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Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal

P. Michael Furlong
SGT Inc/NASA Ames’ Intelligent Robotics Group
Michael Dille
SGT Inc/NASA Ames’ Intelligent Robotics Group
Uland Wong
SGT Inc/NASA Ames’ Intelligent Robotics Group

February 2019



NASA STI Program. . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and
personal search support, and enabling data
exchange services.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• E-mail your question to
help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199



NASA/TM–2019–220241

Fusion of visible and thermal-infrared
imagery for SLAM for landing on icy
moons

M. Gonzalez Feĺıcio
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Abstract

This paper addresses the problem of localization for landing on the surface of
icy moons, like Europa or Enceladus. Due to the possibility of specular reflec-
tion as well as high bulk albedo, icy surfaces present new challenges that make
traditional vision-based navigation systems relying on visible imagery unreli-
able. We propose augmenting visible light cameras with a thermal-infrared
camera using inverse-depth parameterized monocular EKF-SLAM to address
problems arising from the appearance of icy moons. Results were obtained
from a novel procedural Europa surface simulation which models the appear-
ance and the thermal properties simultaneously from physically-based meth-
ods. In this framework, we show that thermal features improve localization
by 23% on average when compared to a visible camera. Moreover, fusing
both sensing modalities increases the improvement in localization to 31% on
average, compared to using a visible light camera alone.

1 Introduction

The icy moons of the gas giants Jupiter and Saturn are today considered
among the most likely locations for finding other forms of life within our solar
system. The presence of active plumes in Europa, first suggested by the Hubble
Space Telescope (HST) and later sustained by Galileo’s flybys (Roth et al.,
2014; Sparks et al., 2016), and Enceladus evidenced by Cassini’s flybys (Porco
et al., 2006; Spencer et al., 2006; Hansen et al., 2006) make these two moons
particularly interesting. The plumes provide i) strong evidence of the existence
of liquid oceans underneath their icy surfaces and ii) a unique opportunity to
make in situ measurements with no need of heavy and power intensive drilling
or excavating mechanisms. For this reason, there has been a growing interest
in dedicated missions to icy moons, e.g. (Hendrix et al., 2019; Phillips and
Pappalardo, 2014; Eigenbrode et al., 2018; Hand et al., 2017).

However, entry, descent and landing (EDL) on these moons brings up
unique challenges. Due to the long distance to Earth, human intervention
is confined to high-level strategies, and onboard perception and decision mak-
ing will be essential to missions success. For instance, NASA InSight, the
latest probe to successfully land on mars, spent nearly seven months traveling
trough space before going through the so-called “seven minutes of terror”, i.e.
the seven minute period between when the EDL procedure was initiated and
when mission control could be aware of whether or not landing was successful
due to the communications delay between Mars and Earth. Juno, the latest
spacecraft launched to Jupiter needed five years to arrive to its destination,
and the communication delay would be at least thirty five minutes. To the
date, in EDL missions to the Moon and Mars, the landing site is selected a pri-
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ori by scientists based on orbital data. Icy surface on Europa and Enceladus
may have unique dangers and geological features such as crevasses, jagged
penitentes, liquids and ice thickness may not be visible from orbit due to res-
olution and perspective. Thus, onboard navigation will be crucial for landing
safely and in the presence of control and sensor uncertainty.

While visible cameras sense light that is primarily reflected from a scene (in
the planetary context), thermal-infrared cameras sense light emitted by objects
due to their natural temperature. Therefore, unlike visible cameras, thermal-
infrared cameras are more robust to ambient illumination conditions. This is
especially relevant in the case of icy surfaces, where the high reflectance makes
vision-based navigation systems relying solely on visible imagery unsuitable
for localization (Fig. 1). While the nature of icy moon surfaces is not well-
known at this time, visible reflectance models predict the possibility of oblique
(Fresnel) specularities, spectral shifts, and general loss of contrast affecting
vision-based features Cook and Torrance (1982). The main contribution of
this paper is in the exploration of using thermal-infrared sensing to overcome
these difficulties specific to icy surfaces. We first demonstrate use of thermal-
only navigation in lieu of a visible light camera and then explore thermal-visual
fusion, through EKF-SLAM, to produce a further improved solution.

The remainder of this paper is organized as follows: section II summarizes
the related work. The proposed methodology is described in section III. Simu-
lation results illustrating the performance obtained are presented in section IV
and discussed in section V. Section VI summarizes the contents of the paper
and proposes future work.
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(a) t = 0s (b) t = 10s (c) t = 20s (d) t = 30s

(e) t = 40s (f) t = 50s (g) t = 60s (h) t = 70s

Figure 1: Sequence of (non-consecutive) visible(top) and thermal (bottom)
images captured from our simulator. The basis of this work is that visible
images provide superior textural features in some areas while the thermal is
better in others.

