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ABSTRACT (15 LINES OR 150 WORDS) 

As future flight crews on long duration deep space 
missions are expected to operate more autonomously, 
considerations must be given to onboard capabilities and 
human-computer teaming that will fortify the safety net 
traditionally provided by the Mission Control Center. In 
August 2018, the Human Factors and Behavioral 
Performance Element of NASA’s Human Research 
Program convened a Technical Interchange Meeting 
(TIM) on Autonomous Crew Operations at NASA Ames 
Research Center to address how intelligent technologies 
can be utlilzed to augment crew capabilities to support 
real-time anomaly response. In this paper, we highlight 
three topic areas discussed at the TIM that have direct 
implications for future crew anomaly response 
capabilities: smart structures, cognitive assistants, and 
manpower. 

1. INTRODUCTION 

Among the many challenges posed by long duration deep 
space exploration, communication delays, in particular, 
can cause considerable disruption to the current operation 
of crewed missions. Space missions historically have 
relied on the Mission Control Center (MCC) to direct 
every aspect of the operation in near real-time, from 
activity planning and procedure execution to anomaly 
response and troubleshooting [1]. The ability for the 
MCC to control the mission from the ground will be 
impacted or made impossible by one-way light time 
delays—for example, as much as 22 minutes when Mars 
is at its maximum distance from Earth. Historically, we 
have seen that unanticipated anomalies can defy even the 
best thought-out fault detection and resolution systems. 
As unanticipated anomalies will invariably arise in 
complex engineered systems, a lack of real-time 
communication will significantly weaken the support 
MCC represents: a safety net for the flight crew through 
its diverse areas of expertise and deep resources, 
especially during roughly the first hour following an 
event. In preparing for crewed space missions that go 
beyond low-Earth orbit to the Moon and Mars, 
considerations must be given to the nature, design, and 
implementation of the types of capabilities needed 
onboard the space vehicles/habitats, and the resulting 
concepts operations, to fortify the traditionally ground-
based safety net weakened by communication delays.  

In August 2018, the Human Factors and Behavioral 
Performance Element of NASA’s Human Research 
Program convened a Technical Interchange Meeting 
(TIM) on Autonomous Crew Operations at NASA Ames 
Research Center. The goal of the meeting was to gather 
input from industry, academia, and branches of the 
Department of Defense (DoD) to address how intelligent 
technologies can be applied to augment crew anomaly 
response. In this paper, we highlight three topic areas 
discussed at the TIM that have direct implications for 
future exploration missions: smart structures, cognitive 
assistants, and manpower. We begin with an overview of 
anomaly response processes.  

2. ANOMALY RESPONSE PROCESSES 

Anomaly response refers to activities that operators 
undertake in response to a system fault, an off-nominal 
behaviour, or a cascading set of system disturbances 
(Watts-Englert, Woods, and Patterson, see [2]). They 
commence following the detection and recognition of an 
anomaly to fulfill broadly one of two functions: 1). 
troubleshooting (diagnostic search) for the underlying 
cause and 2) contingency management. Troubleshooting, 
characterized by an interaction of prediction and 
observation, is accomplished by solving three 
subproblems: generating hypotheses by reasoning from a 
symptom to a set of causes; testing each hypothesis to see 
which one(s) can account for all available observations; 
and discriminating those hypotheses that survive testing 
[3]. Contingency management concerns what to do next 
to manage the situation even when the underlying cause 
may not have been identified. Its activities include risk 
assessment, plan selection, plan modification, 
contingency evaluation, and safing/protecting the 
system. According to Watts-Englert and colleagues, the 
processes of troubleshooting and contingency 
management do not unfold in a linear sequence but often 
proceed in parallel and feed into each other.  

