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Shock tube problem

High Pressure

driver gas driven test gas

Low Pressure

Schematic of shock tube problem

∂tu+ ∂x[F(u)] = 0

u(x, t) =

{
ul x ≤ x0

ul x > x0

Gary Sod”A Survey of Several Finite Difference Methods for Systems of Non-linear Hyperbolic Conservation Laws”
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Shock tube computational challenges :

High Pressure

driver gas driven test gas

Low Pressure

Schematic of shock tube problem

The heating process of the driver gas
The diaphragm rupture
Diaphragm fragments, residual soot from previous experiments and wall
ablation due to high wall temperatures
Turbulent multi-scale mixing between the hot jet of the driver gas and
the cold driven tube
Radiation cooling
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Shock tube computational challenges :

Conservation equations :

∂tρs + ∂x · (ρsu) + ∂x · Fs = ω̇s s ∈ S,
∂t(ρu) + ∂x · (ρu⊗ u + pI) + ∂x ·Π = 0

∂t(Etr + Ein + 1
2
ρu · u) + ∂x · (Etr + Ein + 1

2
ρu · u + p)u) + ∂x · (Π · u +Qtr +Qin) = 0

∂t(Ein) + ∂x · (uEin) + ∂x · (Qin) = ωin

Large disparity between the space scale O(meters), and time scale O(nanoseconds) seconds.

Stiffness is increased by the chemical and kinetics source terms governing the non-equilibrium processes
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Physical models and Numerical methods

Physical models

Thermal and chemical non
equilibrium - Park’s
two-temperatures model

Chapman-Enskog method for
the transport properties.

Stefan-Maxwell for the mass
diffusion flux.

→ The thermodynamics and
transport properties are computed
using PLATO library.

Numerical methods
∂t(Q) +

∑
i∈D(∂iF

c
i ) +

∑
i∈D(∂iF

d
i ) = S

Second order Finite Volume solver
(Linear reconstruction using a
least-squares method)

The convective fluxes are computed
using the AUSM+UP scheme.

Crank-Nicolson scheme for time
integration

Generalized Minimum RESidual
(GMRES) algorithm and Additive
Schwartz pre-conditioner - PETSc
library-

→ Flow solver is COOLFLuiD
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Unsteady simulation of EAST facility

A two-dimensional uniform grid
was used for this simulation -
∆x = 10−3m, dwall = 10−6.

The wall is considered as
isothermal at Tw = 300K and no
slip wall boundary conditions is
applied.

Wall condition is used at the end
of the driver tube.

Air -11 species - is used as a test
gas, with the driver gas is
composed of 99% of Helium and
1% Nitrogen.

I

driver gas, 0.1m driven test gas, 8m

I I

Schematic of NASA Ames’ Electrical Arc shock Tube (EAST)

driver driven
YN2

: 0.01 YN2
: 0.79

YHe : 0.99 YO2
: 0.21

ρ, kg/m3 1.10546 3.0964 x 10−4

T , K 6000 300

p, Pa 12.7116 x 106 26.771

Initial conditions at diaphragm rupture
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Unsteady simulation of EAST facility
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Bensassi et al. AIAA 2019-0798

Computational cost

100 Ivy-Bridge nodes -2000
cores-, on Pleiades, NASA
Advanced Supercomputing (NAS)

12 TB data

120 days of continuous run and 7
months of monitoring the
simulation
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Unsteady simulation

Distance from diaphragm, m 
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Computational cost

500 Ivy-Bridge nodes -1000
cores-, on Pleiades, NASA
Advanced Supercomputing (NAS)

12 TB data

120 days of continuous run and 7
months of monitoring the
simulation

→ impractical to support a real-time experimental test campaign
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How to reduce the computational cost ?
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How to reduce the computational cost ?

Define a region of interest

Reduce the computational
space

Reduce the time scale
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Stagnation line approach

Steady flow simulation over a 3m
radius cylinder.

Free steam conditions are the
same as for the test gas

Free stream velocity

Case I : inviscid II : viscous

u∞, km/s 10.065 9.782
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Stagnation line approach vs Unsteady simulation
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Stagnation line approach : drawbacks

Wall curvature effect

no boundary layer in the
post-shock region

decreasing velocity near the wall

The shock layer radiation requires
a high grid resolution
→ increases drastically the
number of degree of freedom

Outflow

Inflow

Wall

Symmetry
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Local steady state shock tube

Inflow Outflow

Wall

Symmetry

Computational domain and the stream lines, length of the domain is 0.3m

Inflow condition is supersonic

Outflow is subsonic
→The equilibrium post-shock pressure (CEA) is imposed at the outflow.
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Different approaches

Unsteady simulation of the complete
shock tube

steady simulation around a cylinder

Local steady state shock tube Inflow Outflow

Wall

Symmetry
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Comparison of different approaches
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Radiation calculation

The flow solution, i.e temperatures and number densities
along the symmetry boundary condition (line of sight), is
passed to NEQAIR.

NEQAIR, in shock tube mode, then produces the radiance
perpendicular to the axis of the tube.

The non-Boltzmann population of the radiating state is solved
using NEQAIR’s non-Boltzmann option.
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Radiance comparison
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Conclusion

Explored different computational approaches for simulating
non-equilibrium flows in shock tubes. Both steady and unsteady cases
were considered.

The cylinder case presents several disadvantages : wall curvature effect,
no boundary layer in the post-shock region and decreasing velocity near
the wall.

The local steady-state shock tube approach alleviates several of the
drawbacks of the cylinder approach. Good agreement was obtained
between this approach and the cylinder

Both steady cases showed some disagreement with the unsteady
simulation.
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