2 Related Work

As commodity thermal imaging sensors have only recently been made available
at resolutions amenable to computer vision, thermal navigation has only been
sparsely studied for robotic navigation, particularly for planetary applications.
In one of the earliest applications of thermal-infrared cameras for motion esti-
mation, Schön and Roll (2009) take advantage of already existing cameras in
cars for human detection, to fuse this data with proprioceptive sensors through
an extended Kalman filter (EKF). Similarly, Nilsson et al. (2011) compute an
offline least mean squares motion estimate using a similar set of sensors.

Thermal-infrared cameras have also been investigated for perception through
obscurants (e.g. smoke, airborn dust, fog) in GPS-denied conditions. Brunner
et al. (2011) show that thermal cameras are less affected by the presence of
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smoke and dust, and can be used either alone or combined with visible cameras
to improve SLAM performance and robustness of unmanned ground vehicles
in outdoor environments. The novel contribution of their work is a metric to
detect degradation and select which camera to rely in, before running feature
detection, thereby saving computational time.

Vidas and Sridharan (2012) implemented a real-time hand-held SLAM us-
ing a thermal-infrared camera that is able to handle mechanic shutter inter-
ruptions (non-uniform conformity) common to these cameras. Emilsson and
Rydell (2014) implemented a hand-held SLAM system based on a pair of
stereo thermal-infrared cameras and an inertial measurement unit (IMU) pri-
marily for use firefighters in smokey environments. More recently, Papachristos
et al. (2018) employs a thermal-infrared camera fused with inertial sensor cues
through an EKF framework to obtain localization of an aerial robot in an
indoor environment with strong presence of smoke and fog.

Lastly, LIDAR technologies have proliferated in terrestrial applications
to ostensibly handle many of the imaging challenges presented in this pa-
per Kohlbrecher et al. (2011). However, LIDAR has many similar drawbacks
to visual imaging in highly-reflective and specular surfaces since it is based
on the principle of reflected light. Even in terrestrial snow and ice conditions,
there is increased uncertainty and known failure conditions from icy geometry
Kerekes et al. (2012), Deems et al. (2013). Space LIDAR is further limited
in providing voluminous data suitable for SLAM by technological maturity,
sensing range, mass, and power.

3 Approach

We have implemented a multi-modal SLAM algorithm using a framework sim-
ilar to Brunner et al. (2011) which this work builds upon. We use one visible
light camera and one thermal-infrared camera and fused data from the cameras
to estimate vehicle egomotion.

To simplify the problem, we considered that the two cameras are co-
registered (i.e. they observe the same portion of the scene at every instant)
and synchronized (i.e. images are taken simultaneously) at 1 fps. The cameras
point downward, along the negative z-axis in the robot frame. Images from
both cameras are resized to a resolution of 640 × 480 pixels. Note however
that these simplifying assumptions are not required to use our algorithm.

Our algorithm does not try to find common features between the two video
streams, but tracks landmarks in each video stream over time. Landmarks in
this case are SIFT features identified in the video streams. The current esti-
mated vehicle velocity is used to predict where the tracked landmarks should
appear in the next frame of the video. The differences between the observed
landmark positions and the predicted ones are the correction signal which is
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fed into the Kalman filter that estimates the vehicle pose.
We produced ten unique trajectories over simulated terrain. The vehicle

flew thirty trials for each trajectory. Errors and perturbations in actuation
were modeled as additive Gaussian noise. The trajectories include two linear
motions as well as an S-shape, half-ellipse and half-circle trajectories. The
curved trajectories were included to test the performance of the algorithms,
but do not necessarily represent feasible descent trajectories as we do not focus
on propulsive control in this work.

Our work is distinguished from that of Brunner et al. (2011) by three
primary differences. First, their application was operations in an environment
with roads, plants, and some man-made objects such as vehicles, whereas we
are operating on an icy surface that may not have such features to track. We
instead comprehensively analyze performance in the context of icy planetary
application.

A second differentiating factor is that the vehicle in (Brunner et al., 2011) is
a ground-vehicle while ours is a flying vehicle some distance above the surface
being tracked. When the vehicle is close to the ground there should always be
features relatively close to the camera, meaning that smaller motions will pro-
duce greater motion of landmarks, making it easier to estimate vehicle motion.
There is the distinct possibility in our problem setting that if the vehicle is at
sufficient altitude, the parallax may not be sufficient to estimate vehicle mo-
tion. During the development of this approach we found that keeping track of
relative motion and to slowing down the frame rate of our simulated cameras
was needed in order to observe egomotion in a proper range. We also introduce
a ranging altimeter into the estimation framework to aid in identifying range
ambiguities and propagating state through feature gaps.