The concepts above aptly describe the  MCC’s anomaly 
response process, as exemplified by its handling of a 
cooling system failure on the International Space Station 
(ISS) [1, 4]. On December 11, 2013, the flight control 
team in Houston detected an alarm and quickly 
determined that the external cooling system Loop A had 
shut down (system disturbance), resulting in losing half 
of the external station cooling capacity. It appeared that 
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the fault detection software automatically turned off 
power to the Loop A pump module that circulates the 
ammonia through the radiator because the ammonia was 
getting too cold (symptom). The team isolated the 
problem to the Flow Control Valve (FCV) that controls 
the flow of cold ammonia from the radiator entering the 
primary system (possible cause). To troubleshoot, the 
team first tried to restart the pump module and command 
the FCV movement using various methods to no avail 
(testing hypotheses/contingency evaluation), while at the 
same time shifting heat loads to Loop B (the remaining 
cooling system) and powering down equipment to reduce 
the overall amount heat generated (safing). The anomaly 
ultimately took 14 days of 24/7 MCC support to resolve, 
including 2 Extravehicular Activities (EVAs) lasting 12+ 
hours in total, to replace the pump module (plan 
selection).  

Several aspects of the response to anomalies like the 
cooling Loop A failure could potentially be facilitated by 
intelligent technologies. One relates to the monitoring 
and detection of anomalies. In current operation of the 
ISS, the ground handles most alarms unless 
communication is disrupted due to scheduled or 
unanticipated events. The Caution and Warning system 
(C&Ws) on the ISS issues four classes of alarms; among 
them, class 1 (emergencies) and class 2 (warnings) 
require immediate action by the crew and/or ground to 
avoid injury or death of the crew or damage to the 
vehicle. There are approximately 80 different types of 
emergencies and 800 different types of warnings [1]—all 
those that could be anticipated in advance. Adding 
unanticipated anomalies, the volume of work and the 
speed required to address it could overwhelm a small 
flight crew operating without ground support if 
unassisted by on-board technologies.  

Another concern is the range of expertise and the amount 
of resources nominally required to handle anomalies. 
Flight control operations have evolved over time but the 
basic organizational structure remains. For ISS 
operations, there are 18 primary flight control 
positions/consoles in the Flight Control Room (or Front 
Room, the room typically seen in media coverage) [1, see 
Table 3 on p.xxv], of which 12 are assisted by one or 
more additional operators in the Multipurpose Support 
Room (or Backroom). Six of the positions/consoles 
manage core systems (power, computer control, 
communication, attitude control, thermal control, and life 
support) related to the safety of the vehicle and survival 
of the crew. Resolution of major anomalies often requires 
tapping into the Mission Evaluation Room (MER) for in-
depth engineering analysis support. MER personnel 
retain and manage design specifications, manufacturing 
documentation, and general system knowledge and 
provide subject matter support on how various systems 
or components function or respond [1]. It will be a 

challenge for a small crew of 4 or 6 people to cover such 
a range and depth of expertise.  

A final aspect relates to the level of manpower required 
to respond to anomalies quickly, which like the 
organization structure also remains relatively constant. 
Nominal operation of the ISS is handled by about 60 
flight controllers (48 in the Front Room, Backroom, and 
MER in Houston, 12 in the Payload Operations and 
Integration Center in Huntsville). Anomalies that require 
formation of a dedicated team (such as in the cooling 
Loop A failure example) could involve up to 150 
personnel [Bobby Fard, personal communication, March 
8, 2019] working 24/7 for days or weeks.  

Due to the complexity of vehicles and the criticality of 
problems, anomaly response in space missions requires a 
large amount of distributed expertise, resources, and 
manpower be brought together and dispensed 
simultaneously and quickly. Intelligent technologies 
have the potential in supporting several aspects. They 
could provide contextualized information behind 
cautions and warnings and give the anomaly response 
process a head start. They could also help amass the wide 
range and depth of specialized expertise as well as 
investigative resources and bring them to bear more 
quickly. In the next section, we discuss two technology 
areas that could potentially provide those capabilities.  

3. INTELLIGENT TECHNOLOGIES 

3.1. Smart Structures 

The essence behind smart structure technologies is to turn 
sensed data into information and use it to guide decisions 
and actions, much like what is needed in fault detection. 
Dr. Mario Berges, Professor of Civil and Environmental 
Engineering at Carnegie Mellon University discussed 
current and next generation technologies behind smart 
building structures and the challenges involved in 
advancing from sensed buildings to autonomous 
buildings. According to Berges, Internet-of-Things is 
beginning to enable much more automation in buildings, 
though not autonomy, because the latter remains difficult 
to set up. The difficulty also lies partly with the 
limitations of current data-driven solutions, specifically 
machine learning, in extracting useful information from 
data.  

