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• Motivation 

• LAVA Framework

• Launch: Kennedy Space Center Infrastructure Redesign

• Ignition over-pressure waves – Cartesian

• Thermal loads – Unstructured

• Ascent: Orion Multi-Purpose Crew Vehicle Launch Abort System

• Transient pressure loads – Cartesian

• Vehicle Aerodynamics: Low-Boom Flight Demonstrator

• Jet noise – Curvilinear
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✓ Increase predictive use of computational aerosciences capabilities for next 

generation aviation and space vehicle concepts.

• The next frontier is to use wall-modeled and/or wall-resolved large-eddy 

simulation (LES) to predict:

Motivation
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Unsteady loads and fatigue

Buffet and shock BL interaction

Fan, jet, and airframe noise

Active flow control



✓ Mesh generation: flexibility, automation, adaption

✓ Modeling turbulent boundary layers and sub-filter scales

✓ Increasing computational efficiency

Challenges
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Framework

Developing

Other Development Efforts

• Higher order methods

• Curvilinear grid generation

• Wall modeling

• LES/DES/ILES Turbulence

• HEC (optimizations, accelerators, 

etc)
Kiris at al. AST-2016 and AIAA-2014-0070 
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Kennedy Space Center Infrastructure Redesign
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Computational fluid dynamics (CFD) support is essential in the analysis and 

design of the launch pad.



Predicting Ignition Over-Pressure Waves
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Provided unsteady pressure loads on launch infrastructure for a variety of 

different flame trench positions, designs, and launchers



Predicting Thermal Loads
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Provided unsteady thermal loads on main flame deflector for different 

positions, designs, and launchers

o Arbitrary poly unstructured mesh (21 M cells)

o Polygonal prism boundary layer mesh (y+ < 1)

o SA-DES Turbulence model

o Dt = 3.5e-5 secs with 20 subiterations

Top sensor

Middle sensor

Bottom sensor

o Unsteady SRB plenum data was used from 

STS-1. Likely inconsistencies with STS-135

o Water sound suppression system is not 

modeled. May affect wave propagation speed

LAVA STS-1 vs STS-135 Data
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Predict Loads for Launch Abort Motor Test

Rendering of the Orion Launch Abort System (LAS) qualification ground test (QM1) simulated

using LAVA Cartesian with adaptive mesh refinement (AMR). Video showcases the turbulent

structures resolved in the plumes colored by Mach number. Pressure is shown on the vertical

cut-plane where blue is low and red is high. We provided loads on heat shield fixture and

crane to help ground test designers ensure safety of the test and reduce risk in data collection.
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Picture of ST1 test at Orbital ATK 

facility in Utah



Post Abort Motor Test Validation

Ignition Overpressure (IOP) versus Time

-- QM1 Measurements

-- LAVA Simulation

-- QM1 Measurements

-- LAVA Simulation
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Wind Tunnel Validation

-- Wind Tunnel Measurements

-- LAVA Predictions
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From Ground/WT Test to Flight Vehicle

Rendering of the Orion Launch Abort Vehicle (LAV) during an ascent abort simulation where the vehicle is traveling at

transonic speeds when abort is triggered. Video showcases the turbulent structures resolved in the plumes colored by

gauge pressure. Each pixel turning from blue to white to red indicates a source of acoustic waves that can impinge on the

apparatus and cause vibrations. The delta difference in unsteady loads between the QM-1 and LAV at different flight

conditions is used to determine vehicle detailed design requirements.
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Grand Challenge

Predict full Aircraft 

Noise with 

Installation and 

Propulsion 

Radical Installation 

Concepts

Path Towards the 

Grand Challenge

High Fidelity Jet Noise Simulation Methodology for Airport Noise 

Prediction of Emerging Commercial Supersonic Technologies

Commercial Supersonic Technologies (CST)

Advanced Air Vehicle Program (AAVP)



✓ Experiment performed by Bridges and Wernet using the 

Small Hot Jet Acoustic Rig (SHJAR) at NASA Glenn

✓ Baseline axisymmetric convergent Small Metal Chevron 

(SMC000) nozzle at Set Point 7 (SP7) & Set Point 3 (SP3)

✓ Similar conditions were analyzed in Bres et. al. AIAA-2015-

2535, but the boundary layer thickness is 5.5 times smaller 

in this study
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Bridges et. al. 

(NASA-TM-2011-216807)

SP3 SP7

Acoustic Mach number Ujet/c∞ 0.5 0.9

Jet temperature ratio Te/T∞ 0.950 0.835

Nozzle pressure ratio pt/p∞ 1.197 1.861

Nozzle Diameter D 2.0” ~ 0.0508 m

PIV measurement device

Round Jet Acoustics Experimental Validation

Solver x/Dj [-] Error [%]

Bridges & Wernet 7.8 -

Wind, RANS-SA-2D 6.84 -12.3

LAVA, RANS-NLES-SEM-3D 7.90 1.2

1 Wind Data, Objectives and Metrics from NASA Turbulence Modeling 

Resource (TMR) website: https://turbmodels.larc.nasa.gov

Housman, Jeffrey A., Gerrit-Daniel Stich, Cetin C. Kiris, and 

James Bridges. "Jet Noise Prediction using Hybrid RANS/LES 

with Structured Overset Grids." 23rd AIAA/CEAS 

Aeroacoustics Conference, AIAA AVIATION Forum. 2017.
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✓ Band-Limited OASPL 

within 1dB of experiments
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Housman, Jeffrey A., Gerrit-Daniel Stich, Cetin C. Kiris, and 

James Bridges. "Jet Noise Prediction using Hybrid RANS/LES 

with Structured Overset Grids." 23rd AIAA/CEAS 

Aeroacoustics Conference, AIAA AVIATION Forum. 2017.



SP7 SMC0000 Medium mesh 175M 
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First Step Towards Shielding Concepts



Capturing Shielding Effects

21
Stich, G-D., Housman, J.A., Kocheemoolayil, J.G. and Kiris, C.C. 

.Hybrid RANS/LES Simulation of Jet Surface Interaction Noise. 

AIAA-CEAS 2019. Delft. Netherlands.

✓ Choice of FWH surface mesh size & placement not trivial

✓ Need to establish best practices as a community



Objective:

✓ Significantly increase complexity (last step before “grand challenge”).

✓ Multi-stream nozzle with shielding and installation effects.

✓ Comparison with comprehensive experimental database.

Next Step Towards Radical Installation Concepts

Picture taken from:

NASA Test Report: Top-Mounted Propulsion Test 

2017 (TMP17)
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• Invest in robustness and reducing turnaround time

• Develop continuous verification & validation

• Build in flexibility to use the best tool for the deliverable
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Lessons Learned

Pressure on the vertical plane (white is high, black is low) during ascent abort at Mach 0.7, ⍺ = 20 °, β = 0 °
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