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ABSTRACT
Retrieval systems have greatly improved over the last half century,
estimating relevance to a latent user need in a wide variety of areas.
One common task in e-commerce and science that has not enjoyed
such advancements is searching through a catalog of items. Finding
a desirable item in such a catalog requires that the user specify
desirable item properties, specifically desirable attribute values.
Existing item retrieval systems assume the user can formulate a
good Boolean or SQL-style query to retrieve items, as one would
do with a database, but this is often challenging, particularly given
multiple numeric attributes. Such systems avoid inferring query
intent, instead requiring the user to precisely specify what matches
the query. A contrasting approach would be to estimate how well
items match the user’s latent desires and return items ranked by
this estimation. Towards this end, we present a retrieval model
inspired by multi-criteria decision making theory, concentrating
on numeric attributes. In two user studies (choosing airline tickets
and meal plans) using Amazon Mechanical Turk, we evaluate our
novel approach against the de facto standard of Boolean retrieval
and several models proposed in the literature. We use a novel com-
petitive game to motivate test subjects and compare methods based
on the results of the subjects’ initial query and their success in the
game. In our experiments, our new method significantly outper-
formed the others, whereas the Boolean approaches had the worst
performance.
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1 INTRODUCTION
Searching for items by their attribute values or metadata is a com-
monplace task today. For example, consider searching for a partic-
ular research paper you recall as published in 2013, or computer
monitors under $200. Current search tools support a retrieval style
more akin to a database than a modern information retrieval system,
most often with faceted or Boolean search. In that model, users
place hard constraints on acceptable attribute values to limit the
result set.

Unfortunately, this rigid style of retrieval often creates difficul-
ties for the user. In the examples above, what if the sought research
paper was published in 2012, not 2013 as remembered? There are
thousands of computer monitors under $200, far too many to exam-
ine, but constraining all desired attributes might yield no results.
And what if a monitor that best fits the user’s desire is just outside
the stated range, listing at $213? Boolean retrieval often yields no
results or too many. Faceted search usually avoids empty result
sets, but the facets are often pre-computed and may not match the
user’s intent well.

The problem with such retrieval systems is that they do not try
to understand what the user is seeking. Instead, they give the user a
tool to explicitly manage the result set by stating what to return and
how to order it. In this paper, we explore an alternative approach
that is more aligned with current information retrieval approaches –
implicitly managing result sets by estimating relevance to a descrip-
tion of the sought item. We model the user’s utility function, and in
the process, allow the system to trade off among conflicting criteria
on the user’s behalf, and in this way get closer to the underlying
query intent. In contrast to the Boolean and faceted approaches in
use today, our approach does not use constraints.

We evaluate this new approach against the de facto standard of
Boolean retrieval and several models proposed in the literature in
two user studies using AmazonMechanical Turk1. The domains and
tasks in these user studies are diverse, with one involving searching
for airline tickets and in the other for healthy (daily) meal plans. In
both studies, test subjects read a short scenario and used a randomly
chosen retrieval model to find an appropriate item (ticket or meal
plan). We ask the following questions:
RQ1 Which approach and specific retrieval algorithm is most

effective?
RQ2 Are constraints beneficial or harmful?
RQ3 How should results be ordered?
In this work, we make the following contributions:
(1) We cast the item retrieval problem as finding the item with

the most desirable combination of attribute values, and use
utility theory to develop a basic model.

1http://www.mturk.com
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(2) We expand upon the basic retrieval model by developing
subutility models that estimate the utility of every possible
value of each attribute.

(3) We develop a Bayesian hierarchical model around our item
utility model so the models’ parameters can be fit to data of
users’ selections.

(4) We evaluate our novel item retrieval model against the two
common approaches, Boolean and faceted retrieval, along
with several models from the literature, in two user studies
in very different domains.

The rest of this paper is organized as follows. In section 2, we
review the related research and introduce the previously published
methods included in our study. In Section 3, we introduce an initial
retrieval method based on multi-criteria decision-making theory
and a subsequent enhancement to that method. The learning frame-
work we later use to tune this model’s parameters is described in
Section 4. In Section 5, we detail the design of our two user stud-
ies, including the baseline retrieval methods that we include for
comparison. Finally, we present the results of these user studies in
Section 6 and present our conclusions in Section 7.

