

National Aeronautics and Space Administration



### Small Launch Vehicle Sizing Analysis With Solid Rocket Examples

### Tim Kibbey Jacobs Space Exploration Group

June 2019

## Good modeling and a "trade space mentality" generates much launch vehicle information for little cost



a semi-empirical inert mass fraction model that is explicit and transparently fits a broad base of historical stage data



### Single-stage performance comparisons

#### **Mars Ascent Vehicle examples**





#### A trade space mentality might seek to answer one of the following questions:

Relative to a reference case -

- Which propellant choice accomplishes the mission in a smaller gross mass, volume, or length?
- Is this different propellant combination able to deliver more performance than a reference propellant combination, given similar technology level and construction standards?
- Is this technology improvement more impactful for propellant A or propellant B?
- Is this technology improvement more impactful for mission A or mission B?
- Can Stage B be swapped in for Stage A for equal or greater performance?



# This mass model is empirically adjustable and easy to implement, but not too simple.

- Stage inert mass (fraction) is a sum of the effects of 3 factors:
  - Mass due to volume
    - Propellant bulk density including novel propellant combinations
  - Mass due to thrust
    - estimates engine mass & other thrust- and loads-driven structure
  - Mass due to size (diameter proxy for small stage effects)
    - estimates how mass efficiency suffers as stages get smaller
- Correlation coefficients become "technology factors" (material, technique, safety factor, etc.)

$$\frac{inert\ mass}{propellant\ mass} = \boldsymbol{f}_{i} = \boldsymbol{f}_{i,vp,ref} \left(\frac{\rho_{p}}{\rho_{p,ref}}\right)^{-1} + \boldsymbol{C}_{F}FW_{p} + \boldsymbol{C}_{mpref} \left(\frac{m_{p}}{m_{p,ref}}\right)^{-\frac{2}{3}}$$



### **Useful Values for the Technology Parameters**

| MODEL PARAMETER                                                 | HIGH<br>ESTIMATE | MEDIUM | LOW<br>ESTIMATE |
|-----------------------------------------------------------------|------------------|--------|-----------------|
| $f_{i,vp,ref}$ (ref is at typical LOx/Kerosene density, 2.7 OF) | 0.030            | 0.022  | 0.015           |
| C <sub>FW</sub>                                                 | 0.040            | 0.031  | 0.025           |
| $A_{mpref}$ (ref is at 10,000 lbm)                              | 0.186            | 0.127  | 0.077           |

|              | $\frac{\rho_p}{\rho_{p,ref}}$ | C <sub>mpref</sub><br>LOW | C <sub>mpref</sub><br>Medium | C <sub>mpref</sub><br>HIGH |
|--------------|-------------------------------|---------------------------|------------------------------|----------------------------|
| STORABLES    | 1.17                          | 0.165                     | 0.113                        | 0.068                      |
| LOX/KEROSENE | 1                             | 0.186                     | 0.127                        | 0.077                      |
| LOX/LH2      | 0.35                          | 0.407                     | 0.278                        | 0.168                      |

-  $C_{mpref}$  can be related to propellant bulk density to extend to other propellant combinations

$$C_{mpref} = A_{mpref} \left(\frac{\rho_p}{\rho_{p,ref}}\right)^{-\frac{3}{4}}$$



## Mass due to volume assesses across propellants combinations, common & novel

- Reference: LOX and Kerosene at a 2.7 oxidizer-to-fuel (OF) ratio
- $f_{i,vp,ref}/\rho_{p,ref}$  constitute reference tanks' combined specific volume
  - How much less new propellant can fit in a stage of the same volume as the reference stage?
  - How much more volume must envelope the same mass of new propellant as the reference stage?

