

High Temperature Superconductor Lead Assemblies for XRISM

Edgar R. Canavan and Brian Comber

¹ NASA – Goddard Space Flight Center

Background: RESOLVE

Background: HTS Lead Assemblies

- High Temperature Superconductor Lead Assemblies necessary to carry high current to 3 ADR magnets
- Driving requirements:
 - 2 Amp maximum on each of 3 circuits @ up to 62 K warm end
 - < 12 µWatt total conducted heat leak to 1.3 K
 - < 10 $\mu\Omega$ per circuit total resistance at cold end (bolted and solder joints)

- Engineering Model complete
- Flight Model 1 fabricated and fully verified
- Flight Model 2 fabricated; pre-vibe testing complete

Solder Joints: Material Changes

- HTS tape
 - SXS: AuAg alloy coated tape; slit to 1 mm after production (open sides)
 - RESOLVE:
 - Slit to 1 mm, then sputter coated with AuAg (all sides)
 - Individual sections cut and plated over solder region with > 20 μ m Cu
 - Section *I_c*'s measured to 20 Amperes:
 - 37 of 48 long (590 mm), 21 of 24 short (335 mm) sections ≥ 20 A;
 - − All I_c 's ≥ 16 A
- Solder
 - In3%Ag (SXS) → In48%Sn (RESOLVE)
 - Lower T_{melt} (144 C \rightarrow 118 C)

Solder Joints: Process Changes

- Solder rig
 - Precise control over pressure, temperature, & time
 - Changes for flight boards:
 - Custom soldering tips match joint length
 - Wires & bobbins act act as cooling fins → added secondary heaters to cancel effect

Solder Joints: Results

- Improved Consistency:
 - Compared all pre-vibe qualification tests: I-V measurement to 5 Amps, cold end at 4.5 K
 - Cold end solder joint resistances much more uniform
 - No values > 1.1 $\mu\Omega$
 - Similar results for warm end (62 K)
- Very low resistance at low T
 - Bridge (low current) measurements show transitions at ~5.0, ~3.7 K
 - Below 3.7 K, R < 0.4 $\mu\Omega$

CEC-ICMC Madison, WI, July 10–14, 2017

Bolted Joints: Changes and Results

Bobbins:	In-house	Commercial
Cu material:	99.999%	CU101
Au Plating	Ni flash, Thick Au	No Ni flash, Standard thickness
Fabrication	EDM, polished	Lathe
Metrology:	rounded	Flat,+ ridge
0 2 4		0 2 4

Result: Bolted joint resistance now typically < 0.5 $\mu\Omega$ at low T

CEC-ICMC Madison, WI, July 10–14, 2017

1st & 2nd Stage Thermal Intercept: Changes

HTS tapes in 1st&2nd Stage unit must be well heat sunk to JT shield

> Concern over stress concentration at JT thermal intercept

Pyralux heat strap

HTS tape

New strap design:

Multilayer Pyralux strap

Compliant bridge for each HTS tape

ероху

Each HTS tape bonded to small flag on bridge

CEC-ICMC Madison, WI, July 10–14, 2017

1st & 2nd Stage Thermal Intercept: Results

- •Measurement:
 - Control $T_{\rm IVCS}$, $T_{\rm JT} = T_{\rm CSI}$
 - Measure ΔQ_{CSI} vs T_{IVCS}
- If strap conductance, $\kappa \to \infty$
 - $T_{\rm s} = T_{\rm JT} = T_{\rm CSI} \rightarrow$ $\Delta Q_{\rm CSI} = Q_{\rm s \rightarrow CSI} = 0$
- With imperfect strap:

- 1-D Conduction-only model
 - For flight condition $(T_{IVCS} = 28 \text{ K}, T_{JT} = 4.5 \text{ K}, T_{CSI} = 1.3 \text{ K})$, heat leak to CSI:

CEC-ICMC Madison, WI, July 10–14, 2017

Conclusions

- HTS Lead Assemblies for RESOLVE instrument largely rebuild, except
- Solder joints:
 - New tape and solder
 - Tighter solder process control
 - Result: much more consistent solder joint resistances
- Bolted joints:
 - Initial testing lead to change to commercial bobbins
 - Pre-assembly screening
 - Result: much more consistent and lower bolted joint resistances
- JT heat intercept:
 - New design eliminates concern over stress concentration
 - Improved thermal test apparatus allows determination of 1st & 2nd Stage parasitic conductance
- Overall, RESOLVE HTS lead assemblies meet their requirements with significantly better margin than the Hitomi/SXS units

CEC-ICMC Madison, WI, July 10–14, 2017