2 RELATEDWORK
Common item retrieval methods use a Boolean retrieval paradigm,
either in database-like query or faceted search, with the latter a pop-
ular choice with many e-commerce websites. Database researchers
have expanded on these approaches while preserving clear retrieval
semantics, notably with top-K approaches [16], which retrieve the
k-highest scored items given a scoring formula, and ranking given
uncertain data [29]. Skyline queries [15] do not use a specific scoring
formula, instead returning the Pareto set given desired characteris-
tics. Finally, several researchers have explored incorporating pref-
erences into database queries [1, 11, 17, 18]. The focus of that work
has been the semantics of the operators and on efficient execution,
and not inferring latent preferences. Overall, the important body
of work referenced above is focused on a different problem than
ours, namely efficiency and defining explicit retrieval semantics,
not query intent. In contrast, we do not assume a scoring function
or explicit retrieval paradigm, and instead attempt to maximize user
satisfaction by estimating item relevance.

The few item retrieval methods that do rank results according
to estimated relevance tend to use methods suited for categori-
cal data on all attributes, even numeric ones, perhaps because of
the similarity to the bag-of-words model of information retrieval.
Chauduri et al. [10] and Su et al. [30] adapted the binary inde-
pendence model, discretizing numeric attribute values, similar to
faceted search. Agrawal et al. [2] adapted TF*IDF to search database
records, but abandoned the term frequency term. AIMQ [22] further
advanced the numerical relevance concept through a “like” operator
that calculated the bounded absolute percentage difference between
query and data attributes, combining them in a linear combination.
Agrawal et al.’s method and AIMQ were combined and slightly
modified by Meng et al. [20]. CQAds use a normalized absolute dif-
ference to compare numerical query and data attributes, combined
in a simple summation, to find advertisements (or more precisely,
search through “for sale” listings). Finally, the appropriately named

VAGUE system [21] was an early retrieval framework that incorpo-
rated a “similar-to” operator that would retrieve records close to the
desired attribute values, using the system designer’s chosen metric
function. Vague queries were later incorporated into a probabilistic
framework [13], although how to estimate these probabilities was
left as a difficult open question. We include Agrawal et al.’s, model,
AIMQ, CQAds and VAGUE as baselines in our experiment and give
their mathematical formulations in Sec. 5.2.

The healthy meal plan user study can be seen as a package
retrieval task (retrieving a composite item instead of individual
items), though this is not a central aspect of that study. Prior re-
search has focused on recommending packages that meet the user’s
constraints and maximizing a provided objective function. Package
recommendation has been explored in a number of areas, such
as trip planning [4, 14, 31, 33], student course planning [23–25],
compatible products [5], diversity in restaurants [3] and web page
conglomeration [7]. Given the large number of potential pack-
ages, recommended packages are typically generated on the fly,
typically an NP-complete problem. Our meal plan retrieval study
contrasts with these by selecting from a fixed (though large) corpus
of packages and eschewing constraints and objective functions for
estimated utility.

We may be the first to apply multi-criteria decision concepts
specifically to item retrieval, but others have adapted it to general
information retrieval, primarily in information filtering. Manouselis
and Costopoulou categorize 37 recommender systems that implic-
itly use some multi-criteria aspect in their operation [19]. PENG
[6, 26] is a multi-criteria news bulletin filtering system that utilizes
several criteria, including content, coverage, reliability, novelty and
timeliness.

3 TOWARDS A MODEL OF UTILITY
In contrast with the retrieval methods we surveyed in the literature,
we develop a retrieval method with clear theoretical justification,
building on multi-criteria decision making. In multi-criteria deci-
sion making, a decision maker must choose among several candi-
dates, with each candidate evaluated by the decision maker on the
same set of criteria. A simple example is choosing a hotel, factoring
in price, location, amenities, etc. The decision making process is
made difficult by conflicts among the criteria, that is, when indi-
vidual criteria rank options differently, and in particular, when no
candidate is rated highest by all the criteria. Multi-criteria deci-
sion making approaches typically rank candidates given a rating
on each attribute value; our problem is even harder as we must
also estimate subutility functions to rate the attribute values. The
ratings on each criterion are typically scaled to lie on a 0-1 scale
(with higher ratings preferable). Ratings on different criteria are not
assumed to be of equal importance, so a weight for each criterion
is usually assigned to capture relative importance, with the sum of
weights equal to 1.

According to multi-attribute utility theory (MAUT) [12], certain
assumptions on the properties of preferences entails that the under-
lying utility function follow a particular form. We assume mutual
utility independence, which means for any subset of attributes, the
strength of preference for a set of values is unaffected by the values
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of other attributes. As an example, this would mean that the dif-
ference in utility between two 20 inch computer monitors, priced
$150 and $200 but otherwise identical, is the same as the difference
in utility between two 25 inch computer monitors, priced $150
and $200 but otherwise identical. This assumption entails that the
underlying utility function must be linear combination of ratings,
yielding our base utility function:

f (Q,Di ) =
∑
j
w j � дj (qj ,di j ) (1)

where j is the index of the jth attribute,w j is the priority (weight)
given to the attribute, Q are the desired attribute values, and Di
is the ith item in corpus D, with qj and di j the values of the jth
attribute of Q and Di , respectively. дj (qj ,di j ) is the subutility func-
tion which evaluates the utility of attribute value di j when the user
desired qj . Items are ranked in order of decreasing utility.

