mass and small deflection required: 1-2°.
- Design: Four pairs (90° around the nozzle)
 - One valve would provide sufficient flow for a ±1° deflection and both valves would provide ±2°.
 - Currently modifying a light weight, fast acting valve for MON service.
- This test (and all full-scale tests to date) have been completed at Earth ambient pressure and temperatures. X/L is different, but using this data to anchor modeling.
- Testing at WSTF will confirm vacuum performance.

LITVC Testing at Earth Ambient Pressure

White Sands Test Facility

- Vacuum test for LITVC performance
 - Full nozzle length and area ratio
- Before it gets to WSTF, motor will be Computed Tomography (CT) inspected, thermally cycled and CT inspected again.
- Test planned for late 2019
 - SP7A and MON-25
 - Conditioned to -20C
 - Ignition source TBD

WSTF Test Stand 403 Vacuum Chamber

Mars Ascent Vehicle Study

FY19 and Future Work (1/2)

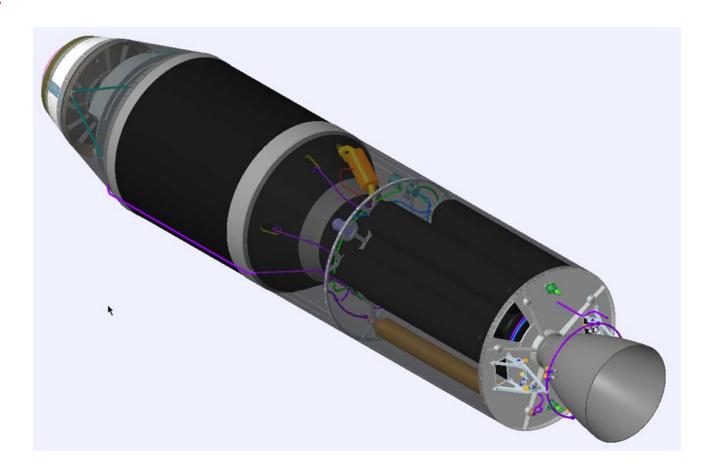
- The goal of this technology development program is to have demonstrated the major milestones required for a hybrid MAV design that closes under the current assumptions for Mars Sample Return by the end of 2019.
- The highlight of this effort will be testing of a thermal cycled, full-scale hybrid motor under relevant (low pressure and cold) conditions at White Sands.
 - Up to five additional hotfire tests are planned to prepare for the WSTF test.
 - Two more tests focus on motor development for the wax-based fuel and MON-25 oxidizer and achieving performance and burn time goals. (Whittinghill)
 - Two tests will demonstrate a light weight motor case under relevant thermal conditions with SP7 and MON-3 (SPG)

Mars Ascent Vehicle Study

FY19 and Future Work (2/2)

- Purdue will test hypergolic ignition of SP7 with solid additives and MON-25 under low pressure conditions this year.
 - Full-scale testing will continue to use a liquid hypergol for ignition this year
 - The potential for adding solid additive to a hybrid MAV will be evaluated and a decision should be made by the end of the fiscal year.
- A qualification program for a hybrid motor will continue to be refined.
- MSFC is doing a Preliminary Architecture Assessment, a study to design complete concepts for both a hybrid and solid version of a MAV vehicle, working closely with the MSR and SRL studies being led by JPL to make sure the MAV concepts fit within study constraints for the higher level architecture.

Mars Ascent Vehicle Study


Summary

- A technology development program is underway to determine feasibility of the hybrid option for a potential Mars Ascent Vehicle as part of a potential robotic Mars Sample Return Campaign.
- Substantial strides have been taken in the propulsion system development.
- Full scale hotfire testing has been completed at two vendors and the development is ongoing with both vendors joining their efforts.
- Hypergolic ignition has been researched and demonstrated using multiple options.
- The potential design is continually updated based on the developments of the development program.
- The goal is to demonstrate a design that closes by the end of 2019.

Questions?