Finally, the third difference between our algorithm and that proposed in
(Brunner et al., 2011) is how we replace landmarks they exit the field of view
of the camera. Brunner et al. (2011) select from the available landmarks to fill
the list of tracked landmarks with a uniform random distribution. We propose
a sampling algorithm which uses a sampling distribution which attempts to
ensure that the landmarks are spatially diverse through the field of view of the
camera. Spatial diversity should improve the estimate of vehicle motion, and
is discussed in detail in Section 3.3.

3.1 SLAM framework

Due to the projective nature of a camera, the 3-D position of a newly detected
feature is not available for initialization because the uncertainty in the unob-
served degree of freedom (the depth) is infinite, and because the projection
to the camera (the measurement equation) is nonlinear, the extended Kalman
filter cannot deal with it. Several delayed initialization methods such as (Kim
and Sukkarieh, 2003; Bailey, 2003; Bryson and Sukkarieh, 2005; Lemaire et al.,
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2005) treat newly detected features separately from the main probabilistic
map, accumulating information in a special process over several frames to
reduce depth uncertainty before insertion into the full filter.

However, these methods have the drawback that the bearing information
from new features does not contribute to the estimation of the camera pose
until included in the map. Moreover, distant features that retain low parallax
over the many frames are usually rejected completely because their depth
uncertainty is never significantly reduced. More recent methods (Kwok and
Dissanayake, 2004; Sola et al., 2005; Sola, 2007) have been proposed that
are immediately able to benefit from new features to improve camera motion
estimates. These works still have the drawback of treating new features in
a special way unlike the works of (Montiel et al., 2006; Civera et al., 2008;
Marzorati et al., 2008; Sola, 2010) that exploit the inverse-depth to encode
uncertainty up to infinity within a single Gaussian, keeping quasi-linearity of
the observation function within all this uncertainty range, enabling the use
of the EKF. For further discussion on these parametrizations the reader is
referred to (Sola et al., 2012).

We use the inverse-depth parametrization from Montiel et al. (2006); Civera
et al. (2008). In order to recover from scale, the vehicle’s state, X = (r, q, v, ω),
is propagated using the inertial measurements as follows:

rt+∆t = rt + vt∆t+ amt ∆t2/2 (1)

qt+∆t = qt + 1/2ωm
t ⊗ qt∆t (2)

vt+∆t = vt + amt ∆t (3)

ωt+∆t = ωm
t (4)

where r and q are the position and the orientation quaternion, v and ω
are the linear and angular velocities of the vehicle, am and ωm are the linear
acceleration and the angular velocity measured by the IMU, and ∆t is the
time step.

For each tracked feature, the ray from the first camera position from where
the feature was observed encoded using the inverse-depth parameter as follows

Li = (rTi , θi, φi, ρi)
T (5)

where ri is the camera optical center, θi and φi are the azimuth and el-
evation in world frame and ρi is the inverse of the feature depth along the
ray.

In this work, we implement and compare SLAM using three different sens-
ing configurations: only the visible camera, only the thermal-infrared camera,
and both cameras fused (“dual modality”). In the dual configuration, the
approach for fusing the information from two cameras is based on Sola et al.
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(2008), and consists of treating features from both cameras in the same map.
For the single camera modalities a maximum of N = 32 features are tracked,
as shown in Eq. (6), while an appended vector of N = 64 is considered in the
dual modality case, as seen in Eq. (7).

MZ = (LT
1,Z , ..., LN,Z)T , Z ∈ {V, T} (6)

MD = (LT
1,V , ..., LN,V , L1,T , ..., LN,T )T (7)

3.2 Feature detection and matching

The surface of icy moons are unstructured environments. Consequently we
should not expect that primitive edge or corner detectors would identify stable,
reliable features (Harris et al., 1988; Takacs et al., 2010).

Blob-like features are commonly observed in our data set, as seen in the
sequence of frames in Fig. 1, so feature detectors which can key in on them
are desirable. It would also be desirable for the feature detection method
to be invariant to scale, as a landing vehicle will observe changes in scale of
features during descent. Likewise, rotational robustness would be valuable as
the vehicle may experience perturbations or change heading during descent.
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Figure 2: SIFT Features in the visible light channel. The points marked with
an cross in the image represent landmarks in the current frame. The blue
dots are landmarks which are being track from the previous frame. The green
line between them shows which current landmarks have been associated with
currently tracked landmarks. The red crosses are landmarks which are not
being tracked, and can be added to the tracked landmarks, should new ones
be needed.

