

Lingyue Zhang1, Yongchao Yu1, Yaxuan Liu1, <u>C. Hill2</u>, A. Hu1

University of Tennessee Knoxville
Marshall Space Flight Center, Huntsville, NASA







# Outline

- 1. Introduction
- 2. State of-the-art
- 3. Sensor synthesis and measurement
- 4. Results and Discussion
- 5. Conclusion

## Commercial CO2 Sensors



- An infrared (IR) lamp directs waves of light through a tube filled with a sample of air
- An IR light detector and measures the amount of IR light that hits it.
- IR spectrum of each molecule is unique, it can serve as a signature or "fingerprint" to identify the CO2 molecule.





## Commercial CO2 Sensors



NDIR CO2 Sensor

97 x 20 x 17 mm (LxWxH) 400ppm-10000ppm Accuracy ± 50ppm+ 5% reading value



**Gravity Analog Infrared CO2 Sensor** 

37mm x 69mm 0 ~ 5000ppm Accuracy: ± (50ppm + 3% reading)

- Large size
- non-flexible due to working principal
- large measurement error (±5ppm + 5%)

https://sandboxelectronics.com/?product=100000ppm-mh-z16ndir-co2-sensor-with-i2cuart-5v3-3v-interface-forarduinoraspeberry-pi https://www.robotshop.com/en/gravity-analog-infrared-co2sensor-arduino.html

# Electrochemical CO2 sensors

#### • Metallic oxide CO<sub>2</sub> sensor

- ZnO Thin Film sensor
- Zinc Oxide Nanoflakes

#### Composite Material CO<sub>2</sub> sensor

- MgFe<sub>2</sub>O<sub>4</sub>
- $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$
- Hybrid Material CO<sub>2</sub> sensor
  - π-Conjugated Amine (NBA)–ZnO
  - TiO<sub>2</sub>–PANI Nanocomposite Thin Film



# Composite Material CO<sub>2</sub> sensor



### State of-the-art sensor types

| Material     | Operating<br>temp (°C) | CO <sub>2</sub> detection range (ppm) | Response<br>(%) | Reference |
|--------------|------------------------|---------------------------------------|-----------------|-----------|
| ZnO base     | 250-450                | 200-1500                              | 65              | [1,2]     |
| MgFe2O4      | 300                    | 1000-5000                             | 35              | [3]       |
| NASICON      | 200-400                | 100-2000                              | >90             | [4,5]     |
| Li7La3Zr2O12 | 270-360                | 350-4000                              | >90             | [6]       |
| (NBA)–ZnO    | Room<br>temperature    | 500-10000                             | 9-39            | [7]       |
| TiO2-PANI    | Room<br>temperature    | 1000                                  | 53              | [8]       |

 Actuators B: Chemical 274 (2018): 1-9.
ACS Appl. Nano Mater 2.2 (2019): 700 706.
Ceramics International 44.15 (2018) 18578-18584
Sens. Actuators, B 2000, 64, 102.
Electrochem. Soc. 2008, 155, J117.
Adv.Materials 30.44 (2018): 1804098
ACS Appl. Nano Mater 1.12 (2018): 6912 6921
J. Mater. Sci. Mater. Electron. 27.12 (2016): 11726-11732

9

- Low operation temperature
- High response show a potential for high sensitivity and large detection range



## Sensor Fabrication



#### 10

## Nanomaterial fabrication



## Sensor Deposition





Laser direct writing





Carbon electrode CO<sub>2</sub> sensor 15







voltera printing





Silver electrode CO<sub>2</sub> sensor







extrusion printing





Al-Fe<sub>2</sub>O<sub>3</sub> electrode CO<sub>2</sub> sensor



## Surface activation

Coating techniques: *electro-deposition* 





SEM after coating (coming soon)



## Sensor measuring Two methods to measure CO2 gas sensing ability:





multimeter

**Resistance method:** 

**Use multimeter** measure the resistance change under different CO2 concentration

Capacitance method:

electrochemical

workstation

Use electrochemical workstation measure the capacitance change







## Sensor measuring

#### Sensing response

Typically, sensor response data will be represented as a relative response:

- Relative Sensor Response = (X Y) / Y, where:
- X = the maximum value of your sensor's measured response parameter in the presence of the analyze.
- Y = the initial value of your sensor's measured response parameter in the absence of the analyze.

In this experiment, the sensing response value S is defined as the *change in resistance* in the presence of gas ( $R_g$ ) to the resistance in the presence of air ( $R_a$ ):

$$S = \frac{R_g}{R_a}$$

Sonker, R. K., Sabhajeet, S. R., & Yadav, B. C.. (2016). Journal of Materials Science: Materials in Electronics.



### **Results: Carbon electrode sensor**



For carbon sensor with  $TiO_2$  and polyaniline, as the  $CO_2$  concentration raises up the resistance will decrease, the resistance change is nearly linear function of the  $CO_2$  ppm.

### **Results: Silver electrode sensor**



For silver sensor with  $TiO_2$  and polyaniline, as the  $CO_2$  concentration raises up the resistance also increases. The resistance change is a nearly linear function of the  $CO_2$  ppm. The response speed of a silver sensor is faster than a carbon sensor. The recovery time is 32 s.

# Results: Al-Fe<sub>2</sub>O<sub>3</sub> – TiO<sub>2</sub> sensor



22

## Results: Relative sensing response values

Sensing value compared at ~2500ppm CO<sub>2</sub>

23





# Sensor humidity interference





## Sensor stability

#### Carbon sensor recover time





## Conclusions

- We have successfully developed a CO2 sensor on polyimide substrates by integrating 3D printing, laser writing and laser curing. Three electrodes are tested with carbon, silver and Al/Fe2O3.
- Nano-TiO2 functionalized sensors display a detection of limit down to 280 ppm CO2 with a detection limitation down to 300 ppm, a response time of around 1 min, and a recovery time of 2-4 min at room temperature. These data are better than a bulky commercial sensor.
- The sensor displays high selectivity at a wide relative humidity and temperature range.
- The relevant fabrication techniques can be applied to other gas sensing by changing different nanoscale sensing media.

## Acknowledgement



- Funding: NASA-MSFC-UTK CAN Project (80MSFC19M003)
- Collaborators: Dr. Josh Pooran (ORNL) Dr. Jayne Wu (UTK-EECS)