Mass fraction due to volume =  $f_{i,vp}$ 

$$i, vp, ref\left(\frac{\rho_p}{\rho_{p, ref}}\right)^{-1}$$

$$\rho_p = \frac{OF + 1}{\frac{OF}{\rho_{oxidizer}} + \frac{1}{\rho_{fuel}}}$$



# Mass due to thrust corrects for thrust changes induced by propellant choice & mission needs

Add in the factor for thrust-to-weight (propellant) ratio  $(FW_p)$ 

$$\boldsymbol{f}_{i,large} = \boldsymbol{f}_{i,vp,ref} \left(\frac{\rho_p}{\rho_{p,ref}}\right)^{-1} + \boldsymbol{C}_F F W_p$$

Rewrite formula:  $f_i$  new as function of reference  $f_i$ 

Example: Delta IV core as function of Atlas V core

$$f_{i,\Delta IV} = f_{i,AV} \frac{\rho_{p,ref}}{\rho_{p,\Delta IV}} + C_F \left( FW_{p,\Delta IV} - \frac{\rho_{p,ref}}{\rho_{p,\Delta IV}} FW_{p,AV} \right)$$
  
0.134 = 0.079 \cdot 2.84 + C\_F (1.69 - 2.84 \cdot 1.49)  
0.224

The term C<sub>F</sub> multiplies is like cutting off thrust-associated mass

Solve for  $C_F = 0.036 \rightarrow f_{i,vp,ref} = 0.026$ 



#### Mass due to thrust trends are supported by database of designed stages

LOx/Kerosene: anchored at extremes 0.25 data Atlas-Delta Fraction 0.20 high trend low trend 0.15 nert Mass 0.10 0.05 0.00 2 3 4 5 0 Thrust-to-weight  $f_{i,large} = f_{i,vp,ref} \left(\frac{\rho_p}{\rho_{n,ref}}\right)^{-1} + C_F F W_p$ 

Storables: two families



8

#### Mass Due to Size is exemplified by solids analogous to a diameter effect

$$f_{i}m_{p} = f_{i,min}m_{p} + m_{min}(D) = f_{i,min}m_{p} + C \cdot m_{p}^{1/3}$$

$$f_{i} = f_{i,min} + C_{mpref} \left(\frac{m_{p}}{m_{p}, ref}\right)^{-2/3}$$
1.0
$$\lambda = \frac{m_{p}}{m_{p} + m_{i}}$$

$$\epsilon = \frac{m_{p}}{m_{p} + m_{i}}$$

data

 $10^{3}$ 

 $10^{2}$ 

Propellant Mass, kg

 $10^{1}$ 

medium trend

10<sup>4</sup>

high trend

low trend

$$m_p + m_i - 1 + f_i$$
  
 $m_i - 1$ 

$$f_i = \frac{m_i}{m_p} = \frac{1}{\lambda} - 1$$

1



Propellant Mass Fraction

0.6

0.4

10<sup>0</sup>

#### Mass due to size trends are supported by database of designed stages



Storables: largest range



# This model captures Molniya family first-order changes over a propellant mass range of 30 X





### **Model and Parameters Summary:**

Liquids - 
$$f_i = f_{i,vp,ref} \left(\frac{\rho_p}{\rho_{p,ref}}\right)^{-1} + C_F F W_p + C_{mpref} \left(\frac{m_p}{m_{p,ref}}\right)^{-\frac{2}{3}}$$
  
 $C_{mpref} = A_{mpref} \left(\frac{\rho_p}{\rho_{p,ref}}\right)^{-\frac{3}{4}}$ 

| MODEL PARAMETER                                                 | HIGH<br>ESTIMATE | MEDIUM | LOW<br>ESTIMATE |
|-----------------------------------------------------------------|------------------|--------|-----------------|
| $f_{i,vp,ref}$ (ref is at typical LOx/Kerosene density, 2.7 OF) | 0.030            | 0.022  | 0.015           |
| C <sub>FW</sub>                                                 | 0.040            | 0.031  | 0.025           |
| A <sub>mpref</sub> (ref is at 10,000 lbm)                       | 0.186            | 0.127  | 0.077           |

