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Good modeling and a “trade space mentality” generates 
much launch vehicle information for little cost

a semi-empirical inert mass fraction model that is 
explicit and transparently fits a broad base of 
historical stage data

Single-stage performance 
comparisons

Mars Ascent Vehicle examples



A trade space mentality might seek to answer 
one of the following questions:

Relative to a reference case –
 Which propellant choice accomplishes the mission in a smaller gross 

mass, volume, or length?
 Is this different propellant combination able to deliver more 

performance than a reference propellant combination, given similar 
technology level and construction standards?

 Is this technology improvement more impactful for propellant A or 
propellant B?

 Is this technology improvement more impactful for mission A or 
mission B?

 Can Stage B be swapped in for Stage A for equal or greater 
performance?

3



This mass model is empirically adjustable and 
easy to implement, but not too simple. 

 Stage inert mass (fraction) is a sum of the effects of 3 factors:
− Mass due to volume 
 Propellant bulk density – including novel propellant combinations 

− Mass due to thrust
 estimates engine mass & other thrust- and loads-driven structure

− Mass due to size (diameter proxy for small stage effects)
 estimates how mass efficiency suffers as stages get smaller

 Correlation coefficients become “technology factors” (material, 
technique, safety factor, etc.)
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𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝒇𝒇𝒊𝒊 = 𝒇𝒇𝒊𝒊,𝒗𝒗𝒗𝒗,𝒓𝒓𝒓𝒓𝒓𝒓

𝜌𝜌𝑝𝑝
𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−1

+ 𝑪𝑪𝑭𝑭𝐹𝐹𝑊𝑊𝑝𝑝 + 𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑚𝑚𝑝𝑝

𝑚𝑚𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−23



Useful Values for the Technology Parameters

MODEL PARAMETER HIGH 
ESTIMATE

MEDIUM LOW 
ESTIMATE

𝒇𝒇𝒊𝒊,𝒗𝒗𝒗𝒗,𝒓𝒓𝒓𝒓𝒓𝒓 (ref is at typical 
LOx/Kerosene density, 2.7 OF)

0.030 0.022 0.015

𝑪𝑪𝑭𝑭𝑭𝑭 0.040 0.031 0.025
𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 (ref is at 10,000 lbm) 0.186 0.127 0.077
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DENSITY RATIO  
𝝆𝝆𝒑𝒑

𝝆𝝆𝒑𝒑,𝒓𝒓𝒓𝒓𝒓𝒓

𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
LOW

𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
MEDIUM

𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
HIGH

STORABLES 1.17 0.165 0.113 0.068
LOX/KEROSENE 1 0.186 0.127 0.077
LOX/LH2 0.35 0.407 0.278 0.168

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌𝑝𝑝

𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−34

− 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 can be related to propellant bulk density to extend to other 
propellant combinations



Mass due to volume assesses across 
propellants combinations, common & novel

 Reference: LOX and Kerosene at a 2.7 oxidizer-to-fuel (OF) ratio
 𝒇𝒇𝒊𝒊,𝒗𝒗𝒗𝒗,𝒓𝒓𝒓𝒓𝒓𝒓/𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟 constitute reference tanks’ combined specific volume

− How much less new propellant can fit in a stage of the same volume as 
the reference stage? 

− How much more volume must envelope the same mass of new propellant 
as the reference stage?

Mass fraction due to volume = 

6

𝒇𝒇𝒊𝒊,𝒗𝒗𝒗𝒗,𝒓𝒓𝒓𝒓𝒓𝒓
𝜌𝜌𝑝𝑝

𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−1

𝜌𝜌𝑝𝑝 =
𝑂𝑂𝑂𝑂 + 1

𝑂𝑂𝑂𝑂
𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

+ 1
𝜌𝜌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓



Mass due to thrust corrects for thrust changes 
induced by propellant choice & mission needs

Rewrite formula: 𝑓𝑓𝑖𝑖 new as function of reference 𝑓𝑓𝑖𝑖
Example: Delta IV core as function of Atlas V core