At this point, MAUT offers no further guidance. Subutility eval-
uations are taken as input to the MAUT problem, but we need to
estimate subutilities. Estimation is trivial for Boolean attributes,
as there are only two possible attribute values, so the subutility
is one when qj = di j , zero otherwise. Categorical attributes (e.g.,
color) are more challenging. An extreme solution would be to use
the same approach as Boolean attributes, estimating zero subutility
except when qj = di j . A more nuanced approach could be derived
from domain theory or user choice training data when either is
available.

Numeric attributes, on the other hand, have mathematical re-
lationships among their values which suggest other avenues for
subutility estimation. A simple yet intuitive method is to relate
subutility to the absolute difference from the desired value, which
we chose as follows:

д(qj ,di j ) =

(
1 −

|qj − di j |

max
(
|qj − ⊥j |, |qj − ⊤j |

) ) (2)

where ⊥j and ⊤j are the least and greatest values of the jth at-
tribute in the corpus, and other variables are as defined in Eq. 1.
This formulation gives us our initial retrieval model, SimpleMAUT.
SimpleMAUT accepts as input a query consisting of desired at-
tribute values (0 or 1 per attribute) and attribute priorities (0 when
the corresponding attribute is not of interest) and returns items
ranked by their estimated utility. SimpleMAUT (and the forthcom-
ing MAUT models) could also be extended to support ranges or
multiple desired values by giving such maximum utility.

However, the subutility estimation of numeric attributes in Sim-
pleMAUT has several limitations. First, the attribute ratings are
normalized by the extreme attribute values of the corpus, and so
can be radically affected by corpus changes. Second, it assumes
a linear relationship between the attribute subutility and the at-
tribute value, implying a constant rate of subutility change. This
has nonintuitive consequences, for instance, it implies that a $5
discount is just a compelling when applied to $1000 item as it is
for a $10 item. Finally, as is, SimpleMAUT does not have way to
incorporate the subutilities of a multiply-valued attribute, which
we needed for the ratings of multiple dishes in our meal plan user
study.

We made several changes in an enhanced version of our model,
normalizing numeric attribute subutilities with the standard de-
viation and including a scaling factor for each subutility. We also
developed a more flexible subutility function based on several prin-
ciples. First, the desired value should have maximal subutility. Sec-
ond, subutility should never increase as the absolute difference to
the desired value increases. Finally, the subutility function should
be as flexible as possible with a minimum number of parameters.
Accordingly, we used an exponential function, raised to a positive
exponent, as our subutility function. It can capture a variety of
functions, from a point-like subutility, to gradually diminishing
losses, to a bell-shape curve, and even to a boxcar function in the
limit. The enhanced model has separate subutility function param-
eter values above and below the desired value, so that asymmetric
subutilities can be modeled.

We can now present the revised numeric subutility function used
by our enhanced retrieval algorithm, EnhancedMAUT :

дj (qj ,di j ) =
[
qj ≥ di j

]
exp ©­«−

(
|di j − qj |

ϕ≥
j σj

)ρ≥
j ª®¬

+
[
di j < qj

]
exp ©­«−

(
|di j − qj |

ϕ<j σj

)ρ<
j ª®¬ +

[
di j = qj

]
(3)

where σj is the standard deviation of jth attribute, [ ] is the Iverson
bracket, ρ≥ , ρ< , ϕ≥ , ϕ< , and w are model parameters (all 1 in our
experiment), and others are defined as above.

Finally, we chose to aggregate multiply valued subutilites with
a generalized mean, which only applied to the rating of the com-
ponent dishes in the meal plan user study. The generalized mean
takes a single parameterψ and its argument, a series of numbers
x1, ...,xn :

M(x1, ...,xn ) =

[
1
n

n∑
i=1

x
ψ
i

] 1
ψ

(4)

The generalized mean’s appeal comes from its flexibility, as particu-
lar values ofψ will produce the arithmetic, geometric, and harmonic
means, as well as minimum and maximum. Thus, this one function
allows us to model several reasonable ways a user might evaluate a
set of items. In our case, each xi is the estimated subutility of the
rating of a dish in a meal plan.