In these experiments we used SIFT features (Lowe, 2004) to identify stable
features in the scene, illustrated in Fig. 2. SIFT was chosen because high
quality implementations are widely available. However, any feature detector
which meets the above criteria would be suitable for this application.

Note that in this work we do not attempt to match features between the
two modalities to produce a measurement from multiple views. It may not be
possible to use SIFT features to match across sensing modalities, as appearance
descriptors may be very different. No further pre-processing techniques are
applied to the images other than simple conversion to grayscale.

3.3 Feature sampling

This algorithm adds new features to the tracked landmarks as old features
pass out of the field of view of the camera. In contrast, Brunner et al. (2011)
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randomly select landmarks from the available features.
However, given the limited number of landmarks tracked relative to the

number of SIFT features in a scene, there is the possibility that the tracked
landmarks could be biased towards one region of the scene. This is particularly
important as large regions of an icy surface with the same orientation could
have severely reduced contrast at critical angles, e.g. Fresnel reflections Cook
and Torrance (1982). A biased sampling of the scene would make for a less
accurate estimate of egomotion.

Features well-spread over the image space are highly desirable as it in-
creases the observability of the vehicle’s state. We weighted the points in the
sampling algorithm by the spatial diversity of the candidate points in order to
increase the likelihood of collecting a stable set of points.

In Fig. 3 we computed the diversity score for every pixel in the image
(Fig. 3b). We computed the diversity score using a kernel density estimator
modeling the spatial distribution of the currently tracked landmarks.

We divide the landmarks into two sets. First is the set of tracked land-
marks, MZ,t, where Z is the SLAM modality currently being used, (visual,
thermal, or dual), held over from the previous frame. There is also the land-
marks identified in the current frame, Lt+1,. Through a matching process we
remove points from Lt+1 that are matched to points in MZ,t.

Should any of the landmarks in MZ,t not be matched to Lt+1, then new
landmarks need to be selected. The landmarks in Lt+1 are weighted by their
Shannon surprise (Shannon, 1948), computed using a kernel density estimator.
The kernel density estimator approximates a probability distribution of where
currently tracked landmarks are located in the frame.

The kernel density estimator is generated from the locations of landmarks
from the previous frame Lt, which we denote fMZ,t

(l). The diversity score is
given in Eq. (8). Here fMZ,t

(·) is the kernel density estimator created from the
currently tracked features.

D(l) = −logfMZ,t
(l) ∀ l ∈ Lt+1 (8)

By using the spatial distribution over MZ,t, candidate landmarks that are
further away from the currently tracked landmarks will be scored higher, as
seen in Fig. 3b. Using these weights for sampling, as opposed to using a
uniform weighting, it should increase the accuracy of the egomotion estimated
from the tracked landmarks.
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(a) Original frame (b) Spatial Diversity (D)

Figure 3: The original video frame and the sampling weight based on the
diversity score. In the frame there are few tracked landmarks (blue dots) in
the bottom right hand corner, consequently the spatial diversity score is higher
in this region. For illustrative purposes in the above images we have computed
the values at every pixel. In the algorithm we only compute these values at
candidate landmark sites.

4 Modeling Europa’s Surface

To date, there have been no missions to the surface of Europa, or other icy
moons. The current image resolution of the surface is no better than 10
meters per pixel. This is well below the resolution needed to make safe landing
decisions. In future missions we might anticipate orbital image resolution of
the landing site on par with the Mars Reconnaissance Orbiter, which has
a resolution of approximately 1 meter per pixel. Until we have that data,
however, the only way to develop and test vision-based algorithms is to model
icy surfaces using current best-guess models.

4.1 Modeling Terrain Geometry

In this paper we model geometry and thermal qualities based on a Europan
equatorial surface. The geometry of the terrain is procedurally generated using
features that are randomly sampled but governed by statistical size-frequency
and spatial distributions. Geometric features modeled at the time of this work
include hills, valleys, craters, blocks and broken surfacing. The current version
of the simulator also adds penitentes and crevasses. The simulated terrain has
an area of 400×400m2, and has changes in elevation of 31.7m. The simulation
was based on the simulator used in Lunar terrain modeling described by Allan
et al. (2019), but with additional work to make the terrain better resemble icy
environments.
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4.2 Modeling Visual Appearance

To create the visual appearance of the scene we used illumination conditions
that would be expected at Europa’s equator. The contributing light sources
include direct rays from sun and reflected light from Jupiter. We introduce a
quasi-Phong bi-directional reflectance (BRDF) model (see Eq. (9)) that rep-
resents a regolith-ice mixture surface. This model is a compromise between
physical accuracy and rendering efficiency. The irradiance Ei of each scene
point is given by:

Ei = ρa + α× ρd(N̂i · L̂) + (1− α)× ρs(R̂i · V̂ )k (9)

where N̂i, R̂i are the normal and reflection vectors of surface facet i; L̂,
V̂ are the lighting and view vectors; and α is a weighting function of the
inverse phase angle that is zero when the lighting and view vectors oppose.
The material properties of the surface include ρa, ρd and ρs which are the
ambient, diffuse, and specular surface albedos respectively, and k is the Phong
sharpness, which controls the width of the specular highlight. For the most
part, we set ρa = ρd. Randomized albedo maps centered on the true value are
generated to include “splotches” of variability on the terrain and striae, which
are darker linear features (without corresponding geometry).

4.3 Modeling Thermal Appearance

An approximate thermal model was developed for Europa’s surface conducive
to real-time graphics. We first render the radiance of the Sun and Jupiter
considering their apparent size (6.14 arcmin and 717.55 arcmin, respectively),
Solar and Jupiter’s irradiance (50W/m2 and 0.0897W/m2) and the reflec-
tion of the Sun in Jupiter (0.0001W/m2). Shades are determined through
the gradient of the procedurally-generated digital elevation model. The total
absorbed irradiance is then corrected taking bolometric bond albedo (0.68)
into account, and the temperature of Europa’s surface is obtained through
Stephen-Boltzman law considering the surface as a gray body with emissivity
e = 0.94. We then use several smoothing passes on the temperature gradients
in order to approximate the thermal diffusion at first order.

5 Results

In order to evaluate the SLAM performance we use the Euclidean norm of the
position error per distance traveled E as a metric. For each trajectory, we
obtained this metric through a linear regression of the position error versus
the distance travelled. The results for the different trajectories are presented
in Table 1.
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Trajectory
E (%)

Vis T-IR Dual
1 12.31 6.56 6.60
2 14.12 10.87 9.93
3 8.04 3.11 3.36
4 4.71 5.20 3.42
5 3.62 4.32 3.71
6 4.07 1.46 1.83
7 7.15 5.18 4.76
8 12.72 13.85 12.32
9 3.85 2.49 1.61
10 3.83 4.04 3.74

Table 1: Euclidean norm of the position error per distance travelled E for
ten trajectories. For each trajectory the position error accumulation rate was
averaged over thirty trials

To compare the effectiveness of the algorithms, we compare the percent
improvement in the error rate. The definition of the percent improvement is
given in Eq. (10).

IVisvsT−IR =
EVis − ET−IR

EVis

× 100% (10)

EV and ET are the Euclidean norm of the position error of visible and
thermal cameras, respectively, and similarly for the other pairings. A positive
value means that an improvement was obtained by using the second SLAM
sensing modality (e.g. thermal), and a negative value means the first SLAM
sensing modality was better (e.g. visible) and vice-verse. In addition we
compute Cohen’s d to evaluate the effect size.

Table 2 summarizes the performance and the effect size. Table 3 reports
the statistical confidence that the performance of the competing algorithms
are different, using a ROPE analysis.

Table 2 shows the average improvement in visible and thermal-infrared (Vis
vs T-IR), visible and dual modality (Vis vs Dual), and thermal-infrared and
dual modality (T-IR vs Dual). Overall, the average improvement of thermal
over visible is approximately 21.5%, and the fusion of the two modalities in-
creases the average improvement to 31.2% over visible and 8.5% over thermal.

Comparing only the visible and thermal SLAM modalities, Table 3 shows
that the thermal modality is superior to the visible modality for trajectories
1, 2, 3, 6, 7, and 9. In trajectory 10 thermal and visible are statistically
undistinguishable. On trajectories 1, 7, and 9 the improvement from using
thermal is very large (d > 1.20), and on trajectories 3 and 6 the improvement
is huge (d > 2.0).
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For trajectories where thermal is not the clear winner (trajectories 4, 5, 8.
and 10) in all but trajectory 5, the difference in performance is small (d < 0.5),
as per Table 2. In the case of trajectory 5, there is a significant difference in
performance, and the effect size is large (d > 0.8). However, in all other cases
it is safe to say that the thermal modality is as good as or better than the
visible modality. This result may be useful in informing sensor selection where
Size, Weight, and Power requirements drive a choice between one sensor or
the other.

However, if the possibility of using both instruments is available, the dual
SLAM modality becomes the dominating approach. The benefits of fusing
both modalities is expected, as there is twice as much information available
than in one modality alone.

