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Thermal control coatings, i.e. coatings with different visible versus infrared emission, have been used on the Orbiter 
and Hubble Telescope to reflect sunlight, while allowing heat rejection via infrared emission.
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Existing coatings are useful for maintaining a 300 K temperature range in the presence of the Sun.



However, existing coatings absorb at least 6% of the Sun’s irradiant power, limiting the minimum 
temperature that can be reached to about 200 K.

NASA needs better solar reflectors.  The James Webb telescope has to resort to multiple reflectors to 
reach cryogenic temperatures.  Also, future missions will require cryogenic fuel and oxidizers, which 
currently cannot be maintained passively in deep space. 3
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A concept image of a Mars Lander with liquid 
oxygen and liquid methane storage tanks.    



In 1961 Hibbard showed that a perfect thermal control coating, one that reflects all light below a given 
wavelength and emits perfectly above it, can achieve cryogenic temperatures in the presence of the Sun.

In 1968, the optics community demonstrated that nearly perfect broadband reflectors can be fabricated 
from scatterers, e.g. powders, composed of transparent materials. 
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Spectralon: A NIST standard for reflectance, 
is composed of a pressed powder.

Titanium Dioxide Powder:   0.25 micron 
particles used as the basis for white paint.
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InfraredUV

Need materials that are transparent 
over a wide range
 UV + Visible + Infrared
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Barium fluoride (BaF2) is transparent from 200 nm to beyond 10 microns, covering most of the Sun’s spectrum. We 
have made reflective tiles by mixing BaF2 powder with water, pressing the mixture in a mold, and then sintering this 
in an oven.  The result is a bright white, rigid, material.

SEM photo of BaF2 rigid coating material.
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Another option is yttrium 
oxide (Y2O3). This material is 
high index, hydrophobic, 
and potentially stronger 
than BaF2.  However, it 
appears to have a small UV 
absorption.

Fabricating coupons of Y2O3
requires a high pressure 
mold, as well as a high 
temperature oven due to its 
high melting point. 



8

Continued Development of a Highly Reflective Solar Coating for Cryogenic Liquid Storage in Space

So how do we test these new thermal control 
coatings?

Start by taking two samples, cutting out a space 
for a temperature sensor, and then tie the two 
together to enclose the sensor.

Y2O3 samples with temperature sensor

BaF2 samples tied together with fine string.
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Mount the sample in a black painted chamber using the strings.

Looking down into the test chamber 
with the top lid set to the side.

Looking up into the chamber from 
the bottom. Note the temperature 
sensors attached to the sample, 
the window, and the lid.
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Mount the test chamber on a cryocooler and place this inside of a vacuum chamber so the 
sample environment is cold, dark, and evacuated; modeling deep space.
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Use a Xenon lamp to simulate the Sun’s irradiant 
power spectrum.

Place this on top of the vacuum shroud. Light enters 
the vacuum through a sapphire viewport and is then 
relayed down onto the sample using UV fused silica 
optics and CaF2 windows as IR blocks.

This results in about 3.6 watts of net optical power hitting the 
sample.

On a 1.5 inch diameter sample this is about 2.4 times solar at 
1 AU in deep space.
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Chilldown takes about a day.

Blue is the Y2O3 sample.
The other traces are the chamber, wall, and 
optics column.



13

Continued Development of a Highly Reflective Solar Coating for Cryogenic Liquid Storage in Space

Turning on the lamp caused the sample to heat from 24.7 K to a projected 120 K. 
Assuming uniform temperature; at 120 K the sample is radiating about 37 mW, about 1% of the solar simulated 
total power. This is much better than the state-of-the-art…..  

However, note the change in the test chamber temperature, which is directly bolted to the cryo-cooler. It rose 
from 22.5 K to 35 K.  This indicates an extra 40 watts of heat load on the cooler. We believe substantial infrared 
emission is making its way down the optics column and potentially skewing the results.
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We decided to remove the optics column and instead, use a UV-
quartz fiber light guide to irradiate the sample with simulated 
solar power.  The fiber guide is shown above along with a 
vacuum feedthrough.