To illustrate, Berges cited two case studies; both 
concerned inferring the sensed stimuli with respect to 
what type the sensors were and what they measured. The 
first one was on Building Automation Systems (BAS), 
which can help building managers and owners reduce 
energy consumption. In an ideal framework, a self-
managing BAS can be deployed to any building to 
automatically manage the information processing. That 
flexibility is enabled by an information mediator layer 
that handles the integration of heterogeneous information 
sources and information sharing among three self 



 

managing functions - self-recognition (of own 
components and their configurations so that the needed 
information can be automatically retrieved), self-
monitoring (of the working status of the components), 
and self configuration (of the information base based on 
the outputs generated by the other functions). However, 
because there is little standardization on the format of 
device metadata (i.e., information that helps 
contextualizes measurements or control signals sent 
from/to a device, such as the location within a building, 
the physical phenomenon being sensed, etc), such a 
framework must contend with unstructured and 
inconsistent labels from heterogeneous systems.  

The second case study concerned designing non-intrusive 
load monitoring (NILM) for residential buildings. The 
objective of NILM is to provide appliance-level energy 
metering using data from only a whole-house meter [5]. 
There are two general approaches, event-based and 
event-less. Event-based approaches rely on detecting 
events (i.e., abrupt changes in power consumption) then 
classifying them based on appliance signatures, whose 
definition would require pre-identified labels generated 
for local features of events. Event-less approaches rely on 
inferences generated by factorial hidden Markov Models 
made computationally tractable by first constraining the 
state space using domain knowledge.  

Both case studies, Berges argues, illustrate the 
importance of domain knowledge. Even though data 
abound in the physical world, it is information derived 
from this resource that generates value [6]. And the latter 
process requires significant domain expertise.  

3.2. Cognitive Assistants  

What does it take to augment human capabilities? 
Experts from IBM and NASA Langley provided an in-
depth look at the technology, design, and deployment 
behind cognitive assistant systems based on IBM Watson 
cognitive computing technology.  

Dr. Bill Murdock, Researcher and Computer Scientist at 
IBM Watson Research Center laid the foundation on how 
cognitive assistants support a user’s information needs. 
He contends that information needs constitute a 
positively skewed distribution with a “tall head” and a 
“long tail”. Tall head represents common questions. 
Because the questions are foreseeable, it is possible to 
optimize for each information need, provide highly 
curated responses, and perform with extreme accuracy. 
Long tail represents rare events/faults. Because they are 
unforeseeable, it is only possible to optimize for all of 
such instances together. Consequently, retrieved answers 
can only be moderately accurate (but often accurate 
enough), though what is lacking in accuracy may be 
compensated by providing more answers to a query. Tall 
head information is amenable to being implemented in 
conversational systems by listing and enumerating all 
instances that will lead to a particular piece of 

information. Long tail information is more suited to be 
implemented in discovery systems, providing broad 
coverage of potential answers.  

Dr. Jon Holbrook, Cognitive Scientist at NASA Langley 
Research Center and Dr. Graham Katz, Senior Managing 
Consultant at IBM put the discovery systems that 
Murdock discussed into an operational context. They 
described the development and demonstration of a Pilot 
Expert Advisory System based on Watson Discovery 
Advisor (WDA) technology, an application of the long-
tail Discovery type of system [7]. The Pilot Expert 
Advisory System was billed as a human-autonomy 
teaming system that monitors and assesses in real-time 
states of the human, vehicle, and automation systems and 
links them with external sources of information to 
provide flight crew with relevant information in 
anomalous situations. It was designed to be able to 
answer questions posed by pilots in natural language and 
find answers in text sources. In building the corpus of 
expert knowledge that consists both general and domain 
specific aviation information, unstructured text from 
FAA publications (regulatory documents and airman’s 
information manuals), relevant incident knowledge from 
the Aviation Safety Reporting System (ASRS), aircraft-
type specific knowledge, as well as NASA select 
documents were ingested into the WDA system. Subject 
Matter Experts (SMEs) were consulted to construct a list 
of domain-specific terminology for natural language 
processing and to provide correct answers to domain 
specific-questions for training machine learning models. 
Tested against a use-case based on a real incident, the 
demo system was able to generate hypotheses about 
possible systems related to a particular fault message and 
on factors prone to cause that fault, with the correct 
answers listed at the top of candidate hypotheses. 
However, Katz acknowledged a couple of issues that 
helped put the initial success in perspective. First, 
technical specifications and formal engineering 
terminology did not always match up to the colloquial 
descriptions that flight crew used. Second, it was difficult 
for the SMEs to think of questions that they do not 
usually ask; that is, difficult to think beyond “tall head” 
questions.   

