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• High entropy alloys (HEAs) are a class of metallic alloys
consisting of 5+ elemental components and have four
core effects:

1. High mixing entropy
2. Sluggish diffusion kinetics
3. High lattice distortion
4. Cocktail effect

• Boron-free, silicon-free brazing materials for nickel
superalloys to avoid brittle intermetallic and eutectic
phase formation

• Size-dependent melting point depression can eliminate
the need for boron, silicon and other melting point
depressants

• A Ni-Mn-Fe-Co-Cu HEA with low solidus and liquidus
temperatures (1080 °C and 1150 °C) was developed

• Low solidus and liquidus temperatures of the HEA
combined with the nanoscale melting point depression in
this study

• Bulk HEA fabricated by induction melting of elemental
powders

• HEA nanoparticles (NPs) fabricated by ball milling of the
HEA micropowder

• Inconel 718 was laser brazed in air using the HEA and
bulk and NP performances are compared
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Conclusions
• Phase separation observed in NP brazing

material as-fabricated and post-brazing
• Brazing using bulk material up to 220 MPa
• Nanopaste brazing exhibits lower strength,

but can be processed over 100 °C lower
than the bulk material

• Hardness of the bulk HEA significantly
increases post-brazing

• Future work directions
1. Optimize nanopaste formulation
2. NP structure characterization
3. HEA thermodynamic properties

evaluation
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HEA Nanopaste Synthesis and Brazing

Element Concentration (at%)

Ni 20

Mn 35

Fe 5

Co 20

Cu 20

Bulk

NPs
Starting powder 

~60 μm
LEBM (300 rpm) 

~500 nm
HEBM (1200 rpm) 

~100 nm

Figure 6: The average hardness of Inconel 718 and the 
bulk HEA before brazing (BB) and after brazing

Figure 5: Shear strength of bulk HEA and NP joined 
Inconel 718

Figure 3: XRD of as-fabricated bulk HEA 
and HEA NPs

Figure 2: SEM of starting HEA micropowder and after 12 hours of low energy ball 
milling (LEBM) and 6 hours of high energy ball milling (HEBM). NPs were dispersed in 

terpineol for fabricating nanopaste

Bulk HEA
HEA NPs

Figure 1: Laser Brazing schematic

Figure 4: EDX line scan of HEA bulk (a-d) and NP (e-h) 
material at (a-b, e-f) 350 W and (c-d, g-h) 400 W laser power
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Table 1: HEA bulk concentration
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