
Planetary Rover Simulation for Lunar Exploration
Missions

Mark Allan
KBRwyle

NASA Ames Research Center
Moffett Field, CA 94035

MS 269-2
mark.b.allan@nasa.gov

Uland Wong
KBRwyle

NASA Ames Research Center
Moffett Field, CA 94035

MS 269-3
uland.wong@nasa.gov

P. Michael Furlong
KBRwyle

NASA Ames Research Center
Moffett Field, CA 94035

MS 269-3
padraig.m.furlong@nasa.gov

Arno Rogg
KBRwyle

NASA Ames Research Center
Moffett Field, CA 94035

MS 269-3
arno.rogg@nasa.gov

Scott McMichael
KBRwyle

NASA Ames Research Center
Moffett Field, CA 94035

MS 269-3
scott.t.mcmichael@nasa.gov

Terry Welsh
Logyx LLC

425 N. Whisman Road #400
Mountain View, CA 94043
terence.m.welsh@nasa.gov

Ian Chen
Open Robotics

170 S. Whisman Road
Mountain View, CA 94041
ichen@openrobotics.org

Steven Peters
Open Robotics

170 S. Whisman Road
Mountain View, CA 94041
scpeters@openrobotics.org

Brian Gerkey
Open Robotics

170 S. Whisman Road
Mountain View, CA 94041
gerkey@openrobotics.org

Morgan Quigley
Open Robotics

170 S. Whisman Road
Mountain View, CA 94041
morgan@openrobotics.org

Mark Shirley
NASA Ames Research Center

Moffett Field, CA 94035
MS 269-3

mark.h.shirley@nasa.gov

Matthew Deans
NASA Ames Research Center

Moffett Field, CA 94035
MS 269-1

matthew.c.deans@nasa.gov
Howard Cannon

NASA Ames Research Center
Moffett Field, CA 94035

MS 269-1
howard.n.cannon@nasa.gov

Terry Fong
NASA Ames Research Center

Moffett Field, CA 94035
MS 269-3

terry.fong@nasa.gov

Abstract—When planning planetary rover missions it is useful
to develop intuition and skills driving in, quite literally, alien
environments before incurring the cost of reaching said locales.
Simulators make it possible to operate in environments that
have the physical characteristics of target locations without the
expense and overhead of extensive physical tests. To that end,
NASA Ames and Open Robotics collaborated on a Lunar rover
driving simulator based on the open source Gazebo simula-
tion platform and leveraging ROS (Robotic Operating System)
components. The simulator was integrated with research and
mission software for rover driving, system monitoring, and
science instrument simulation to constitute an end-to-end Lunar
mission simulation capability.

Although we expect our simulator to be applicable to arbitrary
Lunar regions, we designed to a reference mission of prospecting
in polar regions. The harsh lighting and low illumination
angles at the Lunar poles combine with the unique reflectance
properties of Lunar regolith to present a challenging visual
environment for both human and computer perception. Our
simulator placed an emphasis on high fidelity visual simulation
in order to produce synthetic imagery suitable for evaluating
human rover drivers with navigation tasks, as well as providing
test data for computer vision software development.

In this paper, we describe the software used to construct the
simulated Lunar environment and the components of the driv-
ing simulation. Our synthetic terrain generation software artifi-
cially increases the resolution of Lunar digital elevation maps by
fractal synthesis and inserts craters and rocks based on Lunar
size-frequency distribution models. We describe the necessary
enhancements to import large scale, high resolution terrains

U.S. Government work not protected by U.S. copyright

into Gazebo, as well as our approach to modeling the visual
environment of the Lunar surface. An overview of the mission
software system is provided, along with how ROS was used to
emulate flight software components that had not been developed
yet.

Finally, we discuss the effect of using the high-fidelity synthetic
Lunar images for visual odometry. We also characterize the
wheel slip model, and find some inconsistencies in the produced
wheel slip behavior.

TABLE OF CONTENTS

1. INTRODUCTION . 2
2. BACKGROUND . 2
3. SIMULATOR APPROACH . 3
4. SYNTHETIC TERRAIN GENERATION 3
5. LUNAR VISUAL ENVIRONMENT . 5
6. VEHICLE SIMULATION . 9
7. FLIGHT SOFTWARE PROTOTYPE 11
8. OPERATIONS SOFTWARE . 12
9. EXPERIMENTS . 14
10. CONCLUSION . 15
11. ACKNOWLEDGEMENTS . 16
REFERENCES . 16
BIOGRAPHY . 18

1

(a) A Lunar scene produced by the RP Simulator. (b) A Lunar scene from the Apollo 12 mission.

Figure 1: One of the goals of the simulator was to create a Lunar environment that not only simulated the interaction
of the vehicle with the Lunar terrain, but was also visibly similar to the Lunar terrain.

1. INTRODUCTION
Over the last twenty years, new observations of the Moon
by orbital and surface missions have provided evidence of a
Lunar water system that is dramatically more complex and
rich than previously believed [1]. The potential to exploit
water resources for in situ utilization motivates low-cost
robotic prospecting missions to the surface of the Moon.

However, the human perceptual system is unaccustomed to
operating in the Lunar environment. The Apollo astronauts
noted difficulty in judging distances, estimating sizes, and
tracking landmarks [2]. Further compounding this is the
danger that can be posed from the operating interfaces used,
which can influence the types of errors which are committed
during operations [3], [4].

It is desirable to avoid mission-terminating errors in even
the lowest-cost missions, but that requires training in repre-
sentative environments. Replicating the Lunar environment
at scale for practice operations is not feasible, but a viable
alternative is to construct a simulation environment which
presents representative visible characteristics, as well as ap-
proximations of the expected rover-terrain interactions.

Additionally, early in mission development there are many
unknowns. As the various mission elements work to address
their specific requirements within budget and technology
constraints, the trade space is large and a design decision
in one element may have ripple effects that impact overall
system performance. One way to reduce uncertainty about
design alternatives and to answer questions about system
performance, particularly from an operational perspective, is
through simulation. For example, it may be obvious that a
skid steer mobility system would be simple, cheap, and robust
from a mechanical perspective but that dead reckoning from
an explicit steer platform would give superior localization
results. But how would the driving behavior of these two
platforms compare with respect to solar charging rates over a
traverse?

Our goal was to create a simulation environment in which
we could rapidly create approximate prototypes of complete
Lunar rover systems to estimate characteristics and perfor-
mance. Due to the broad scope of the simulation and the de-
sire to have a functional, end-to-end Lunar driving simulation
as quickly as possible, a simulation framework that offered a

rich set of off-the-shelf capability was necessary.

We built our simulation environment using the open-source
Gazebo platform and tools from the ROS ecosystem (Sec-
tion 3). ROS is used in conjunction with in-house soft-
ware to simulate both the on- and off-board rover mission
software (Section 7). Considerable effort was devoted to
producing realistic visual renderings of Lunar environments,
with limited processing burden on the simulation (Section 5).
The structure of the rover prototypes was modeled using
ROS tools, and we developed models in the Gazebo sim-
ulation environment for approximating wheel slip in loose
soil(Section 6).

Although applicable to a broad range of scenarios, our Lunar
rover simulation was built initially to exercise and evaluate
our reference mission’s approach to Lunar surface operations.
The key aspects of that approach were (a) teleoperation of the
rover by a pair of drivers on Earth and (b) continuous, real-
time interpretation of instrument data by a small science team
that is tightly integrated within mission operations followed
by limited adjustment of the mission plan. This paper focuses
on the development and capabilities of the simulator itself and
how it enabled evaluation of the driving task, but we touch on
the science data interpretation task (Section 8).

2. BACKGROUND
Reference Mission

The Resource Prospector (RP) is a Lunar rover mission
concept developed by NASA [5], [6]. RP is intended to
characterize the nature and distribution of subsurface volatiles
in permanently shadowed regions (PSR) located in one of the
Moon’s polar regions. RP is also intended to demonstrate
the feasibility of in situ resource utilization by extracting and
processing volatiles (e.g., hydrogen) that could prove valu-
able for future exploration missions. RP directly addresses
several of NASA’s ”Strategic Knowledge Gaps” for Lunar
exploration as well as the Global Exploration Roadmap’s
strategic goal of using local resources for human spaceflight.

Hydrogen and other volatiles have the potential to be an en-
abling resource for human missions to the Moon and beyond.
The distribution of Lunar subsurface volatiles drives the RP
mission requirement for mobility. In particular, the spatial

2

distribution of cold-trapped volatiles is hypothesized to be
governed by impact cratering with the top 0.5m being patchy
at scales of 100m. The mixing time scale increases with
depth (less frequent larger impacts). Consequently, increased
mobility (greater range) reduces the depth requirement for
sampling (i.e., drilling or excavation depth).

For the RP mission, a solar-powered, Lunar rover equipped
with a drill and a science payload would be used to: (1)
locate surface and near-subsurface volatiles; (2) excavate
and analyze samples of the volatile-bearing regolith; and (3)
demonstrate the form, extractability and usefulness of the
materials. The payload contains two prospecting instruments,
the Neutron Spectrometer System (NSS) and the Near Infra-
Red Volatile Spectrometer System (NIRVSS), which can
sense hydrogen at concentrations as low as 0.5 WT% to a
depth of 1 m and can capture signatures of bound H2O/OH.
The payload also contains a processing system that can heat
regolith samples to 450 C and analyze evolved gases using a
gas chromatograph / mass spectrometer.

