Imes Research Center

Arc Heater Background

An arc heater uses a constant electric discharge between two sets of electrodes to heat a gas (nominally air), increasing total pressure and temperature (>6000 K). The gas is expanded out a supersonic/hypersonic nozzle and onto a test article at heat rates & pressures matching high altitude entry. Used since the mid 1950s to provide conditions on a test sample that closely match those of hypersonic entry of a space craft.

1 Meteor Ablation Studies

Contribute data to a thermal response model of meteoritic materials

- 3" nozzle convective heating series
 - Convective heating promotes melting & creation of fusion crust
 - Up to 8000 W/cm² on a 0.5" Φ (1.3 cm) sample at 400 kPa
 - High speed video, pyrometry, IR imagery, spectrometry
 - Insertion times ~1-2 sec
- Add radiative heating circa mid-late 2016
 - Between 100 and 150 kW available

Diagnostics

Thermal performance @ known pressure, heat flux, enthalpy, time Recession & mass loss Surface temperature history, back face temperatures, cold trap option High-speed video, photographic data, IR imagery Post test dissection/inspection Spectrographic Focus on stagnation point and/or wake Look for presence and intensity of possible species in the visible/near IR range Si, SiO, Si+, Mg, MgO, Fe, FeO, S, Na, Ca, K Validate radiative and thermal models

Ames Arc Jets in Support for Planetary Defense

Ernest Fretter,* *NASA Ames Research Center, Moffett Field, CA 94035, USA

Result would improve and validate material response and radiative models to better predict meteor behavior at entry to Earth.

Test gas	Air, N ₂ , O ₂ , CO ₂ , Argon		Test duration (min)	≤ 60		
Nozzle exit (mm)	Conical , Ø 76, 152, 330, 533, 762 &1041		Semielliptical, 203x813	Test article type	Stagnation point	Wedge/Flat plate
Input power (MW)		60		Test article size (mm)	Ø 380	610 x 610
Bulk enthalpy (MJ/kg)		2 to 28		Surface pressure, kPa	1-600	0.01-2
Flow rates (kg/s)		0.03 to 1.7		Heating rate (W/cm ²) *	25-2000	6-400

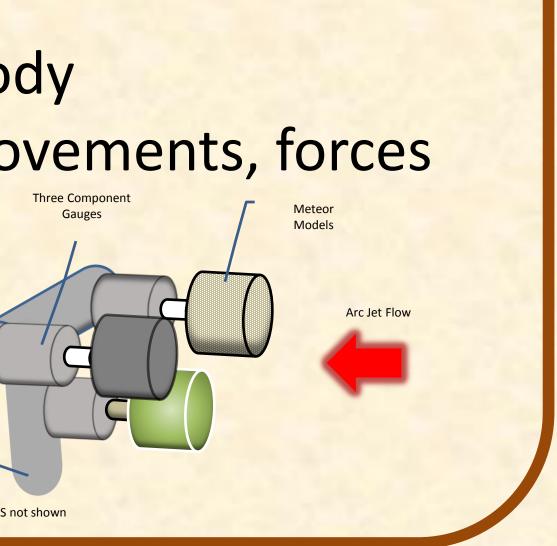
#2. Multi-Body Breakup in Arc Jet Convective Heating Environment

Two to three bodies on special strut with temperature and force measurements of each body

Strut would have individual supports for each body Insert multi-body model into flow and record movements, forces

- and sample temperatures
- High speed video, IR imagery

Complement data from ballistic range tests



References

C. Shepard, J. Vorreiter, H. Stine, W. Winovich, "A Study of Artificial Meteors as Ablators," NASA TN D-3740, March 1967

J. Kesselring, R. Maurer, G. J. Hartman, "Code Validation Tests in Arc Heater Facilities with Application to Outer Planet Entry," Aerotherm Report TM-76-106, NASA ARC NAS2-8529, March 1976

