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Introduction

Shock tube problem
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Schematic of shock tube problem

Bru + Oy [F(u)] = 0

u <z
u(x,t) - ui X ; 1‘0
0

Gary Sod”A Survey of Several Finite Difference Methods for Systems of Non-linear Hyperbolic Conservation Laws”

Khalil Bensassi ISSW32 - Shock Waves in Internal Flows 1



Introduction

Shock tube computational challenges :
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Schematic of shock tube problem

@ The heating process of the driver gas

@ The diaphragm rupture

@ Diaphragm fragments, residual soot from previous experiments and wall
ablation due to high wall temperatures

@ Turbulent multi-scale mixing between the hot jet of the driver gas and
the cold driven tube

@ Radiation cooling
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Introduction

Shock tube computational challenges :

@ Conservation equations :

O1ps + Oz - (psu) + Bz - Fs =ws s €S,
Ot(pu) + 8z + (pu @ u + pI) + 8z - IL =0
0t (Etr + Ein + 3pu-u) + 8z - (Etr + Ein + Spu-u+p)u) + 8z - (T - u+ Qi + Qip) =0
0t(Ein) + Oz + (u€in) + Oz + (Lin) = Win

@ Large disparity between the space scale O(meters), and time scale O (nanoseconds) seconds.
@ Stiffness is increased by the chemical and kinetics source terms governing the non-equilibrium processes
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Computational setup

Physical models and Numerical methods

Numerical methods
9:(Q) + Yiep(9iF§) + Tiep(9:Ff) = S

Physical models )

@ Second order Finite Volume solver
(Linear reconstruction using a
least-squares method)

@ Thermal and chemical non
equilibrium - Park’s
two-temperatures model

@ The convective fluxes are computed

@ Chapman-Enskog method for using the AUSM*UP scheme.

the transport properties.
@ Crank-Nicolson scheme for time

@ Stefan-Maxwell for the mass . .
integration

diffusion flux.
@ Generalized Minimum RESidual

— The thermodynamics and (GMRES) algorithm and Additive
transport properties are computed Schwartz pre-conditioner - PETSc
using PLATO library. library-

— Flow solver is COOLFLuiD
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Computational setup

Unsteady simulation of EAST facility

@ A two-dimensional uniform grid
was used for this simulation -
Az =10"%m, dway = 107°.

@ The wall is considered as
isothermal at T, = 300K and no
slip wall boundary conditions is
applied.

@ Wall condition is used at the end
of the driver tube.

@ Air -11 species - is used as a test
gas, with the driver gas is
composed of 99% of Helium and
1% Nitrogen.
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Schematic of NASA Ames’ Electrical Arc shock Tube (EAST)

driver driven
Y, 001 YN, 1079
Yie : 0.99 Yo, :0.21
p, kg/m> 1.10546 3.0064 x 10— 2
T, K 6000 300
p, Pa 12.7116 x 10° 26.771

Initial conditions at diaphragm rupture
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Results

Unsteady simulation of EAST facility
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Results

Unsteady simulation
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— impractical to support a real-time experimental test campaign
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Computatior

Conclusion

How to reduce the computational cost ?
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Results

How to reduce the computational cost ?
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Results

Stagnation line approach

| S

u: 3 2000 4000 6000 8000 10000

Outflow
@ Steady flow simulation over a 3m
radius cylinder.

Inflow

@ Free steam conditions are the
same as for the test gas

@ Free stream velocity

Symmetry

Case | :inviscid |l : viscous
Uoo, km /s 10.065 9.782
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Results

Stagnation line approach vs Unsteady simulation
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Results

Stagnation line approach : drawbacks

@ Wall curvature effect

@ no boundary layer in the
post-shock region

@ decreasing velocity near the wall

@ The shock layer radiation requires
a high grid resolution
— increases drastically the
number of degree of freedom

Symmetry
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Results

Local steady state shock tube

Wall
Inflow Outflow

Symmetry

Computational domain and the stream lines, length of the domain is 0.3m
@ Inflow condition is supersonic

@ Outflow is subsonic
—The equilibrium post-shock pressure (CEA) is imposed at the outflow.
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Results

Different approaches

@ Unsteady simulation of the complete
shock tube

@ steady simulation around a cylinder

Symmetry

Wall

Outflow

@ Local steady state shock tube fitow

‘Symmetry
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Results

Comparison of different approaches
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Results

Radiation calculation

@ The flow solution, i.e temperatures and number densities
along the symmetry boundary condition (line of sight), is
passed to NEQAIR.

@ NEQAIR, in shock tube mode, then produces the radiance
perpendicular to the axis of the tube.

@ The non-Boltzmann population of the radiating state is solved
using NEQAIR's non-Boltzmann option.

Khalil Bensassi ISSW32 - Shock Waves in Internal Flows 16



Results

Radiance comparison
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Conclusion

Conclusion

@ Explored different computational approaches for simulating
non-equilibrium flows in shock tubes. Both steady and unsteady cases
were considered.

@ The cylinder case presents several disadvantages : wall curvature effect,
no boundary layer in the post-shock region and decreasing velocity near
the wall.

@ The local steady-state shock tube approach alleviates several of the
drawbacks of the cylinder approach. Good agreement was obtained
between this approach and the cylinder

@ Both steady cases showed some disagreement with the unsteady
simulation.
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Conclusion
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