RP would operate on the Moon for 7 to 10 days during
a single Lunar day at a location where both continuous
solar illumination and direct-to-earth (DTE) communication
conditions are present [7]. The rover is designed to be capable
of operating in shadowed regions for up to 6 hours before
needing to return to sunlight for recharge. Because the rover
is not designed to survive the cold of the Lunar night, the
mission focus is to traverse sufficient distance to determine
the lateral and vertical distribution of volatiles in a target
region before the Lunar day ends.

The short duration of the RP mission, combined with oper-
ational constraints and limited knowledge about the surface
environment (e.g., high-tempo, interactive rover commanding
and real-time science operations) create unique challenges for
mission operations [8]. These challenges have the potential
to contribute to significant levels of operator workload for the
team responsible for maneuvering the rover on the Lunar sur-
face. These challenges may also impact the ease of acquiring
and maintaining situation awareness, the ability to identify
and handle contingencies, and ground control performance
(rover driving, system monitoring, etc.)

Reference Mission Operations

Lunar surface operations provide for qualitatively different
mission operation scenarios than what is possible in the
Martian surface. An important aspect is the broad swings in
temperature on the Moon. From Lunar day to Lunar night
there can be swings in temperature of over three hundred
degrees. Building a robot to survive Lunar night comes
with additional costs and reliance on heat sources, like the
radioisotope heating used in the Lunokhod missions [9]. This
can increase mission complexity substantially.

If the rover is not designed to survive Lunar night then the
mission either has the time pressure to complete within a
Lunar day, or the operational pressure to chase sunlight to
peaks of eternal light, as proposed in [10]. The Resource
Prospector mission planned to operate within the constraints
of the Lunar solar day, creating a need for high-tempo mission
operations.

The Moon is not without its operational advantages. First,
the relative closeness of the Moon means that the time-of-
flight communications delay is only 2.5 seconds, and not on
the order of minutes for a Mars mission. Second, through
the use of the Deep Space Network, it is possible to be

in constant communication with a Lunar surface vehicle,
barring shadows from terrain features. Constant availability
of a rover supports the high-tempo mission cadence missions
like Resource Prospector.

Taking advantage of the high communications availability, we
designed our autonomy system to be distributed between the
rover on the surface of the Moon and the remote operations
team on Earth. The architecture would place lower-level com-
ponents of an autonomous system – e.g., waypoint following,
relative pose estimation, vehicle safeguarding – on-board
the robot. Higher-level algorithms, like terrain analysis and
absolute localization through terrain matching, are operated
on the ground. The division of software modules is given in
Fig. 16.

3. SIMULATOR APPROACH
After examining the options available in the industry, we
chose to base our work on the robot simulator Gazebo [11]2.
We based this decision on three key characteristics of Gazebo:
maturity, breadth, and openness. With work beginning in
2002, Gazebo is among the oldest robot simulators that is
still actively developed and widely used today. In that time,
Gazebo has been used to simulate a wide variety of robotic
systems in myriad types of indoor and outdoor environ-
ments [12], with notable examples including the DARPA
Robotics Challenge [13] and the NASA Space Robotics
Challenge [14]. Finally, Gazebo is an open source platform
released under the permissive Apache 2.0 License, which
means that we can freely use it for our work and modify
it to fit our specific needs. For similar reasons, we chose
the widely used and also open source ROS (Robot Operating
System) platform3 as the basis for our efforts in prototyping
the vehicle control software [15].

Driving planetary rovers on the Lunar poles is not a common
use case, however. Consequently, significant modifications,
extensions, and new development was needed in order to
implement our target scenarios. First, high resolution terrain
representative of the potential landing sites for the reference
mission was required. The simulation environment must be
capable of supporting large, high resolution terrain in order
to enable traverses on the order of hundreds of meters. The
synthetic camera views rendered by the simulation must have
sufficient fidelity to test human perception and situational
awareness, as well as be suitable as test data for computer
vision researchers. Although high fidelity mechanism model-
ing was not required for our purposes, we would need flexible
mechanism configuration to explore the impact of design
elements such as steering limits and camera placement. Fi-
nally, the simulation would need to integrate with mission
operations software, or analogs of such software, in order to
conduct end-to-end driving simulations.

4. SYNTHETIC TERRAIN GENERATION
To produce a viable Lunar driving experience the simulated
world must be representative of the target physical environ-
ment. Specifically, the morphology of the terrain should
accurately represent terrain features that would be considered
either positive or negative obstacles for the rover. Although
Digital Elevation Models (DEMs) are available for much of

2http://gazebosim.org
3http://www.ros.org

3

the Lunar surface, the resolution of these models are not
sufficient to represent rover-scale hazards. To make matters
worse, the best resolution Lunar DEMs are generated from
stereo orbital imagery, yet the reference mission was targeting
areas with permanently shadowed regions. Existing terrain
models of the Lunar surface are on the order of meters,
yet a resolution on the order of centimeters is required to
adequately represent rover-scale hazards. We addressed this
disparity by developing tools to synthesize high resolution
terrain suitable for rover driving.

On the Moon, the principal obstacles of interest to rovers
are rocks and craters. Getting the ”density” right was one
of the primary objectives of this work as the distributions of
obstacles have significant impact on mission traverse paths
and schedule. While mean values are published in literature
[16] for Highlands/Mare/Polar regions, these size-frequency
distributions vary widely according to locality. Parameters
such as proximity to large or fresh craters, in particular, are
significant modulating factors for rocks. We attempted to
model these variations by procedural placement of craters
and ejecta fields and simulating the processes of Lunar terrain
formation with the most current orbital information.

In our process, crater distributions are first sampled to pro-
duce an estimate of size-frequency per unit area. For a
scene of specific dimension, we can predict how many craters
of a particular diameter are present. These distributions
take an inverse-exponential form introduced in [16]. We
have updated parameters for Polar regions based on manual
identification in LRO images and curve fitting. Variation
from uncertainty is allowed by estimating sigma from fitting
residuals. In the case where the scene is based on a prior
DEM, large craters are identified by hand and this is factored
into the sampled distribution so that double counting does not
occur. Next, an age is assigned pseudo-randomly to each
crater with the probability of a crater being old decreasing
with size such that small craters are uniformly distributed
[17]. The sampled distribution is ordered sequentially in time
and assigned a flag based on whether it is large enough to
generate ejecta. Working forward in time, ejecta generating
craters are ”placed” by assigning a uniform random (x,y)
location while their shape is stenciled onto a spatial proba-
bility map used to generate ejecta rocks. Shape consists of an
interior, rim, and ejecta blanket which are all tunable physical
parameters. Small craters do not generate ejecta and are thus
only assigned spatial coordinates without contributing to the
ejecta map.

Unlike craters, it is difficult and time consuming to identify
existing rocks from orbital imagery for each terrain. More-
over, small rocks are under image resolution limits and must
be extrapolated from models. Thus, all rocks are generated
by randomly sampling from distributions of size-frequency
similar to craters. There are two populations associated
with rocks, one for ejecta thrown during crater formation,
and a second uniform background distribution for terrain
between large craters. For the Polar regions, the background
distribution is several orders of magnitude sparser than ejecta.
During the process of sampling rocks and assigning spatial
coordinates, the ejecta probability map is consulted in order
to modulate local density. At each time step, old rocks have
a probability of being covered by regolith, and a new crater
forming will cover old rocks under its extent. When the
number of generated rocks and craters equals the expected
number plus some variation, the sizes, ages, and coordinates
of the features are passed into the fractal terrain generator.

Figure 2: Graphic showing manually placed craters
(green), background rock distribution (blue), and ejecta
rock distribution (red).

Our fratal terrain generation process synthetically increases
resolution of DEMs and inserts craters utilizing techniques
established by [18]. With this approach, the process starts
with a low resolution DEM of the area of interest. A fractal
expansion of the region is performed by iteratively applying
the diamond-and-square algorithm to reach the desired res-
olution. Craters are placed by fitting a plane to a patch of
terrain, inserting the crater bowl profile into the plane, and
blending the ejecta blanket into the surrounding terrain. The
crater profile is defined by four connected polynomials for
which a ”freshness” parameter controls crater degredation.

The diamond-and-square method of fractal terrain generation
is straightforward to implement and a reasonable choice
for adding higher frequency details. However, the method
is known to create interpolation artifacts when constrained
[19], particularly on low frequency features like aged crater
rims. We employed two approaches to mitigate these arti-
facts. First, we replace linear interpolation with Catmull-Rom
splines in the diamond-and-square algorithm which markedly
reduces the severity of the artifacts but does not eliminate
them. Second, we use an approach similar to that used in
[20] whereby the terrain is split into high and low frequency
components. The high frequency component is scaled up
with the diamond-and-square algorithm whereas the low fre-
quency component is scaled up with bilinear interpolation.
Craters are inserted into the low frequency component before
adding the high and low frequency components back together
to reconstitute the DEM. (Fig. 3)

Figure 3: Terrain is split into high and low frequency
components during upscaling process to avoid interpola-
tion artifacts

Rocks are inserted into the DEM as a final step. For each rock
to be inserted, a model is randomly selected from a library of
high resolution rock hightfields. The model is scaled to the
desired size, then overlaid onto the terrain.

4

In addition to the enhanced GeoTIFF DEM, the synthetic
terrain generation process produces other assets that will be
used for appearance modeling in Gazebo. A rock mask maps
which cells in the DEM correspond to regolith and which
cells correspond to rocks. Next, an albedo map is generated
by inserting crater splash patterns using crater location, size,
and freshness parameters. The excavated regolith from a
fresh crater impact is lighter in shade due to lack of exposure
to solar radiation, and over time the ejecta blanket weathers
and blends into the surrounding terrain. An exponential
function applied to the freshness parameter determines ejecta
ray lightness. Finally, we generate a normal map which
captures the surface normal at each DEM posting.