Dr. Jeff Kephart, Distinguished Research Staff Member 
at IBM Watson Research Center introduced the concept 
of embodied AI. Rather than a simple Q & A system, 
embodied AI allows a cognitive assistant to have a brain, 
sensors (eyes, ears), effectors (hands, feet), and even 
emotional intelligence. It is effectively a software agent 
that co-inhabits a physical space with people and uses its 
understanding of what is happening in that space to act as 
a valuable collaborator on cognitive tasks. Kephart 
showcased several embodied AI prototypes and research 
projects. He began the presentation with a hypothetical 
Mars crew scenario in which an embodied AI agent 
senses an astronaut’s behavior (looking worryingly at a 



 

gauge) and offers assistance. The exchange is carried out 
in natural dialogs and requires the agent to be able to 
sense the immediate physical space (spatial intelligence) 
and perform a variety of processes according to context 
(human behavior analysis, emotion analysis, planning, 
simulation, reasoning, explaining, diagnosis, preference 
elicitation). He then showed several more embodied AI 
prototypes in the areas of exoplanet exploration, mergers 
and acquisition, oil and gas field development. The 
compellingness of the demos notwithstanding, Kephart 
acknowledged there remain many embodied AI research 
challenges: sensing and interpreting the user’s 
environment (multimodal adaptive sensor fusion and rich 
transcription), interacting with the user (spatial AI and 
contextual interaction and models of self, world, and 
people), collaboratively executing high-level cognitive 
functions (e.g., planning, decision-making), building the 
software/hardware architecture (spanning Edge and 
Cloud), and measuring and improving the effectiveness 
of human-agent interactions. 

3.3. Limitations  

Both smart structures and cognitive assistants exhibit 
similar limitations in what machine/deep learning can 
accomplish. In the context of smart structures, deep 
learning systems that take in building energy and circuit 
load health data cannot answer new questions, only the 
question(s) they were trained on (as neural nets). The 
interpretation of answers provided by these systems 
remains reliant on human domain expertise. Furthermore, 
it remains the case that most building and circuit 
representations are top-down and therefore poor at 
supporting bottom-up questions (e.g., what other outlets 
are on the same circuit as this one?). Similar limitations 
are also found in cognitive assistants like IBM Watson, 
which can be trained to assist with diagnosis by providing 
answers to common questions but will falter at 
addressing unanticipated, rare events. Both topic areas 
acknowledge the unsurpassed role humans (specifically, 
using domain expertise and creative problem solving) 
play in bridging the gap of machine intelligence.  

4. MANPOWER 

Discussions of technologies often focus on what 
capabilities they provide and rarely on what is required 
to harness the capabilities, yet it is the latter that 
determines the ultimate success (or failure). Case in 
point, autonomous crew operations will undoubtedly 
require a slew of technologies to enable capabilities new 
both to the vehicle/habitat and the flight crew, 
particularly for troubleshooting during emergencies. 
How to determine whether the crew of four will be able 
to use them effectively at times of need? The issue of 
manpower is a novel one to space operations that have 
traditionally relied on (and benefited from) access to near 
limitless real-time ground support but a central and 
crucial one to the Navy. In her presentation, Dr. Nita 

Shattuck, Professor at the Naval Postgraduate School 
helped lend support to the issue of manpower by 
describing a case study based on the Littoral Combat 
Ships (LCS). 