The photo to the right shows the system without the upper 
vacuum shroud. The black polymer sheath has been removed 
from the fiber and replaced with copper tape to help minimize 
heat conduction along the fiber. 

0.9 to 1.0 watt of total optical power is 
delivered to the sample with this system.
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As a test, we mounted a metalized polyester sample into the test chamber. This type of material is similar to that 
used on the Orbiter and Hubble telescope. Under vacuum, but at room temperature, we turned on the lamp and 
saw a rapid rise in temperature (about 90 K in 7 minutes). We subsequently discovered we had burned the sample.
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We then tested an aluminum disk, 1.5 inches in diameter and 0.25 inches in thickness. At room temperature under 
vacuum it increased about 0.4 degrees/minute under lamp irradiation, consistent with about 10% absorption.  
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We replaced the polymer sample with a Y2O3 sample and repeated the vacuum, room 
temperature test. In this case, after about 13 minutes, we saw a rise in temperature of 1.5 K.

This is a very encouraging result, but without the cryo-cooler it is hard to tell what heating is due 
to absorption and what is due to heating of the surroundings.  So we proceeded to run the 
cryogenic temperature test. 
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As a caveat, the light emerging from the quartz fiber is a reasonable solar match from 255 nm to about 2200 nm, 
but does not contain short wave UV nor long wave infrared.  Fully simulating the deep space solar spectral 
irradiance is difficult.

Work is currently underway to design a cube sat to test the performance of this material in low-Earth orbit.
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Backup-Additional Information
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Nuclear Thermal Propulsion

Nuclear Thermal Propulsion requires long duration LH2 maintenance. 

We cannot reach LH2 temperatures with our coating, but we believe we can improve the 
performance of the multi-layer insulation they are proposing to use, lowering the heat load on the 
LH2 tanks.

Multi-layer Insulation
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Silver coated Kapton-HN before and after being coated with our new coating.

We have developed a thin, spray on version of our coating. Y2O3 particles suspended in a liquid in 
which potassium bromide (KBr), a broad band optical material, has been dissolved. After spraying 
and drying the KBr comes out of solution, forming sheets that hold the Y2O3 particles in place.

Essentially we are copying the basis for white paint, but with broadband materials.
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The ISS showing the location of MISSE.

Our Goddard partner offered us a slot 
on his Space Station exposure test.

We supplied a coupon which is part of 
MISSE10. 
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We published the concept in 2016 in Optics Letters, (Youngquist and Nurge, 
“Achieving cryogenic temperatures in deep space using a coating” Vol. 41, No. 
6, March 15, 2016).

We presented the work publically at NIAC Symposia in 2015, 2016, and 2017, 
have a patent, a pending patent, a provisional patent, and a second peer 
reviewed article as listed below.

Youngquist, Robert C., Mark A. Nurge, Wesley L. Johnson, Tracy L. Gibson, and 
Jan M. Surma. "Cryogenic Deep Space Thermal Control Coating." Journal of 
Spacecraft and Rockets (2017): 1-10.
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First, choose a material that absorbs essentially no 
radiation from 0.2 microns to the mid or far infrared 
range, e.g. MgF2, CaF2, BaF2, KBr, NaCl, etc.

Second, grind this material into 200-300 nm diameter 
particles and make a 3-10 mm layer of this powder. This 
layer will scatter UV, visible, and near infrared light 
effectively, but not longer wave radiation.

Third, place this layer on a metallic reflector (e.g. silver) 
to reflect the longer wave radiation that gets through the 
particle layer.

The coating will emit long wave radiation beyond its 
transparency cut-off.

Our new coating is composed of a scattering layer followed by a silver layer. The scatterer
handles the UV and visible reflectance and the silver reflects mid-long wave radiation.
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