5. LUNAR VISUAL ENVIRONMENT
Our simulator placed an emphasis on high fidelity visual
simulation because visual cues are fundamental to driving
and localization tasks. Human operators must be able to
perceive hazards and maintain adequate situational awareness
in order to safely drive a rover, and the development of robust
computer vision software requires images representative of
those that would be received during the mission.

The visual environment at the Lunar poles is unlike anything
found on Earth. The sun is very low on the horizon (5 to 10
degrees elevation in our scenarios) which causes extremely
long shadows in one direction and blinding sunlight in the
opposite direction. There is no atmospheric scattering which,
on Earth, can provide important depth queues [21] and leads
to Lunar shadows appearing sharper and darker. Additionally,
the Lunar regolith that covers the surface of the Moon has
unique reflective properties.

Lunar regolith is formed through a microbombardment pro-
cesses which pulvarizes rock into soil [22]. Because the
Lunar soil is not produced by the erosion processes we are
accustomed to on Earth - the particulate matter is sharp and
has reflectance properties unlike Earth soils, which can pose a
challenge to both human and automated perception systems.
Notably, there is a significant opposition effect [23] in which
the surface brightens and loses contrast when the view angle
and illumination angle approach coincidence.

Figure 4: The opposition effect is illustrated in this sur-
face image of the moon from Apollo 16. Inability to
perceive terrain detail occurs when viewing away from
the solar direction.

By accurately modeling (within the technical limitations of
real time computer graphics and our budget) the appearance
of the Lunar surface, we desired to build a grounded intuition
about what it would be like to drive a rover at the Lunar
poles. To do this, we enhanced Gazebo to be capable of
rendering high resolution, large scale terrains. We developed
a surface shader that models the reflective properties of Lunar
regolith, and we draw the rover wheel tracks into the terrain
so drivers can see where they have been. We improved
Gazebo’s real-time shadow rendering for our use case, and
developed tools to pre-render large scale static shadows with
accurate penumbras. We used ephemeris data to accurately
place the Sun and Earth in the sky for proposed mission
landing dates. Expected scene irradiance was modeled in
order to approximate global illumination effects, and we
extended Gazebo’s camera modeling capabilities by adding
dynamic exposure and high bit depth rendering.

Figure 5: Opposition effect in simulation.

Gazebo Terrain Improvements

As high resolution synthetic terrains were generated and used
in simulation, it became evident that the existing terrain
visualization support in Gazebo had performance limitations.
At the highest resolution of 8K in our experiments, the DEM
can take up to several minutes to load in Gazebo, and once
loaded, a significant drop in framerate was observed. To
address these performance issues, we added two features to
Gazebo: 1) Level-Of-Detail (LOD) support and 2) caching of
terrain LOD data to disk. Gazebo uses the Ogre3D rendering
engine, which conveniently has support for both of these
features.

LOD—The most noticeable drop in runtime rendering per-
formance occurs when the entire terrain is within the camera
view, in which case, no parts of the terrain are frustum-culled.
While the camera sensors onboard the rover do not necessary
see the entire terrain, the degraded performance was affecting
normal usage of the simulator such as basic user interaction
with the simulation environment. Integrating LOD support
helped to reduce the triangle count and hence improves the
frame rate in this scenario (see figure 6). The quad-tree
based LOD implementation in Ogre3D lets users configure
LOD transitions to some degree by specifying the maximum
screen pixel error allowed when rendering. In general, a node
higher up the tree, i.e. lower detail, can only be rendered
if its screen space pixel error, computed based on the height
characteristics of the node and the current camera distance,
does not exceed the specified maximum.

Terrain data caching—It was observed that a large portion
of the Gazebo startup time was attributed to the loading and
parsing of DEM data into Ogre3D internal terrain tile data
format. Adding the ability to cache these data means that

5

the overhead would only need to be incurred once. All
subsequent Gazebo sessions using the same DEM file and
textures will fetch and load the generated Ogre3D terrain
cache from disk, bypassing the DEM parsing and terrain tile
generation process. In our tests, the Gazebo startup time
reduced by a factor of 10 (from 5 minutes to 30 seconds)
when loading a simulation environment constructed from an
8K resolution DEM.

Figure 6: Wireframe visualization of terrain with LOD
enabled

Enabling LOD helped resolved framerate issue but in some
cases, it introduced noticeable popping effects during LOD
transitions. This issue was mitigated by pre-subdividing the
DEM into smaller terrain chunks. In doing so, we also had to
make sure that the UV coordinates of each terrain chunk are
transformed so that the terrain texture maps can be sampled
correctly during shading.

Background Terrain Meshes—Having terrain that extends to
the horizon is critical because human drivers often use distant
terrain features to get their bearings and the RP navigation
team was investigating automated methods of localizing us-
ing the horizon line. Even with the LOD enhancements to
Gazebo, the render performance and memory load of the high
resolution terrain made it impractical to extend to the horizon.

Consequently, we split the terrain into two regions, a high
resolution ”drivable region” and lower resolution ”backround
tile” meshes. The drivable region uses a high resolution
DEM, typically in the range of 3-5cm per posting, and
employs a detailed shader. The background tiles begin at the
boundary of the drivable region and fall off at progressively
lower resolution toward the horizon. Because of the distance
between the eyepoint and background tiles, there is no distin-
guishable transition despite the significantly lower resolution
and simplified shader (Fig. 7).

GLSL Shader

A shader is a programmable replacement for parts of the
real-time rendering pipeline on a graphics processing unit
(GPU). Using the OpenGL Shading Language (GLSL), we
have built a shader that simulates lighting, shadows, material
properties for regolith and rock, and camera exposure. This
effort ultimately produces a final color value for every pixel
in our camera images. Much of the shader combines standard
computer graphics techniques or slight variations on them.
However, our material simulation of regolith is not commonly
found in shaders.

Figure 7: Drivable region in foreground blends seamlessly
with lower resolution background tiles.

Regolith is the layer of powdery dust which covers most
of the moon except for the rare vertical rocky surface. As
such, correctly simulating the appearance of regolith via the
bidirectional reflectance distribution function (BRDF) is a
major factor in achieving visual fidelity. The reflectance of
Lunar regolith and regolith-like materials have been com-
prehensively studied and the Hapke functions remain the
most accurate physically-based models [24], [25]. How-
ever, the Hapke BRDF has several drawbacks when used
for rover-scale rendering including mathematical complexity,
non-invertibility, and edge artifacts [26]. We implement
an approximation to the full BRDF suggested by Hapke,
which combines coherent-backscatter and shadow hiding into
a single term [25]. Furthermore, our Hapke approximation
shader is combined with a Lambertian BRDF with a nadir-
dependent angle to reduce rendering artifacts. This is a simi-
lar strategy used by [27] in developing the Lunar-Lambertian
model derived from Lommel-Seeliger reflectance. Our Hapke
parameters are estimated from prior literature for Highlands
regolith, which is a stand-in for Polar regions of the moon.
Our model achieves the desired loss of contrast and opposi-
tion surge while behaving properly under direct illumination.

Wheel Tracks

Any rover will leave wheel tracks in the powdery Lunar
regolith. We wanted to include these tracks in our visual sim-
ulation for realism and as an orientation aid for operators. It
would be possible to reshape the terrain geometry to represent
wheel tracks, but this method is difficult to implement and
would provide more fidelity than required. An alternative is
to use a technique called bump mapping to give the illusion
of wheel tracks on flat geometry.

Our shader employs bump mapping to give the regolith its
fine detail and we expand on this to add wheel tracks. We
apply a 1-channel texture to the drivable area of the terrain. It
starts out with every texel set to the maximum value, 255.
Wherever a rover wheel travels we draw a groove in the
texture, setting texels to 0 or some medium value. Wherever
this texture is less than 255, the shader mixes a surface normal
into the bump mapping. To approximate a surface normal
it compares neighboring texels in the wheel tracks texture
to find the slope in the x- and y-directions. Assuming a z-
value of 1.0, the three values are normalized to produce a
final surface normal.

To draw the wheel tracks in the texture we use a Gazebo
plugin. We use Gazebo’s knowledge of the rover model and
the terrain layout to compute what part of the texture each
wheel position corresponds with. Everywhere each wheel

6

travels, we draw an anti-aliased dot in the texture of a size in
texels that appears to match the wheel size when the texture
is projected on the terrain. These dots overlap to give the
appearance of a continuous groove made by each wheel.

Figure 8: Rover wheel tracks

Shadows

Shadow rendering provides countless challenges and has
been under continuous development since the advent of com-
puter graphics. Like most aspects of real-time computer
graphics, a good solution involves finding a set of approx-
imations that work well for your particular problem. Our
problem was to render shadows that would appear as realistic
as possible from the perspective of the rover cameras. Addi-
tionally, we needed a shadow solution that would support low
illumination angles and long cast shadows as the reference
mission scenarios have the sun at just a few degrees above
the horizon.

For our purposes, we were only concerned with shadows cast
by the sun. On a rover, any lights would necessarily be
mounted close to the rover’s cameras, so the shadows they
cast would be mostly hidden from view.

The dominant real-time shadow technique and the one we
used is called shadow mapping. It involves rendering a
texture map that contains the depth of objects in a scene
from the viewpoint of a light source and then comparing
those depths with object positions when rendering the scene
from the viewpoint of the virtual camera. These comparisons
reveal which surfaces are illuminated by the light and which
are in shadow. There are other shadow techniques, but
shadow mapping provides a popular combination of speed
and flexibility.