The Littoral Combat Ship (LCS) is a relatively small and 
agile Navy surface ship specifically designed to operate 
in the littoral (near shore) area not accessible to Navy 
cruisers and destroyers. The LCS is a focused-mission 
ship, equipped to perform one primary mission at any 
given time; primary missions include antisubmarine 
warfare (ASW), mine countermeasures (MCM) and 
surface warfare (SUW) against small boats (including so-
called “swarm boats”). It achieves its versatility thorough 
modular “plug and fight” mission packages, including 
unmanned vehicles (UVs); the ship’s mission orientation 
is changed by swapping out its mission package [8].  

The LCS is developed by two industry teams and 
therefore comes in two different designs. The Freedom 
class design, developed by Lockheed, is based on a steel 
semi-planing monohull with an aluminum 
superstructure, while the Independence class design, 
developed by General Dynamics/Austal, is based on an 
all-aluminum trimaran hull. The two designs also use 
different built-in combat systems (i.e., different 
collections of built-in sensors, computers, software, and 
tactical displays).  

In 2001, the Navy began an effort referred to as the 
optimal manning initiative to reduce crew sizes aboard 
various legacy surface and amphibious ships [9]. The 
LCS employs automation to achieve a reduced-sized 
crew. The aim was to achieve a core crew size of 40 
sailors. With the additional sailors as needed to operate 
the ship’s aircraft and mission packages, a total crew of 
about 88 sailors would be needed, compared to more than 
200 for the Navy’s legacy frigates and about 300 (or 
more) for the Navy’s current cruisers and destroyers.  

Unfortunately, both LCS developments have been 
plagued with design and operational issues. During sea 
trials, Freedom class ships suffered repeated engine 
failures and Independence-class hulls exhibited massive 
corrosion and transmission failures, necessitating design 
modifications for both classes. Several crew errors during 
operations have resulted in significant repairs. These 
problems caused the Navy to conduct an engineering 
stand down of all LCSs in September 2016 to assess and 
mitigate systemic deficits [10]. A Government 
Accountability Office investigation was also conducted 
[11]. Both found that crew training was insufficient, and 
the Navy ordered that every sailor be retrained. It was 
also found that the core crew of 40 sailors and officers 
were too few to safety operate the ship without 
overworking personnel. Eventually, the complement was 
increased to 70 in 2016 [9]. Moreover, because ship 
operation proved so demanding, six LCS -- three of each 



 

type -- are now dedicated solely to training new crews 
and another four to testing.   

Considering the troubled operation history of the LCS, 
the objective of Shattuck’s case study was to investigate 
what the right number and correct composition of crew is 
for the workload required. Conventional manpower 
analysis captures routine duties and events; level of 
manning is typically determined using the average. 
Critical phenomena are infrequent but carry dire 
consequences. How does a system manned according to 
the average respond to transient phenomena? To answer 
that question, Shattuck developed three workload models 
of the LCS crew based on the IMPRINT Pro Forces 
Module. The basic underlying concept is that 
crewmembers spend all of their time in some sort of 
“planned” activities/events, i.e., the ones that typically 
occur in in the ship’s daily schedule. The planned 
activities are periodically interrupted by unforeseen 
events and emergencies (i.e., unplanned events).  The 
three models had increasing levels of operational realism 
and complexity. The first, baseline model consisted 
planned activities and some regularly occurring 
unplanned events. The second model incorporated some 
irregularly occurring unplanned events. The third model 
further incorporated “black swans” -- very rare events 
that involved all crew, 12-24 hours in duration (triangular 
distribution). Shattuck found that even under the baseline 
model, watchstanders worked on average 2.6 hr/day 
more than the Navy Availability Factors (NAF) daily 
duty hour provision. Under the second model, engine, gas 
turbine system techs, and electrician’s mates had the 
highest average daily workload. Under the third model, 
Shattuck found significant sleep loss and excessive 
sustained wakefulness; about 30 crew members did not 
sleep for over 40 hours. Moreover, crew responded 
mainly to the major events and only critical watches 
could be maintained.  