In Table 1 the visible camera SLAM has the best performance for trajectory
5, the thermal-IR SLAM has the best performance for trajectories 1, 3, and 6.
In all other cases the dual modality SLAM approach has the best performance.
Table 3 shows us that on trajectory 5 the performance of the visual and dual
SLAM modalities are statistically equivalent. On trajectories 1, 3, and 6 the
thermal and dual SLAM modalities have 82%, 56%, and 84% probabilities
of being equivalent, respectively. Further, the effect size of the difference in
performance (Table 2) in these cases is not large (< 0.8), and in the case of
trajectories 1 and 3, the effect size is very small (< 0.2).

We can conclude with confidence from this analysis that from a pose es-
timation perspective, that using the dual modality SLAM does not cause a
degradation in performance. Further, on the trajectories where either the vi-
sual or thermal modalities performs substantially better than the other (all
but trajectory 10 and arguably 4), using the dual modality would successfully
mitigate the risks from choosing only one sensing modality for pose estimation.
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Trajectory
Vis vs T-IR Vis vs Dual T-IR vs Dual

I (%) Cohen’s d I (%) Cohen’s d I (%) Cohen’s d
1 47.5 1.83 46.4 1.76 -2.2 0.09
2 23.0 0.84 29.7 1.54 8.6 0.26
3 61.3 2.16 58.2 2.41 -8.0 0.10
4 -10.5 0.27 27.5 0.70 34.4 1.34
5 -19.3 1.19 -2.4 0.15 14.2 1.25
6 64.3 2.52 55.0 2.07 -25.0 0.61
7 27.5 1.52 33.4 1.59 8.1 0.39
8 -8.9 0.34 3.9 0.15 11.7 0.55
9 35.3 1.37 58.2 2.48 35.4 0.80
10 -5.5 0.37 2.4 0.18 7.5 0.52

Average 21.5 – 31.2 – 8.5 –

Table 2: Average relative percent improvement I for (Vis vs T-IR) visible
and thermal-infrared, (Vis vs Dual) visible and dual modality, and (T-IR vs
Dual) thermal-infrared vs dual modality. The overall average in error rate
improvement is given, but the overall effect size is not reported.
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Trajectory
Vis vs T-IR Vis vs Dual T-IR vs Dual

Mode HDI
% in

Mode HDI
% in

Mode HDI
% in

ROPE ROPE ROPE
1 5.786 [4.707; 6.498] 0 5.656 [4.421; 6.926] 0 -0.182 [-0.823; 0.502] 82
2 3.276 [1.979; 4.711] 0 4.219 [3.164; 5.220] 0 0.600 [-0.591; 1.852] 40
3 4.892 [4.136; 5.928] 0 4.720 [3.953; 5.489] 0 -0.423 [-1.276 0.524] 56
4 -0.501 [-1.131; 0.117] 50 1.305 [0.568; 2.036] 2 1.758 [1.349; 2.208] 0
5 -0.700 [-0.938; -0.455] 5 -0.094 [-0.309; 0.122] 100 0.624 [0.425; 0.813] 11
6 2.580 [2.221; 2.943] 0 2.154 [1.748; 2.580] 0 -0.386 [-0.612;-0.167] 84
7 2.006 [1.471; 2.501] 0 2.389 [1.929 2.824] 0 0.393 [0.027; 0.762] 71
8 -1.104 [-2.432; 0.136] 15 0.443 [-0.646; 1.579] 48 1.530 [0.664; 2.565] 1
9 1.358 [0.948; 1.806] 0 2.225 [1.932; 2.532] 0 0.872 [0.416; 1.333] 5
10 -0.220 [-0428; 0.001] 99 0.092 [-0.061; 0.245] 100 0.299 [0.101; 0.499] 98

Table 3: Paired Bayesian t-tests over the difference in rate of position error accumulation. Plots supporting these data are
found in Appendix A.
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Below, we present the error in the estimated vehicle position over time.
Fig. 4 to Fig. 13 show the performance for trajectorys 1 to 10, respectively.
For all plots, the error bars correspond to 1 95% confidence interval, computed
for 30 trials. As can be seen, depending on the terrain the vehicle flew over,
the estimated error can change dramatically.