One common challenge related to shadow mapping is pro-
viding an appropriate amount of shadow map resolution in
every part of a scene. Ideally, shadow detail decreases with
distance from the user’s point of view such that there is a
unique shadow map texel for every pixel in the final image. In
a small scene such as an indoor room, a uniform distribution
of shadow resolution can work well. A uniform distribution
of shadow resolution is impractical from the standpoint of
memory consumption when rendering a landscape out to the
horizon, however.

It is possible to improve shadow quality if you can determine
in advance which shadows in the scene are static and which
are dynamic. If the light source moves then all the shadows
it casts are dynamic. The orientation of the sun relative to the
moon changes so slowly that we can assume it is effectively
static in our simulation. The only moving object is the rover
itself. Therefore, we can pre-compute shadows cast by the
terrain (often referred to as baked shadows), and we only need
to compute real-time shadows for the rover itself.

Baked Shadows— Because the sun moves slowly (∼0.5
deg/hour), we elected to pre-render the shadows generated
by the terrain shadowing itself, capturing the result in a
lightmap that was used by the shader to render static shadows
with very little runtime overhead. This approach produces
high-quality shadows over the whole terrain, with smoothly
varying penumbras cast by distant features and tiny shadows
cast by one pixel bumps.

To generate the lightmap, a 2-dimensional form of ray-tracing
called ray-casting was used because the terrain was modeled
as a height field with no overhangs. The lightmap was
calculated at the same 4 cm resolution as the terrain, and the
sun was modeled as an extended source with rays cast from
280 points within the sun’s disk.

While the sun moves slowly, it’s not fixed. The sun moves
its apparent width in one hour, so any terrain pixel can poten-
tially go from fully lit to fully unlit or vice versa within that
hour. This only happens at the edges of shadows, however,
and is rarely important to rover operations because the rover’s
path is planned to avoid these areas. Our approach to this slow
movement is to generate one lightmap for every hour and to
linearly interpolate linearly between adjacent lightmaps in the
shader, however, this enhancement has not been implemented
yet.

Figure 9: Terrain shadows are pre-rendered while vehicle
shadows are rendered in real time.

Gazebo Real-Time Shadow Improvements— Gazebo origi-
nally used the Ogre3D default shadow mapping algorithm
which is a hybrid of Parallel Split Shadow Maps (PSSM)[28]
and Light-Space Perspective Shadow Maps (LiSPSM)[29].
PSSM is a form of cascaded shadow maps in which multiple
depth maps are rendered in order to reduce shadow aliasing
artifacts. LiSPSM is a perspective reparameterization tech-
nique that warps the shadow map in order to improve the
distribution of shadow texels in the rendered scene.

While the default shadows in Gazebo worked well for typical
scenes in which the sun is overhead, it produced severe
artifacts for our use cases. We identified the cause of these
artifacts to be LiSPSM and a hard coded axis assumption.
The LiSPSM implementation in Ogre3D has a singularity

7

when the view vector and light vector are close to coincident
which causes a severe drop in shadow quality. In our scenes,
real-time shadow mapping is only used for the rover and
when the rover cameras are observing the rover shadow, the
light vector and view vector are necessarily close to coinci-
dent. Additionally, Ogre3D assumes all scenes are oriented
with the Y-axis pointing up while Gazebo adopts a Z-up
convention. This decreased the usable region of each shadow
map and often caused shadow edges to be more jagged than
necessary and ”swim” when the viewpoint changed.

We corrected both problems by adding code to Gazebo that
bypasses these troublesome parts of Ogre3D. We imple-
mented a standard PSSM algorithm that provides a good dis-
tribution of shadow resolution and corrected all hard coded Y-
up assumptions. To further refine the PSSM implementation,
we added hooks to the Gazebo API to allow aspects of the
shadows to be tuned through Gazebo plugins.

These modifications mitigated the most severe artifacts, but
there were still some features on the rover, such as the
tall, thin mast, that were not casting shadows consistently.
The shader that Gazebo was using to apply shadows was
smoothing shadow edges using Percentage Closest Filtering
(PCF) with a 3x3 grid of sample positions. This worked well
for smoothing jagged shadow edges but, due to the filter’s
uniformity, sometimes small features would fall through the
cracks and not affect the final shadow intensity. We replaced
PCF with something known as Hardware PCF, a common
graphics driver hack that accomplishes similar smoothing
with little performance impact. We then applied a 9-sample
Poisson filter which further smoothed the shadows and does a
much better job of preserving small features than the uniform
filter.

Ephemeris

The position of the Sun and Earth relative to the moon is
computed using the SPICE C toolkit provided by the Naviga-
tion and Ancillary Information Facility (NAIF) 4. Using the
timestamp maintained by the simulator, this toolkit generates
the transformations between the Moon, the Sun, and the
Earth at the current simulated time. We are not concerned
about the locations of stars because they are not drawn in the
simulator. By chaining these transformations with the rover’s
current position on the surface of the moon we are able to
compute the positions of the Sun and the Earth relative to our
local coordinate system and position them accurately in the
simulated environment.

Rover Lights

Gazebo was extended to allow lights to be attached to ar-
ticulated rover components specified in the Unified Robot
Desription Format (URDF), which is the file format com-
monly used to describe ROS robot models. Ogre3D material
files were used to pass light parameters from Gazebo to
our GLSL shader. Our terrain shader simulates up to four
spotlights having brightness, cone angle, and distance falloff
that can be specified as part of the Gazebo light description.
We also added a texture projection feature for simulating
the detailed pattern projected by a real-world light source.
This infrastructure gives us the ability to simulate a variety
of lighting hardware and placement before settling on a final
solution.

4https://naif.jpl.nasa.gov/naif/toolkit.html

Figure 10: Rover driving in shadowed crater

Photometry

The reference mission required training in use of photo-
graphic systems coupled with active illumination for driving.
Developments were made to model complex illumination
effects from natural sources, rover-based lighting, and sensor
optics in order to produce an accurate camera image. To
accomplish this in a real-time manner, we used physically-
based raytracing to produce exemplar scenes which were then
approximated with shader tricks.

The dynamic range of scenes on the Moon drives the perfor-
mance of stereo safeguarding, human situational awareness,
and the design of rover lighting. To accurately simulate dy-
namic range, global illumination must be modeled. If direct
sunlight were the only source of illumination, shadowed areas
would be pitch black. However, we know this is not the case
from images of the Lunar surface, despite the high dynamic
range. Light reaches shadowed areas from multiple natural
sources including diffuse interreflection of the Lunar surface,
Earthshine, and starlight. Using ray tracing, we simulated
the contribution of indirect scattering in ideal surface craters
given particular phase angle combinations. Our findings indi-
cate that an average of 3% of the direct illumination reflects
into shadows in polar scenes. This effect was approximated
in rendering by illuminating the scene with a low-intensity
virtual source opposing the sun in azimuth. Analytically
we also showed that light from the star field is insignificant
and that Earthshine, while potentially a fraction of indirect
scattering, is complexly dependent on the phase of Earth.
Thus, neither these other sources were implemented.

Camera Exposure and Bit Depth

In order to take advantage of the dynamic range of our
simulated scene, we extended Gazebo to emulate camera
exposure and enabled high bit depth rendered images. Our
modifications to Gazebo permit plugin authors to inspect all
shaders in the scene, search for shader variable names, and set
uniform variable values. We emulate exposure with a linear
multiplier on the output color component of fragment shaders
in the scene. The camera exposure Gazebo plugin has a ROS
interface to accept camera exposure commands and modifies
a commonly named exposure variable in all shaders in the
scene.

A standard bit depth of 8 is adequate for humans viewing
images on a nonspecialized monitor, but computer vision
algorithms can make use of higher depths. The reference
mission cameras under consideration have a bit depth of 12,

8

Figure 11: Four camera exposure levels showing dynamic
range and approximation of global illumination.

so we need to render images of the same depth to accu-
rately simulate our intended image pipeline. We extended
Gazebo to capture 16-bit integer images. Internally, Gazebo
already supports floating point textures as they are used to
store data generated by depth and other image-based range
sensors. So the task of simulating 16-bit grayscale and RGB
camera sensors was relatively straightforward, essentially by
rendering to textures in the these formats. Direct 12-bit image
capture is not an option in OpenGL, but a 16-bit image can
be downsampled to 12-bit as a post-render step.

6. VEHICLE SIMULATION
The first prototype of the Resource Prospector robot
(Fig. 12a) is an explicit steered vehicle, which is capable of
being skid-steered. During the early stages of the project we
were exploring which driving style (skid-steered vs explicit
steering) would result in more effective operations.

Explicit steering permits the robot to drive in any direction
and maintain the orientation of the solar panels to maximize
the insolation of the solar panels. Further, the ability of
the vehicle to “walk” out sand traps improves the robustness
of the vehicle to environmental hazards. The skid-steered
version of RP would present a simpler control problem, and
simpler mechanical construction, reducing cost and complex-
ity of the vehicle.

Simulating Vehicle Mobility

We developed the physical simulation of the robot in Gazebo
in order to test skid-steered and explicit steered driving.
This was to aid the development of the mission’s concept of
operations.

It had yet to be determined what steering mechanism should
be used for the vehicle. The RP team wanted to evaluate skid-
steered and explicit steered vehicles. To do this we simulated
two different versions of the robot. The first version of the
robot was simulated using the Husky Gazebo model [30], the
second version was simulated with a model of NASA Ames’

KRex2.