Even though many problems of the LCS can be attributed 
to human-systems integration (HSI) related issues -- 
modernized interface found unusable by the operators, 
limited design review by HSI professionals, systems 
overdesigned for its purpose, incomplete training, and 
consequential operator fatigue and exhaustion over 
operation, there are manpower specific issues as well. For 
them, Shattuck highlighted two recommendations from 
US Navy’s Strategic Readiness Review released in 
December 2017 [12]. One is to establish a process to 
measure the true workload of ships’ crews, both 
periodically and after upgrades and modernizations, to 
determine if manpower models adequately predict 
personnel requirements at sea and in port. The other is to 
adjust ship manning levels to allow for adequate crew 
rest, performance of extraneous and collateral duties, and 
training that occurs while onboard ship, and to include 
some excess capacity. 

5. CAPABILITY CONSIDERATIONS  

What capabilities need to be onboard and how will they 
team with the crew to maintain the level of safety 
currently provided by the MCC through anomaly 
response support? NASA Procedure Requirements 
(NPR) 8705.2C on Human-Rating Requirements for 
Space Systems, the agency’s current policy directive for 
carefully managed missions where safety risks are 
evaluated and determined to be acceptable for human 
spaceflight, dictate the following requirement regarding 
anomaly resolution:  

“The space system shall provide the capability to 
utilize health and status data (including system 
performance data) of critical systems and 
subsystems to facilitate anomaly resolution during 
and after the mission” [13, Section 3.2.10].  

It should be noted that the NPR defines the space system 
to include both the crewed space system and all space-
based and ground-based systems that functionally 
interact with the crewed space system during the mission 
[13, Section 3.1.3]. In other words, it assumes that in 
anomaly resolution safety is achieved by capabilities 
present in all parts of the space system combined. It 
follows that more (if not all) of the same capabilities 
should be allocated to the crewed space system in future 
deep space operations where the assumed functional 
interaction will be absent in the first hour following an 
event. Here we propose three potential concepts of 
operations (ConOp) for the crew-ground-vehicle 
collaborative anomaly response in order of the amount of 
onboard capabilities required, and discuss what functions 
intelligent technologies could support.  

We propose, at a minimum, the vehicle should provide 
enough capabilities to support the flight crew in safing 
the vehicle and themselves when major unanticipated 
anomalies occur. For example, in the cooling Loop A 
failure case, in addition to having access to system health 
and status data, the crew should have tools and methods 
to evaluate how the failure will impact overall station 
cooling and to determine what avenues are available to 
preserve it. Here, discovery systems could assist the crew 
by pooling information on the cooling subsystem design 
and vehicle heat load management though mining non-
textual data (e.g., engineering schematic diagrams) for 
knowledge remains a challenge.  

With more onboard capabilities, the crew could perform 
preliminary troubleshooting after safing. The focus is for 
the crew to troubleshoot anomalies for the purpose of 
collecting information to be later sent to the ground for 
further investigation, asynchronized in time. Here, smart 
structure technologies could be applied to provide better 
resolution on system health and status.  

At the highest level, it is possible to envision a crewed 
space system with sufficient capabilities for the flight 



 

crew to resolve anticipated and unanticipated anomalies 
on their own. A combination of smart structure 
technologies and “tall head” systems could be used to 
automatically handle anticipated cautions and warnings.  

How will the crew be incorporated as part of onboard 
capabilities amid technologies? The lesson of the LCS 
highlights the issues of HSI and workload. When the total 
manpower is a crew of four, the same issues are amplified 
and new issues arise in different areas. In selection: what 
should the composition of the crew be in terms of 
expertise? In operation: what role does each one play in 
anomaly response? how to flexibly adjust the team (and 
teamwork) if one (or more) crew cannot perform at full 
capacity? How can trust be built between crew and 
technology? 

6. FINAL THOUGHTS 

Even though sending humans into space requires nothing 
short of engineering marvels, intelligent technologies 
that are ubiquitous in our digital lives are still a relative 
new comer in space operations, currently adopted in only 
a handful (but growing) applications [14]. While being 
full of potential, considerations must be given to 
carefully assess what their costs and benefits are (for an 
example of trade analysis, see [15]) as well as how best 
to integrate them (ideally, through an iterative HSI 
process, as described in [16]).   
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