Figure 4: Thermal-IR data has as good as or better error than the visible light
camera. The fused posed estimation performs as good as or better than the
Thermal pose estimation, until after 140 seconds, where the increasing error
from the visible camera begins to dominate.
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Figure 5: On trajectory 2, the dual sensing modality SLAM algorithm per-
forms at least as good as or better than the thermal SLAM, which is in turn
as good as or better than SLAM using the visible camera.
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Figure 6: In trajectory 3 we see that the error in the visible light SLAM
becomes very large. In this case we see that the dual modality rejects the
visible light camera info and relies exclusively on the thermal camera data.
This is evidenced by the statistically indistinguishable performance between
the thermal-only SLAM and the dual modality SLAM.
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Figure 7: Initially the pose estimation error of all three modalities is statis-
tically indistinguishable until 140 seconds. From 140 seconds on, we see that
the dual modality outperforms both the thermal and visible SLAM.
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Figure 8: Here the thermal-IR SLAM begins to perform worse than either the
visible SLAM or the dual modality SLAM at about 160 seconds. The dual
modality SLAM is robust to this error. However, while the differences between
Thermal-IR and the other SLAM approaches is statistically significantly dif-
ferent, the error is not substantially different, compared to the differences in
performance on other trajectories.
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Figure 9: Like trajectory 3, on trajectory 6 we see that the dual modality
rejects a sudden sharp uptick in error of the visible light SLAM. Prior to 160
seconds the performance of all three approaches is statistically indistinguish-
able.

21



Figure 10: From 110 seconds to 130 seconds, the thermal-IR SLAM has a slight
advantage over the visible light and dual modality SLAM. The error in the
Thermal SLAM begins to increase, along with the visible camera, but we see
that the dual modality SLAM is able to slow that increase in pose estimation
error.
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Figure 11: Along trajectory 8 the estimated pose error increases after 80 sec-
onds for all SLAM approaches. The thermal SLAM ultimately performs the
worst, followed by the visible light camera, but the dual modality SLAM man-
ages to minimize the error.
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Figure 12: The error in the visible camera SLAM starts to increase linearly
from around 100 seconds. The thermal camera’s error slows down after 100
seconds, which is mirrored by the dual modality. Ultimately the dual modality
SLAM achieves the best performance, with statistical significance.
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Figure 13: Over the course of the trajectory the performance of the SLAM
approaches are statistically indistinguishable.

6 Conclusions

We have demonstrated two principal points in this paper. Firstly, a multi-
sensor approach based on existing fundamentals (e.g. Brunner et al. (2011))
can be extended to behave in a sensible way on icy surfaces. Secondly, we have
shown that the thermal-IR component, in particular, can significantly improve
localization on simulated Europa data.

In the trajectories that were executed in experimentation, we have demon-
strated that adding thermal imagery can drastically improve performance rela-
tive to unimodal visual SLAM in many cases. There were also some cases where
the visible light camera performed better than unimodal thermal-infrared.
Thus, we advocate for the inclusion of both modalities to maximize robustness
and safety on operations over icy surfaces.

Our results also show that there is a trajectory dependence on the utility
of the thermal-infrared imagery. This makes sense, as the effects of glare
depend on the relative angles between the viewer and the illumination source,
for example. Trajectory-dependent performance is an argument in favour of
multi-modal fusion, otherwise, one would have to plan descent trajectories
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which avoid glare, possibly reducing the areas which can be safely reached by
a lander. Use of our approach can increase the number of feasible landing
locations, thus increasing the ability to conduct science on icy moons.

6.1 Future Work

The results presented above demonstrate that using thermal imagery can help
with camera-based localization on icy surfaces. However, the preceding work
was conducted in a simulated environment, and the generalizability of the per-
formance is dependent on the fideltiy of the simulation. To validate our results,
this work should be continued in analog environments to further demonstrate
the utility of thermal and visual-thermal navigation.

The SIFT feature detector is a reliable feature detector, however it can be
computationally expensive. Given constrained space operations, being able to
use simpler feature detectors would make the application more plausible in
flight-forward missions.

However, before adopting alternative feature detectors, we would need to
answer at least two questions. First, does the proposed feature detector neg-
atively effect the algorithm’s performance? If a new feature detector does not
find stable landmarks, or it easily gets confused between landmarks, then it
would not be suitable in this algorithm.

These claims are, of course, limited by the experimental setup. The simu-
lated environment is only an approximation of the real world environment, so
experimentation with actual icy surfaces is warranted. Moreover, unique edge
cases and failure conditions should be further analyzed to validate robustness
over a wider range of conditions and scenarios.

6.1.1 Improvements to the Landmark Selection Algorithm

In this work we used a spatial diversity score, D, (Section 3.2) to determine
which landmarks should be added to the set of tracked landmarks. However,
there are other features which could be used to bias that selection process, a
few of which are discussed below. In future work we should experiment with
these features to determine which, if any, improve the localization performance.