The term CF multiplies is like cutting off thrust-associated mass

Solve for 𝑪𝑪𝑭𝑭 = 0.036   𝑓𝑓𝑖𝑖,𝑣𝑣𝑣𝑣,𝑟𝑟𝑟𝑟𝑟𝑟 = 0.026
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𝒇𝒇𝒊𝒊,𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 = 𝒇𝒇𝒊𝒊,𝒗𝒗𝒗𝒗,𝒓𝒓𝒓𝒓𝒓𝒓
𝜌𝜌𝑝𝑝

𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−1

+ 𝑪𝑪𝑭𝑭𝐹𝐹𝑊𝑊𝑝𝑝

𝑓𝑓𝑖𝑖,Δ𝐼𝐼𝐼𝐼 = 𝑓𝑓𝑖𝑖,𝐴𝐴𝐴𝐴
𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

𝜌𝜌𝑝𝑝,Δ𝐼𝐼𝐼𝐼
+ 𝐶𝐶𝐹𝐹 𝐹𝐹𝐹𝐹𝑝𝑝,Δ𝐼𝐼𝐼𝐼 −

𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

𝜌𝜌𝑝𝑝,Δ𝐼𝐼𝐼𝐼
𝐹𝐹𝐹𝐹𝑝𝑝,𝐴𝐴𝐴𝐴

0.134 = 0.079 · 2.84 + 𝐶𝐶𝐹𝐹 ( 1.69 − 2.84 · 1.49 )
0.224

Add in the factor for thrust-to-weight (propellant) ratio (𝐹𝐹𝑊𝑊𝑝𝑝)



Mass due to thrust 
trends are supported by 
database of designed 
stages
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LOx/Kerosene: anchored at extremes

Storables: two families

LOx/Hydrogen

𝒇𝒇𝒊𝒊,𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 = 𝒇𝒇𝒊𝒊,𝒗𝒗𝒗𝒗,𝒓𝒓𝒓𝒓𝒓𝒓
𝜌𝜌𝑝𝑝

𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−1

+ 𝑪𝑪𝑭𝑭𝐹𝐹𝑊𝑊𝑝𝑝



Mass Due to Size is exemplified by solids 
analogous to a diameter effect
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𝑓𝑓𝑖𝑖𝑚𝑚𝑝𝑝 = 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐷𝐷 = 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 + 𝐶𝐶 · 𝑚𝑚𝑝𝑝
1/3

𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑚𝑚𝑝𝑝

𝑚𝑚𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟

−2/3

𝑓𝑓𝑖𝑖 =
𝑚𝑚𝑖𝑖

𝑚𝑚𝑝𝑝
=

1
𝜆𝜆
− 1

𝜆𝜆 =
𝑚𝑚𝑝𝑝

𝑚𝑚𝑝𝑝 + 𝑚𝑚𝑖𝑖
=

1
1 + 𝑓𝑓𝑖𝑖



Mass due to size trends 
are supported by 
database of designed 
stages
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LOx/Kerosene

Storables: largest range

LOx/Hydrogen: breaks higher

𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑚𝑚𝑝𝑝

𝑚𝑚𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟

−2/3

𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = 𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝜌𝜌𝑝𝑝

𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−34

where, 



y = x + 9E-17
R² = 0.9857
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This model captures Molniya family first-order 
changes over a propellant mass range of 30 X
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Model and Parameters Summary:

MODEL PARAMETER HIGH 
ESTIMATE

MEDIUM LOW 
ESTIMATE

𝒇𝒇𝒊𝒊,𝒗𝒗𝒗𝒗,𝒓𝒓𝒓𝒓𝒓𝒓 (ref is at typical 
LOx/Kerosene density, 2.7 OF)

0.030 0.022 0.015

𝑪𝑪𝑭𝑭𝑭𝑭 0.040 0.031 0.025
𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 (ref is at 10,000 lbm) 0.186 0.127 0.077
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𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = 𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝜌𝜌𝑝𝑝

𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−34

𝒇𝒇𝒊𝒊 = 𝒇𝒇𝒊𝒊,𝒗𝒗𝒗𝒗,𝒓𝒓𝒓𝒓𝒓𝒓
𝜌𝜌𝑝𝑝

𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−1

+ 𝑪𝑪𝑭𝑭𝐹𝐹𝑊𝑊𝑝𝑝 + 𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑚𝑚𝑝𝑝

𝑚𝑚𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−23

𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑚𝑚𝑝𝑝

𝑚𝑚𝑝𝑝, 𝑟𝑟𝑟𝑟𝑟𝑟

−2/3

Liquids –

Solids –

HIGH 𝒇𝒇𝒊𝒊,𝒎𝒎𝒎𝒎𝒎𝒎 MEDIUM LOW 𝒇𝒇𝒊𝒊,𝒎𝒎𝒎𝒎𝒎𝒎
𝝀𝝀𝒎𝒎𝒎𝒎𝒎𝒎 0.9 0.93 0.943
𝒇𝒇𝒊𝒊,𝒎𝒎𝒎𝒎𝒎𝒎 0.111 0.075 0.06
𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 0.0052 0.003 0.0018



Single Stage comparison 
shows mass fraction 
outweighing Isp as scale 
decreases
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Electron Stage 1, 
F/W = 2.0

Electron Stage 2, 
F/W = 1.1

Falcon 9 Stage 1, 
F/W = 1.8

Falcon 9 Stage 2, 
F/W = 0.9

Electron fit, at 
F/W = 1.0

Solids: 
low-cost

Solids: high-
performance
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Propellant Mass, lbm

Reported
Predicted

𝑒𝑒−
Δ𝑉𝑉
𝑉𝑉𝑒𝑒 = 1 − 𝜆𝜆 1 −

𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝

𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝

𝒇𝒇𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎
𝜌𝜌𝑝𝑝

𝜌𝜌𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−1

+ 𝟎𝟎.𝟎𝟎𝟎𝟎𝐹𝐹𝑊𝑊𝑝𝑝 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎
𝑚𝑚𝑝𝑝

𝑚𝑚𝑝𝑝,𝑟𝑟𝑟𝑟𝑟𝑟

−23

Isp, s
333
290
450
360  



Example: Mars Ascent Vehicle studies identified 
the importance of non-propulsion inert masses

 Mission 
− Sample return from Mars surface to low Mars orbit, ∆V ≈ 4 km/s
− Transit & surface mission duration: months
− Baselines: two-stage solid & single-stage hybrid in competition
− Compare: single or two-stage liquids (cryogenic not an option)
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SOLIDS LIQUIDS, 
EXPECTED

LIQUIDS, 
“BEST”

MISSION PAYLOAD 16 kg
STAGE 2 INERTS: AVIONICS, RCS, 
STRUCTURE 34 22 0

STAGE 1 INERTS: INTERSTAGE AND 
AERODYNAMIC TAIL 14 7 0

“STAGE PAYLOAD” STAGE 2 50 38 16
“STAGE PAYLOAD” STAGE 1 128 <sizing-dependent>
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MAV mission drives solution away from liquid 
propulsion despite 1/3 the “stage payload”
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N2O4/MMH

Expected, 
38 kg 
stage 

payload

GLOM
GLOM, 
single-
stage

Stage 2 prop 
mass

Solids GLOM for 50 kg

N2O4 = nitrogen tetroxide
MMH = monomethyl hydrazine
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90% H2O2/Kerosene
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H2O2 = hydrogen peroxide



GLOM, 
N2O4/MMH

min, 642

GLOM, s ingle 
s tage, 683

Sol ids GLOM for comparison

Stage 2 Prop 
mass

2 equal 
s tages
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semi-empirically shows the effects of
Propellants choice & OF ratio
Stage FWp

Overall scale (propellant mass)

demonstrated where mass fraction 
outweighs Isp with single-stage 
performance comparisons 

Demonstrated Mars Ascent Vehicle 
trade outcome: liquids 

don’t measure up

This sizing correlation is a powerful tool for 
comparing stage design performance differences

Questions?



Nomenclature
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