The Husky robot is only capable of skid-steering, which does
not reflect the full capabilities of the RP vehicle. However,
since the RP vehicle is capable of skid steering, the Husky
provided a platform to quickly mount the sensors needed for
conducting missions operations tests and provide a reason-
able approximation of vehicle motion.

To model explicit-steered driving, we used a modified version
of the NASA Ames Intelligent Robotics Group’s KRex2
robot. The KRex2 robot is, like RP, an explicit-steer vehicle.
We modified the KRex2 model to reflect the offset steering
which is present on the RP rover, but not on the actual KRex2
model.

However, where RP can independently lower and raise its
wheels, KRex2 cannot, and relies on a differencing bar to
maintain contact with the terrain, as shown in Fig. 13. We
chose to use a differencing system rather than to fully model
the RP suspension, because it was a simpler to model, and did
not involve modelling the control system of the RP rover in
order to achieve full terrain contact with the wheels.

Using KRex2 as a proxy for the RP vehicle enabled the use of
the explicit steering capacity for missions operations testing.
Using the URDF language to describe the robot, it was easy
to modify the sensors that were added to the earlier Husky
model to the modified KRex2 model.

To both of these vehicles we added a stereo camera pair that
was mounted on a gimbal at the top of the mast, seen in
Fig. 12a, as well as the solar-panel superstructure. We also
added a simulated IMU and tracked wheel odometry for use
in pose estimation.

It was important to be able to place the robot superstruc-
ture on the vehicle, which was made easy with the URDF
language. By placing the envelope of the robot structure in
the scene, we could test how much the field of view of the
operators would be occluded.

Wheel Slip

Localization algorithms that employ wheel odometry use
measurements of wheel rotation to estimate robot motion.
These algorithms work best when the wheel/terrain relative
shear velocity (also known as wheel slip) is small. In
most cases, wheel slip can occur when a sufficient torque
is applied to a wheel, though it can be complex to model
the behavior [31]. To reduce the computational burden, the
Open Dynamics Engine (OpenDE) physics solver is used
with the Gazebo simulator. This solver treats the 3D terrain
as a rigid surface and discretizes contact as a wrench acting
at contact points with a specified normal direction. At each
contact point, a Coulomb friction model limits the maximum
tangential force to the product of the normal force and a
surface-dependent friction coefficient. To further reduce the
computation burden, the ”friction cone” is approximated as a
”friction pyramid” [32]. The axes of the friction pyramid are
aligned with the longitudinal and lateral axes of each wheel
so that anisotropic parameters can be specified for the wheel
axes.

The OpenDE friction model has parameters for the friction
coefficient and slip compliance and are illustrated in figure
14. The ratio of tangential friction force to normal force is
limited by the wheel/soil friction coefficient, and its behavior
for small amounts of slip is governed by the slip compliance.

9

(a) The Resource Prospector (RP) robot is capable of independently steering
each of its wheels. Additionally, each wheel can be raised and lowered
independently, permitting the robot to “walk” out of sand traps.

(b) We used the robot modelling framework of Gazebo to generate
simulated versions of the RP rover. First, we used a skid steer model
of the rover, based on the Husky robot model. Second, we based the
steering mechanism on a model of the KRex2 robot.

Figure 12: The RP prototype (Fig. 12a) was constructed at Johnson Space Center, the rover was simulated (Fig. 12b)
using Gazebo and ROS

Figure 13: KRex2 exercising the differencing bar to main-
tain terrain contact for all wheels.

The slip compliance has units of the inverse of a damping
coefficient, such that the value of 0 leads to infinite damping
and no slip, while positive values allow for some slip. The
slip compliance corresponds to the inverse slope of the curve
near the origin.

In the real world, an input drive command will result in
a non-zero slip of the rover wheel on loose terrain which
will generate drift in localization algorithms. In order for
this drift to be plausible in simulation, a wheel slip plug-in
was developed and implemented for Gazebo that adjusts the
slip compliance parameter based on a test results from two
tests: RP single wheel drawbar pull test and RP Lunar mass
equivalent test unit, MGRU (see figure 15) in the SLOPElab
facility at NASA Glenn Research Center (GRC) [33]. The
simulant for these test was GRC-1 [34], which has similar
mechanical characteristics as the Lunar regolith. The slip
compliance tuning parameter enables simulation of loose

Figure 14: Wheel/soil interaction model used in the simu-
lator

material generating slip greater than zero on shallow angle
slopes.

Although not perfect at simulating the wheel/soil interaction,
this plug-in enables the simulated rover to have high level slip
behavior relatively close to what would be expected on Lunar
terrain. In order to increase the fidelity and give more realism
for wheel sinkage and rover embedding, this simple model
would need to be replaced by a discrete element method
(DEM) model which is very computationally expensive [35].
Additionally, existing DEM solutions lack validations for
lunar terrain.

10

Figure 15: A picture of the RP Lunar mass equivalent
rover at the SLOPElab in NASA GRC.

7. FLIGHT SOFTWARE PROTOTYPE
A major aspect of the Resource Prospector project was the
use of distributed autonomy. The decision to distribute the
software was possible because of the high communications
availability between the rover and the Earth.

The autonomy software for the vehicle was divided into on-
board (Flight) software, which was responsible for safeguard-
ing the vehicle and executing simple waypoint following,
and the off-board (Ground) software, which acted as assistive
tools for the remote human operators, illustrated in Fig. 16.

In order to test operations we used a combination of ROS
software components and NASA-developed software to build
an end-to-end mission simulator. As illustrated in Fig. 16,
we split the software into on-board (Flight) and off-board
(Ground) software components.

To validate the distributed autonomy concept we needed to
model the anticipated communications delays and interrup-
tions in the Earth to Moon communications link. We built
a communications bridge between the operations center and
the simulated Lunar rover.

Autonomy algorithms (mapping, planning) carry a substan-
tial burden for validation and verification. Operating the
higher-level algorithms on the ground as assistive tools, in-
stead of on-board the rover in a decision-making capacity,
mitigates the validation and verification burden, enabling
faster and more cost-effective deployment and development.

Flight/Ground Software split

As discussed in Section 2 we divided the rover software
into low-level control and safeguarding components, which
were deployed on-board the rover (“flight software”), and
higher-level autonomy or assistive tools which operated on
Earth (“ground software”). The division of those software
components are given in Fig. 16.

The role of the rover was played by the modified simulated
RP rover, as described in Section 6. The flight software
consisted of the components that were designated the mini-
mum viable components to complete the mission. The flight
software components include:

Rover Kinematics The software that translates vehicle body
motion commands into motor commands. We modelled the
Rover Kinematics module with the move base5 module with
additional explicit steering control.
Mobility The mobility module is responsible for closed-loop
control on waypoint navigation. This functionality was also
supplied by the move base module.
Localization The pose estimation solution which integrated
wheel odometry, a star tracker, and the IMU. We modelled the
Localization module with ROS’ robot localization6 package.
Camera/Gimbal Pointing The RP navigation cameras and
the high-gain antenna are mounted on gimbals on the mast.
This module is responsible for closed-loop control of those
gimbals. In our simulation we have primarily concerned
ourselves with camera pointing and not the effects of antenna
pointing, although planned improvements to communications
system simulation fidelity would take antenna pointing into
account.
Wheel, IMU, Gimbal, and Camera I/O These modules re-
sponsible for low-level hardware interfaces. This functional-
ity was supplied by the ros control7 module.
Rover Mode Manager This software component is respon-
sible for preventing the robot from executing illegal or unsafe
actions, and ensuring that all on-board modules are in the
appropriate operating mode. While this module did exist
on the prototype RP rover, we did not implement it for the
simulated rover operations, and as such we did not seek a
ROS equivalent.
Virtual Bumper The virtual bumper is designed to keep the
rover safe from navigation obstacles, as per [36]. This module
was not implemented in the simulated rover operations. The
prototype virtual bumper implemented for the RP project
is described in [37], with a simple safeguarding scheme
described in [38].

The ground software components represented higher-level
software, which integrated data to improve the situational
awareness of the rover drivers. The particular modules
included in the ground software are:

Advanced Localization The advanced localization module
integrated the on-board pose estimates with terrain relative
navigation, mono- and stereo-scopic visual odometry. We
again used the robot localization module to integrate the
different sources of motion estimation. We did not implement
the terrain relative navigation in this simulated version, how-
ever, the extensible nature of the robot localization package
would make this addition straightforward.
Stereo Reconstruction Produces a metric reconstruction of
the scene from the rover’s stereo cameras. We used OpenCV8

to perform Stereo Reconstruction.
Mapping Uses the estimated pose and reconstructed scenes
to build DEMs of the Lunar surface.
Hazard Detection Provides two forms of hazard detection.
The module processes a prior elevation maps to identify
geometric hazards to the rover, as well as point clouds from
the stereo cameras to identify potential vehicle hazards that
may not appear in the terrain geometry. A NASA developed
terrain analysis module produced a cost map which was
injected into the ROS costmap 2d9 module to provide this
functionality.
Planning The planning module takes goals issued by the

5http://wiki.ros.org/move base
6http://wiki.ros.org/robot localization
7http://wiki.ros.org/ros control
8http://wiki.ros.org/vision opencv
9http://wiki.ros.org/costmap 2d

11

Figure 16: On the left hand side we include the software modules that would operate on-board the robot. These include
low-level components, including waypoint following and simple pose estimation fusing wheel odometry and the vehicle’s
IMU. On the right hand side of the diagram are the more computationally intensive algorithms, which are proposed to
run on the Earth. Exploiting greater computing resources on the ground lets the robot access algorithms which would
not be feasible on on-board radiation-hardened computers.

drivers and determines a sequence of waypoints which safely
navigate the cost map produced by the Hazard Detection
model. We used the move base module to plan trajectories
between waypoints.
Simulator The simulator acted as an assistive tool for the
operators, to ensure that the commands being sent to the rover
were the commands that were intended. We used the Gazebo
simulator with the modifications described in this paper.
Operator Interface The operations interface was provided
through two modules. Direct and immediate control of the
rover was accomplished through NASA Ames Intelligent
Robotics Group’s VERVE software. Overall missions oper-
ations, and plan-level contextual information was provided
through the WARP system. Both of these modules are
described in greater detail below, and communicated to the
ROS system using a software bridge developed for mission
simulation experiments.