At least two additional features should be added to the weighting function.
We include the expected duration in the field of view (FOV), TFOV , and the
local contrast of the landmark point, C. These features could be combined
with the spatial diversity score using a simple weighting function (Eq. (11)).
The values of the weighting terms (α, β, and γ) would need to be determined
empirically.

W (l) = αD(l) + β TFOV (l) + γ C(l) (11)
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The reason for choosing the expected duration of the landmarks in the
field of view is to maximize the number of frames that a landmark appears
in. The longer a landmark is observed, the more accurate the estimation of
its 3D position, making points with potentially longer durations of visibility
more valuable.

The local contrast of the landmark is to make the landmarks more stable
with respect to the particular feature detector we are using in this algorithm.
SIFT landmarks with greater local contrast are more robust fluctuations in
sensor readings, increasing the likelihood of the feature being observed for
more frames.

However, the choice of local contrast is tailored to the SIFT algorithm.
Should another feature detector be chosen, feature would need to be redesigned.

In Fig. 14 we plot the three proposed weighting terms for all the pixels
in the frame, given the previous landmark tracking points. As above, we
computed the score for every pixel in the frame. In practice, however, these
values would only be computed for the landmarks identified by the feature
detectors. As can be seen in Fig. 14a, this would only be for a small fraction
of locations in a scene.

27



(a) Original frame (b) Spatial Diversity (D)

(c) Duration in FOV (TFOV ) (d) Local contrast (C)

Figure 14: The components which make up the feature sampling weight. For
illustrative purposes in the above images we have computed the values at every
pixel. In the algorithm we only compute these values at candidate landmark
sites.
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Appendix A

Supporting Bayesian Analysis Plots
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A.1 Trajectory 1

(a) Visible vs Thermal-IR (b) Visible vs Dual (c) Thermal-IR vs Dual

Figure A1: On trajectory 1 the dual and thermal modalities are equivalent with 83% probability. Both dual and thermal
are improvements on the visible modality.
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A.2 Trajectory 2

(a) Visible vs Thermal-IR (b) Visible vs Dual (c) Thermal-IR vs Dual

Figure A2: On trajectory 2 both the thermal and dual modalities are improvements on the visible modality. The dual
modality is an improvement on the thermal modality with 60% probability.
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A.3 Trajectory 3

(a) Visible vs Thermal-IR (b) Visible vs Dual (c) Thermal-IR vs Dual

Figure A3: On trajectory 3 the dual and thermal modalities have equivalent performance, with 56% probability. The
visible modality is worse than either the thermal or dual modalities with 100% probability.
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A.4 Trajectory 4

(a) Visible vs Thermal-IR (b) Visible vs Dual (c) Thermal-IR vs Dual

Figure A4: On trajectory 4 the visible and thermal modalities are equivalent with 50% probability. The dual modality
improves on both the visible and thermal modalities with 98% and 100% probability, respectively.
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A.5 Trajectory 5

(a) Visible vs Thermal-IR (b) Visible vs Dual (c) Thermal-IR vs Dual

Figure A5: On trajectory 5 the visible modality is better than the thermal modality with 95% probability. The visible
and dual modalities have statistically equivalent behavior. The dual modality is better than the thermal modality with
89% probability.
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A.6 Trajectory 6

(a) Visible vs Thermal-IR (b) Visible vs Dual (c) Thermal-IR vs Dual

Figure A6: On trajectory 6 the dual and thermal modalities are statistically equivalent with 84% probability. The thermal
and dual are both statistically significantly better than the visual modality.
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A.7 Trajectory 7

(a) Visible vs Thermal-IR (b) Visible vs Dual (c) Thermal-IR vs Dual

Figure A7: For trajectory 7 the thermal and dual modalities significantly improves on the visible modality. The thermal
and dual modalities are statistically equivalent with 71% probability.
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A.8 Trajectory 8

(a) Visible vs Thermal-IR (b) Visible vs Dual (c) Thermal-IR vs Dual

Figure A8: For trajectory 8 the visible modality is better than thermal with 85% probability. The dual modality is better
than visible modality with 52% probability and the thermal modality with 99% probability.
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A.9 Trajectory 9

(a) Visible vs Thermal-IR (b) Visible vs Dual (c) Thermal-IR vs Dual

Figure A9: On trajectory 9, all three sensing modalities perform statistically significantly different from one another. The
thermal and dual modalities are better than the visible modality. We can say that the dual modality is better than the
thermal modality with 95% probability.

42



A.10 Trajectory 10

(a) Visible vs Thermal-IR (b) Visible vs Dual (c) Thermal-IR vs Dual

Figure A10: On trajectory 10 none of the sensing modalities are statistically significantly different from one another.
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