Solids – 
$$f_i = f_{i,min} + C_{mpref} \left(\frac{m_p}{m_p, ref}\right)^{-2/3}$$

|                    | HIGH $f_{i,min}$ | MEDIUM | LOW $f_{i,min}$ |
|--------------------|------------------|--------|-----------------|
| $\lambda_{max}$    | 0.9              | 0.93   | 0.943           |
| f <sub>i,min</sub> | 0.111            | 0.075  | 0.06            |
| C <sub>mpref</sub> | 0.0052           | 0.003  | 0.0018          |





Propellant, kg

13

#### **Example: Mars Ascent Vehicle studies identified** the importance of non-propulsion inert masses

- Mission
  - Sample return from Mars surface to low Mars orbit,  $\Delta V \approx 4$  km/s
  - Transit & surface mission duration: months
  - Baselines: two-stage solid & single-stage hybrid in competition
  - Compare: single or two-stage liquids (cryogenic not an option)

|                                                    | SOLIDS | LIQUIDS,<br>EXPECTED                                | LIQUIDS,<br>"BEST" |
|----------------------------------------------------|--------|-----------------------------------------------------|--------------------|
| MISSION PAYLOAD                                    |        | 16 kg                                               |                    |
| STAGE 2 INERTS: AVIONICS, RCS,<br>STRUCTURE        | 34     | 22                                                  | 0                  |
| STAGE 1 INERTS: INTERSTAGE AND<br>AERODYNAMIC TAIL | 14 7 0 |                                                     | 0                  |
|                                                    |        |                                                     |                    |
| "STAGE PAYLOAD" STAGE 2                            | 50     | 38                                                  | 16                 |
| "STAGE PAYLOAD" STAGE 1                            | 128    | <sizing-de< th=""><th>pendent&gt;</th></sizing-de<> | pendent>           |



## MAV mission drives solution away from liquid propulsion despite 1/3 the "stage payload"



#### This sizing correlation is a powerful tool for comparing stage design performance differences



semi-empirically shows the effects of Propellants choice & OF ratio Stage FW<sub>p</sub> Overall scale (propellant mass)



demonstrated where mass fraction outweighs *lsp* with single-stage performance comparisons



Demonstrated Mars Ascent Vehicle trade outcome: liquids don't measure up



**Questions?** 

### Nomenclature

| $A_{mpref}$        | global coefficient of mass scaling | MMH              | monomethyl hydrazine     |
|--------------------|------------------------------------|------------------|--------------------------|
| AV                 | pertaining to Atlas V              | N2O4             | nitrogen tetroxide       |
| $C_F$              | coefficient of thrust-to-weight    | m                | mass                     |
| $C_{mpref}$        | coefficient of mass scaling        | m <sub>i</sub>   | inert mass               |
| CAD                | computer-aided design              | Mgross           | gross mass, stage        |
| DAC                | design-analysis cycle              | m <sub>p</sub>   | propellant mass          |
| ΔIV                | pertaining to Delta IV             | M <sub>pay</sub> | payload mass             |
| f;                 | inert mass fraction                | OF               | oxidizer-to-fuel ratio   |
| FWn                | thrust-to-weight ratio (using      | RCS              | reaction control system  |
| propellant weight) | propellant weight)                 | ref              | reference                |
| GLOM               | gross liftoff mass                 | SRM              | solid rocket motors      |
| H2O2               | hydrogen peroxide                  | Ve               | exit velocity            |
| I <sub>sp</sub>    | specific impulse                   | vp               | propellant volume        |
| LCH4               | liquid methane                     | ΔV               | change in velocity       |
| LH2                | liquid hydrogen                    | λ                | propellant mass fraction |
| LOx                | liquid oxygen                      | ρ <sub>p</sub>   | propellant bulk density  |
| MAV                | Mars ascent vehicle                |                  |                          |