8. OPERATIONS SOFTWARE
To enable teams of flight controllers to participate in driving
simulations and to improve simulation fidelity, we interfaced
the rover model with the mission control software intended
for RP. This consisted of the robot driving software, VERVE,
the science instrument monitoring displays, LabVIEW, and
an integrated mission control software framework (WARP)
that provides a wide variety of functions. To make these
components speak to each other we developed a bridge that
translated messages between the different communications

protocols used by the operations software and the simulated
rover. The bridge primarily converted between ROS and the
RAPID communications protocol[39] used by some NASA-
developed software.

In addition to protocol translation, the bridge models time
delay and jitter to serve as a space comms emulator. Each
data topic can be assigned a fixed time delay and/or assigned
to a logical data channel with set bandwidth. The logical data
channels use a token bucket to restrict data flow and data
payload size is either taken directly from the ROS message
or from a configuration file for cases where ROS payload
size is significantly different from its flight counterpart. The
bridge reproduces the expected time-of-flight, bandwidth,
and ground processing delays under nominal conditions so
that simulated operations have an appropriate cadence. Fu-
ture work on the bridge will introduce off-nominal conditions
such as comm dropouts and variable bandwidth.

VERVE— The rover driving software is based on the
NASA Visual Environment for Robotic Virtual Exploration
(VERVE) [40]. VERVE provides an interactive 3D user
interface for remote monitoring and commanding of robotic
systems (Fig. 17) and has been used for several Lunar analog
field tests [41] [42] as well as commanding robotic assets
from the International Space Station [43].

LabVIEW and WARP— LabVIEW[44] is commercial soft-
ware and was used during the development and testing of

12

Figure 17: VERVE was used as the robot control interface for the Mojave Volatiles Prospector (MVP) project. MVP
tested high-tempo prospecting operations which would be applicable to missions like Resource Prospector.

RP’s instruments. The simulation provides inputs that flows
through the real data processing pipeline and into the Lab-
VIEW displays (Fig. 18).

Figure 18: Instrument LabVIEW displays

WARP [45] provides a wide-variety of displays needed by
flight control teams including real-time and historical teleme-
try display, caution and warning and event display, access
to telemetry dictionaries, shift logs, timelines and activity
plans, support for multiple missions, and base maps and map
layers including the rover’s path and heat map displays of
instrument data (Fig. 19). WARP is built on OpenMCT
[46], a web-based framework developed by NASAs Ad-
vanced Multi-Mission Operations System (AMMOS), Ames
Research Center (ARC) and the Jet Propulsion Laboratory
(JPL) and is used by several JPL missions including the next
Mars rover (M2020).

Figure 19: Web-based mission control displays
(WARP/OpenMCT). Figure shows one among many
display pages available.

Science Simulation and Software

The goal of Resource Prospector was to take measurements to
estimate the water content at and under the Lunar surface over
a 2500 square meter area and to repeat this data collection
in several areas that differ by temperature profile. This is
the scale over which water would be mined to support a
potential, future Lunar base. The real-time monitoring of
instrument data had two purposes. The first was to ensure
the quality of the data collection and to adjust or correct
instrument settings quickly to that end. The second was to
make tactical decisions about where data collection time was
best spent, because the total mission duration available to a
solar powered rover at polar sites does not allow a completely
methodical data collection pattern.

World Model—The science simulation consists of a world
model and several instrument models. The world model

13

(a) Surface Temperature (b) Depth of dry layer (c) Subsurface Ice Concentra-
tion

(d) Surface Frost

Figure 20: Data layers describing what instruments could see as the rover drives

describes the ’truth’ that RP was intended to estimate in
the form of several interrelated physical quantities that are
measured by RP’s instruments. Two of the instruments,
NSS and NIRVSS, were introduced above. NSS measures
hydrogen concentration in the regolith immediately in front
of the rover, and NIRVSS measures surface frost, minerology,
and the concentration of ices in regolith brought up by the
drill. NIRVSS also contains a Longwave Calibration Sensor
(LCS) that measures surface temperature.

The world model provides data for these instruments that
varies as the rover moves in ways that must be consistent
with physics and with theories about how ices have been em-
planted or removed. It did this by modeling the distribution
of several physical quantities, some as 2D functions (variation
over the surface) and others as 3D functions (variation within
the top meter of regolith).

The quantities modeled are: (a) the surface temperature, (b)
the area concentration of water ice as a surface frost, (c)
the area concentration of OH adhered to the surface, (d)
the thickness of the upper layer of regolith that must be
dry based on its known thermal history, (e) the water ice
concentration in the layer below that as a weight percentage,
(f) the volumetric concentration of hydrogen in hydrogen-
bearing minerals, and (g) the surface distribution of several
minerals. The most important of these were the water ice sur-
face and volumetric concentrations. The others were included
to present a consistent picture and to provide realistic sources
of noise and other variations that could make interpreting the
data more difficult.

The 2D and 3D functions implemented as a set of 30720 x
30720 arrays generated before simulation and representing
a 4cm grid covering a 1.5 km2 area that would be driven
over during the simulations. This approach was used because
the distributions of the quantities (except the minerals) were
generated by modeling the physical processes that could
have created them over time. Mineral concentrations were
modeled as Perlin noise.

A sequence of arrays was generated, with each array calcu-
lated using only the arrays before it. The DEM was first,
followed by the lightmap and then the surface temperature.
Regolith is an excellent insulator, so the surface temperature
can be approximated as a function of sun angle and shadows
(ignoring Earthshine and heat rising from the interior). Since
the DEM was synthetic, the locations and sizes of the craters
was known. OH concentration is modeled a function of
surface temperature. The thickness of the dry layer is a much
more complex function of the time history of the surface
temperature, and Earthshine, heat rising from the interior

and the exchange of infrared energy between nearby parts
of the surface (crater interiors) very much do need to be
modeled; this array came from published work[47]. The
volumetric distribution of water ice was inspired by a model
of impact gardening published in [48] and is a function of
the distance to the rim of nearby craters above a certain
size. Surface frost only occurs in permanent shadow and its
concentration is a function of the contiguous area of each
frost patch. As mentioned above, mineral concentrations
were modeled as Perlin noise and could have been calculated
at simulation time, but they were converted into arrays to keep
the implementation more uniform. Fig. 20 shows several of
these arrays.

Instrument Models—During simulation, the rover’s ground
truth pose was used as a lookup into these arrays and the
results were broadcast at several Hz to the instrument mod-
els. The instrument models added noise and converted these
quantities into the data format generated by the sensors within
the instruments. This allowed most of the real data processing
pipeline for each instrument to be used.

Science Data Displays— Instrument data was presented to
the scientists using the displays that RP intended to use in
flight. This involved a combination of LabVIEW displays,
which were primarily used by the scientists responsible for
the health of the instrument and the quality of the data
collection, and a web-based set of displays [46] that were
primarily used by scientists responsible for data interpretation
and tactical decision-making. (Both kinds of displays were
used by both groups.) The web-based displays presented
the most important information available in the LabVIEW
displays and also presented instrument data as heat maps on
top of 2D site maps so scientists could see how the data was
distributed spatially. This followed the approach of xGDS
[40] and xGDS components would have been used during
flight. Fig. 18 and Fig. 19 show examples of these displays.

9. EXPERIMENTS
Stereo Visual Odometry

One of the goals of the visual simulation was to provide re-
alistic data for algorithmic development. One such algorithm
is the stereo visual odometry we implemented for Resource
Prospector’s ground software to aid in navigation. Our
approach generates 3D point clouds from successive stereo
camera images, aligns them using the Point Cloud Library’s
(PCL)10 implementation of the Iterative Closest Point algo-
rithm, and uses the transforms between point clouds to track

10http://pointclouds.org/

14

changes in the rover’s movements. This module interacts with
other software and sensors to estimate the rover’s absolute
pose.

To refine the mission’s concept of operations, we wanted to
know how much overlap is required between camera images
for stereo visual odometry to be effective. The easiest way
to lose overlap between successive images is by yawing the
camera or rover, so that is the first test we ran. We learned
that with camera rotations of 50-degrees or less, stereo visual
odometry yields more accurate results than the fused wheel
and star tracker odometry we had been using (shown in
Fig. 21).

Figure 21: Position error vs. camera rotation angle for
stereo visual odometry and wheel-and-star-tracker odom-
etry

There are occasionally incorrect point cloud alignments, in-
forming the need to improve performance or to estimate
alignment quality for rejection. It is important to note the
results for stereo visual odometry are preliminary; however,
our simulator has provided the only opportunity to develop
and test such modern robotic approaches with any confidence
- Apollo surface images being non-digital and terrestrial
analogs being unrealistic. There are further tests to run
and improvements to be made to both our visual simulation
and visual odometry. For example, after a specific camera
is chosen for the mission we will be able to refine our
camera simulation. This will affect point cloud generation
and require us to run these tests again.

We also learned that using rover lights in shadowed areas
hurts our visual odometry results. As expected the quality
of our stereo point clouds is greatly reduced when the light
sources are near the cameras because the Hapke reflectance
model simulates strong, contrast-reducing backscatter. We
have not attempted to quantify results in this area as it is still
considered ripe for refinement.

Wheel Slip

In order to characterize the wheel slip plugin, we set
up a test harness to gather data on wheel slip behavior over
multiple runs. The purpose of this effort was twofold; to
determine whether the overall slip behavior was in line with
expectations for wheels in contact with unconsolidated soil,
and to determine what parameter values should be used for
the plugin to most closely match results from the physical
testbed.

We created a Gazebo world with ramps from 0 to 30 degrees

Figure 22: Gazebo simulation for the slip vs slope test with
the RP rover.

at 2 degree increments (see figure 22). A rostest11 script
would spawn the rover at the base of each ramp and command
it to drive 10 meters forward. Wheel slip was measured by
comparing dead reckoning distance driven to ground truth
and test runs covered sets of parameter values for longitudinal
compliance, physics engine solver iterations, and drive speed.

Overall, the wheel slip plugin demonstrated the ex-
pected behavior and compared favorably with physical
testbed results as can be seen in figure 23, which
compares wheel slip measured from MGRU with the
wheel slip plugin.

Figure 23: Comparison of the RP Lunar mass equivalent
rover slip on GRC-1 simulant and RP rover slip in the
Gazebo simulator.

However, our test results show that at certain angles and
compliance values, there is a wide variation in measured
wheel slip (see figure 24). Those disparities are particularly
large on a flat terrain. The cause of this variation is unknown
and is currently under investigation.

10. CONCLUSION
This project represents a fusion of COTS, open-source soft-
ware, with domain specific knowledge that resulted in the
production of a high-fidelity Lunar rover driving simula-
tion. It presents an approach to rapidly developing visual
and physical simulations that enable the holistic evaluation
of a mission, from concept of operations to algorithm and
mechanism design.

11http://wiki.ros.org/rostest

15

Figure 24: Graph of the slip of the RP rover in Gazebo
showing the disparities in the amount of slip.

The simulator permitted us to develop and test three major
areas for the mission operations. First, we were able to sim-
ulate the physical environment the robot would be operating
in. This includes medium fidelity wheel/terrain interactions
and high fidelity visual simulation of the moon. Second, due
to the increased physical verisimilitude, we were able to test
rover navigation and perception algorithms on the simulation
data with increased confidence in the accuracy of the results.
Third, by virtue of being a high-fidelity simulation of rover
mechanism and software behaviour, we were able to close the
loop for the communications and operations infrastructure for
the mission. Then we were able to test different concepts of
operations, and even rover configurations rapidly, and build
confidence in the mission design.

11. ACKNOWLEDGEMENTS
The authors would like to thank the NASA Human Explo-
ration and Operations Mission Directorate (HEOMD) and
Advanced Exploration Systems (AES) division for the oppor-
tunity to advance the Resource Prospector mission concept.
Many thanks are due to Tony Colaprete and Rick Elphic for
sharing their knowledge of selenology and giving guidance
on Lunar appearance modeling. Finally, thanks to all the mis-
sion element leads who displayed extraordinary leadership
and to Mission Systems Engineering who tied it all together.

REFERENCES
[1] A Colaprete, R Elphic, D Andrews, J Trimble, B Blueth-

mann, J Quinn, and G Chavers. Resource prospector:
An update on the lunar volatiles prospecting and isru
demonstration mission. 2017.

[2] David Vaniman, Robert Reedy, Grant Heiken, Gary
Olhoeft, and Wendell Mendell. The lunar environment.
The lunar Sourcebook, CUP, pages 27–60, 1991.

[3] Douglas E McGovern. Human interfaces in remote driv-
ing. Technical Report SAND88-0562, Sandia National
Laboratories, 1988.

[4] Alonzo Kelly, Nicholas Chan, Herman Herman, Daniel
Huber, Robert Meyers, Pete Rander, Randy Warner,
Jason Ziglar, and Erin Capstick. Real-time photore-

alistic virtualized reality interface for remote mobile
robot control. The International Journal of Robotics
Research, 30(3):384–404, 2011.

[5] Daniel R Andrews. Resource prospector (rp)-early
prototyping and development. In AIAA SPACE 2015
Conference and Exposition, page 4460, 2015.

[6] A Colaprete, RC Elphic, D Andrews, G Sanders, A Mc-
Govern, R Vaughan, J Heldmann, and J Trimble. Re-
source prospector: Mission goals, relevance and site
selection. 2015.

[7] Jay Trimble and Carvalho Robert. Lunar prospecting:
searching for volatiles at the south pole. In 14th Inter-
national Conference on Space Operations, page 2482,
2016.

[8] Becky L Hooey, Jason JNT Toy, Robert E Carvalho,
Terrence Fong, and Brian F Gore. Modeling opera-
tor workload for the resource prospector lunar rover
mission. In International Conference on Applied Hu-
man Factors and Ergonomics, pages 183–194. Springer,
2017.

[9] Stephan Ulamec, Jens Biele, and Ed Trollope. How
to survive a lunar night. Planetary and space science,
58(14-15):1985–1995, 2010.

[10] Nathan Otten, David Wettergreen, and William Whit-
taker. Strategic autonomy for reducing risk of sun-
synchronous lunar polar exploration. In Field and
Service Robotics, pages 465–479. Springer, 2018.

[11] Nathan P Koenig and Andrew Howard. Design and
use paradigms for gazebo, an open-source multi-robot
simulator. In IROS, volume 4, pages 2149–2154, 2004.

[12] Steffi Paepcke and Louise Poubel. Whats new in
gazebo? upgrading your simulation user experience! In
ROSCon, 2016.

[13] Carlos E Agüero, Nate Koenig, Ian Chen, Hugo Boyer,
Steven Peters, John Hsu, Brian Gerkey, Steffi Paepcke,
Jose L Rivero, Justin Manzo, et al. Inside the virtual
robotics challenge: Simulating real-time robotic disas-
ter response. IEEE Transactions on Automation Science
and Engineering, 12(2):494–506, 2015.

[14] Kimberly A Hambuchen, Monsi C Roman, Amy Sivak,
Angela Herblet, Nathan Koenig, Daniel Newmyer, and
Robert Ambrose. Nasa’s space robotics challenge:
Advancing robotics for future exploration missions. In
AIAA SPACE and Astronautics Forum and Exposition,
page 5120, 2017.

[15] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y
Ng. Ros: an open-source robot operating system. In
ICRA workshop on open source software. Kobe, Japan,
2009.

[16] Surveyor Investigator Teams. Surveyor project part 2 -
science results final report. In Technical Report JPL-
TR-32-1265-PT-2. Jet Propulsion Lab, 1986.

[17] Caleb I. Fassett and Bradley J. Thomson. Crater degra-
dation on the lunar maria: Topographic diffusion and the
rate of erosion on the moon. J. Geophysical Research
Planets, 119:2255–2271, 2014.

[18] SM Parkes, Iain Martin, Martin Dunstan, and
D Matthews. Planet surface simulation with pangu. In
Space OPS 2004 Conference, page 389, 2004.

[19] Gavin SP Miller. The definition and rendering of

16

terrain maps. In ACM SIGGRAPH Computer Graphics,
volume 20, pages 39–48. ACM, 1986.

[20] Uday J Shankar, Wen-Jong Shyong, Thomas B Criss,
and Dewey Adams. Lunar terrain surface modeling
for the alhat program. In Aerospace Conference, 2008
IEEE, pages 1–10. IEEE, 2008.

[21] Glenn A Fry, CS Bridgman, and VJ Ellerbrock. the
effects of atmospheric scattering on binocular depth-
perception. Optometry and Vision Science, 26(1):9–15,
1949.

[22] Grant Heiken, David Vaniman, and Bevan French. Lu-
nar Sourcebook - A user’s guide to the moon. Cam-
bridge University Press, 1991.

[23] Bruce Hapke. Bidirectional reflectance spectroscopy:
4. the extinction coefficient and the opposition effect.
Icarus, 67(2):264–280, 1986.

[24] Michael Shepard and Paul Helfenstein. A test of the
hapke photometric model. In Journal of Geophysical
Research, volume 112, 2007.

[25] Bruce Hapke, Brett Denevi, Hiroyuki Sato, Sarah
Braden, and Mark Robinson. The wavelength depen-
dence of the lunar phase curve as seen by the lunar
reconnaissance orbiter wide-angle camera. Journal of
Geophysical Research: Planets, 117(E12), 2012.

[26] Uland Wong. Lumenhancement: Exploiting appearance
for planetary modeling. In PhD Thesis. Carnegie Mel-
lon University, 2012.

[27] A. S. McEwen. A precise lunar photometric function.
Lunar and Planetary Science, 27:841–842, 1996.

[28] Fan Zhang, Hanqiu Sun, Leilei Xu, and Lee Kit Lun.
Parallel-split shadow maps for large-scale virtual envi-
ronments. In Proceedings VRCIA 2006 ACM Interna-
tional Conference on Virtual Reality Continuum and its
Applications, pages 311–318, 2006.

[29] Michael Wimmer, Daniel Scherzer, and Werner Pur-
gathofer. Light space perspective shadow maps. Ren-
dering Techniques, 2004:15th, 2004.

[30] Ryan Gariepy, Prasenjit Mukherjee, Paul Bovbel, and
Devon Ash. husky gazebo. http://wiki.ros.
org/husky_gazebo. Published: 2015-02-21 Ac-
cessed: 2018-09-21.

[31] K. Yoshida and H. Hamano. Motion dynamics of a
rover with slip-based traction model. In Proceedings
2002 IEEE International Conference on Robotics and
Automation (Cat. No.02CH37292), volume 3, pages
3155–3160 vol.3, May 2002.

[32] John M. Hsu and Steven C. Peters. Extending open dy-
namics engine for the darpa virtual robotics challenge.
In Davide Brugali, Jan F. Broenink, Torsten Kroeger,
and Bruce A. MacDonald, editors, Simulation, Model-
ing, and Programming for Autonomous Robots, pages
37–48, Cham, 2014. Springer International Publishing.

[33] NASA Content Administrator. husky gazebo.
https://www.nasa.gov/centers/glenn/
events/tour_erb_slope.html. Published:
2018-01-04 Accessed: 2018-10-03.

[34] Chunmei He. Geotechnical characterization of lunar
regolith simulants. PhD thesis, Case Western Reserve
University, 2010.

[35] Rahul Soni, B.K. Mishra, and R Venugopal. A review
on discrete element method (dem): Steps, methodolo-

gies, development and applications in simulation of
granular flow. 05 2012.

[36] Larry Matthies, Tucker Balch, and Brian Wilcox. Fast
optical hazard detection for planetary rovers using mul-
tiple spot laser triangulation. In Robotics and Au-
tomation, 1997. Proceedings., 1997 IEEE International
Conference on, volume 1, pages 859–866. IEEE, 1997.

[37] Ara Nefian, Uland Y Wong, Michael Dille, Xavier
Bouyssounouse, Laurence Edwards, Vinh To, Matthew
Deans, and Terry Fong. Structured light-based hazard
detection for planetary surface navigation. In Intelligent
Robots and Systems (IROS), 2017 IEEE/RSJ Interna-
tional Conference on, pages 2665–2671. IEEE, 2017.

[38] P Michael Furlong, Michael Dille, Uland Wong, and
Ara Nefian. Safeguarding a lunar rover with wald’s
sequential probability ratio test. In Robotics and Au-
tomation (ICRA), 2016 IEEE International Conference
on, pages 5411–5418. IEEE, 2016.

[39] R Jay Torres, Mark Allan, Robert Hirsh, and Michael N
Wallick. Rapid: Collaboration results from three nasa
centers in commanding/monitoring lunar assets. In
Aerospace conference, 2009 IEEE, pages 1–11. IEEE,
2009.

[40] Susan Y Lee, David Lees, Tamar Cohen, Mark Allan,
Matthew Deans, Theodore Morse, Eric Park, and Trey
Smith. Reusable science tools for analog exploration
missions: xgds web tools, verve, and gigapan voyage.
Acta Astronautica, 90(2):268–288, 2013.

[41] Matthew Deans, Terrence Fong, Pascal Lee, Kip
Hodges, Mark Helper, Rob Landis, Steve Riley, Maria
Bualat, Estrellina Pacis, and Linda Kobayashi. Robotic
scouting for human exploration. In AIAA Space 2009
Conference & Exposition, page 6781, 2009.

[42] Terrence Fong, Maria Bualat, Matthew Deans, Bryon
Adams, Mark Allan, Martha Altobelli, Xavier Bouys-
sounouse, Tamar Cohen, Lorenzo Fluckiger, Joshua
Garber, et al. Robotic follow-up for human exploration.
In AIAA SPACE 2010 Conference & Exposition, page
8605, 2010.

[43] Maria Bualat, Terrence Fong, Mark Allan, Xavier
Bouyssounouse, Tamar Cohen, Lorenzo Fluckiger, Ravi
Gogna, Linda Kobayashi, Grace Lee, Susan Lee, et al.
Surface telerobotics: development and testing of a crew
controlled planetary rover system. In AIAA Space 2013
Conference and Exposition, page 5475, 2013.

[44] What is labview?, 2018.

[45] Jay Trimble and George Rinker. Open source next
generation visualization software for interplanetary mis-
sions. In 14th International Conference on Space Oper-
ations, page 2348, 2016.

[46] J. et al. Trimble. Openmct: Open source mission control
technologies, 2018.

[47] Matt Siegler, David Paige, Jean-Pierre Williams, and
Bruce Bills. Evolution of lunar polar ice stability.
Icarus, 255:7887, Oct 2015.

[48] Dana M. Hurley, David J. Lawrence, D. Benjamin J.
Bussey, Richard R. Vondrak, Richard C. Elphic, and
G. Randall Gladstone. Two-dimensional distribution
of volatiles in the lunar regolith from space weathering
simulations. Geophysical Research Letters, 39(9), May
2012.

17

BIOGRAPHY[

Mark Allan is a senior research en-
gineer at KBRwyle in the Intelligent
Robotics Group at NASA Ames Research
Center. He received his B.S. in Biology
in 1994 from University of California
Santa Barbara and his M.S. in Informa-
tion Systems in 2008 from Santa Clara
Univerity. His interests include teleoper-
ation interfaces, visual simulation, and
robotics middleware.

Uland Wong is a senior computer sci-
entist in the Intelligent Robotics Group
at NASA Ames Research Center through
KBRwyle. His research interest lies at
the intersection of computational imag-
ing and mobile robotics. Uland received
his PhD in Robotics from Carnegie Mel-
lon University in 2012.

P. Michael Furlong received his B.E.
degree in Computer Engineering in 2005
from Memorial University of Newfound-
land, and a Ph.D. in Robotics from
Carnegie Mellon University in 2018. He
is currently a senior researcher for KBR-
Wyle at NASA Ames’ Intelligent Robotics
Group. His interests include science
autonomy and theoretical neuroscience.

Arno Rogg received his B.S. in Micro-
engineering in 2014 and his M.S. in Mi-
croengineering in 2016 from the Swiss
Institute of Technology in Lausanne. He
is currently a robotics engineer in the In-
telligent Robotics Group at NASA Ames
Research Center. His interests include
smart mechanism for space robotic ap-
plication, rover systems engineering and
integration, rover mobility and terrame-

chanics.

Scott McMichael received his B.S. and
M.S. degrees in Computer Engineering
from Case Western Reserve University
in 2006 and 2008. He is currently a
research engineer at the NASA Ames
Research Center where he maintains the
Ames Stereo Pipeline software project.

Terry Welsh received his B.S. in Physics
in 1996 and his M.S. in Computer En-
gineering in 1999 from Iowa State Uni-
versity. He has worked in a vari-
ety of industries and is currently a Se-
nior Software Engineer in the Intelligent
Robotics Group at NASA Ames Research
Center. His interests include real-time
computer graphics and visual simula-
tion.

Ian Chen received his B.E. and Ph.D. in
the Electrical and Computer Engineer-
ing Department of University of Auck-
land in 2007 and 2011 respectively. He
is currently a research engineer at Open
Robotics. His key research interests are
in robot simulation and visualization.

Steven Peters received his Ph.D at the
Massachusetts Institute of Technology
in 2012. He currently works at Open
Robotics and contributes to the Gazebo
simulator with a focus on physics simu-
lation. His interests include high-fidelity
simulation of robot and vehicle dynam-
ics as well as implementation of real-
time control algorithms on passenger ve-
hicles and robotic manipulators.

Brian Gerkey received his Ph.D. in
Computer Science from the University
of Southern California (USC) in 2003,
his M.S. in Computer Science from USC
in 2000, and his B.S.E. in Computer
Engineering, with a secondary major in
Mathematics and a minor in Robotics
and Automation, from Tulane University
in 1998. He is cofounder and CEO of
Open Robotics.

Morgan Quigley received a Ph.D. in
Computer Science from Stanford Uni-
versity in 2012. He is currently the
Chief Architect at Open Robotics. His
research interests include collaborative
open source software, scalable dis-
tributed embedded systems, and hard-
ware/software co-design.

Mark Shirley received B.S. and M.S.
degrees in Electrical Engineering and
Computer Science in 1983 and a Ph.D.
in Computer Science with a concentra-
tion in Artificial Intelligence from the
Massachusetts Institute of Technology in
1989. He is currently a member of the
research staff at NASA’s Ames Research
Center. His interests include diagnostic
algorithms, satellite ground systems and

distance learning. He previously worked at Xerox PARC and
GenRad Inc.

18

Matthew Deans received his PhD in
Robotics from Carnegie Mellon Univer-
sity in 2005. His research interests
include robotic mapping, localization,
navigation, machine vision in unstruc-
tured environments, remote operation of
rovers, and field robotics especially in
terrestrial planetary analogs. On Re-
source Prospector he served as the lead
for Rover Navigation.

Howard Cannon is a Computer En-
gineer at NASA Ames Research Cen-
ter. He received his B.S. degree in Me-
chanical Engineering from Bradley Uni-
versity in 1988, and a M.S. degree in
Robotics from Carnegie Mellon Univer-
sity in 1998. On Resource Prospector,
Cannon served as the lead for the rover
software, and as the project’s software
systems engineer.

Terry Fong received his B.S. and M.S.
degrees in Aeronautics and Astronautics
from the Massachusetts Institute of Tech-
nology in 1988 and 1990. He received
his Ph.D. in Robotics from Carnegie
Mellon University in 2001. He is cur-
rently the Chief Roboticist at the NASA
Ames Research Center. His interests
include space robotics, human-robot in-
teraction, and planetary exploration.

19