4 LEARNING
The LearnedMAUT model (Figure 1) has the same formulation as
EnhancedMAUT, but uses tuned model parameter values for the
attribute weights and shapes of the subutility functions, as described
below. These are learned in a pairwise learning to rank framework
with Bayesian logistic regression, by placing a logistic function in
a hierarchical model. Given the utility function f () in Eq. 1, using
the subutility function д() in Eq. 3, and the general mean (for dish
ratings only) in Eq. 4, the likelihood function L() is:
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yi

ρ≥ ρ< ϕ≥ ϕ< w

ψ

λ≥ρ λ<ρ λ≥ϕ λ<ϕ

j

i pairs

Figure 1: Hierarchical Bayesian model of LearnedMAUT
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Figure 2: Log Likelihood

L(ρ≥, ρ< ,ϕ≥,ϕ< ,w,ψ ;Q,D,R,U) =∏
Q∈Q

∏
r ∈R

∏
u ∈U

(
b

2
+

1 − b

1 + exp(−c(f (Q,Dr ) − f (Q,Du )))

)
(5)

where Q are the set of queries, R are the item indices chosen for
query Q, U are the indices of items not chosen for query Q, b and
c are tuning parameters, with others defined above. Parameter b
(arbitrarily set to e−2 in our experiment, and discussed below) limits
themaximum loss from any pair, and c (10 in our experiment) affects
gradient smoothness, with results insensitive to small changes in
either parameter.

The model parameters ρ≥ , ρ< , ϕ≥ , ϕ< ,w andψ are given prior
distributions, withψ modeled as a standard normal distribution and
the rest modeled with gamma distributions. The hyperpriors λ≥ρ ,
λ<ρ , λ≥ϕ , and λ

<
ϕ are used to control the modes of ρ≥ , ρ< , ϕ≥ , ϕ< ,

and are modeled as a modified gamma distribution that corrects
for a drift towards more compact distributions with smaller modes.
These hyperpriors and w were given a mode of 1. The gamma
distributions’ parameters were calculated to fit the mode and give
good regularization.

The tuning parameter b was included to limit model sensitivity
to highly unlikely pairs. Initially this parameter was not included

(equivalently given a value of zero), yielding a more conventional lo-
gistic function, but we found the probabilisticmodel would gravitate
towards fits where most pairs were slightly unlikely yet resulting in
a better overall probability than results with high classification ac-
curacy but with a few very unlikely pairs. Our solution was to have
our utility function only describe part of the data, modeling the data
as a mixture of two processes, the other being a random selection
model. This also admits uncertainty into the model; at times, a user
may select a different item due to factors that are not captured by
the model. Figure 2 compares how the log likelihood changes for a
single pairwise comparison as their score difference changes, in the
original and revised formulation; note also the difference in scale.
Since the overall log likelihood is the sum of each pair’s likelihood,
it is easy to see that the revised likelihood corresponds much better
with the overall classification accuracy. For our experiments, we
arbitrarily set the mixing parameter b to e−2 (≈ 0.14), noting that
results were insensitive to small changes in this parameter.

We used the Metropolis-Hastings algorithm to generate samples
from the posterior distribution, using the observed modes as the
model parameter values. After the user study, the initial queries
and final selections from that study were separated into 20 folds
(for cross-validation), training a separate model for each fold, using
the other 19 folds for training data and the fold’s data for testing.
We partitioned the data into folds by scenario, to prevent selections
from the test scenario biasing the model. However, given the dif-
ference in scenarios, queries and limited number of selections, the
learning problem is fairly difficult. We evaluate the learned model
in Section 6 using the mode of the resulting posterior distributions.

5 EXPERIMENT
We conducted two user studies using different domains and several
retrieval models to compare themodels’ ranking of results. After the
first user study, for our second study (with meal plans) we improved
the experimental protocol (adding a head-to-head comparison), the
baseline models (replacing Tradeoff with Faceted), and our retrieval
model (using EnhancedMAUT instead of SimpleMAUT ).

5.1 User Interfaces
We developed different user interfaces to support models with
different query input (e.g., some supported ranges, some accepted
sort orders, etc.). Some retrieval models had identical query input
and differed only in the subsequent ranking.

Sorted Boolean For the ticketing user study, we allowed users
to restrict the result set by attribute ranges (with the excep-
tion of price) and give a single sort order, as with popular
travel sites at the time of development. In the meal plan
user study, we allowed restriction on any attribute and up
to four sort orders. An example of the query interface in the
ticketing user study is shown in Figure 3.

Faceted For themeal plan user study, we created a basic faceted
search model. All attributes were split into a small number of
equally sized facets, with seven to twelve facets per attribute.
Up to four sort orders could also be chosen. An example of
the query interface is shown in Figure 4.

Point The point-based user interface allows a user to specify
single values for each attribute, allowing the user to give
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Figure 3: Sorted Boolean search interface, ticket study.

Figure 4: Faceted search interface, menu plan study.

specific attribute values of interest. Partial specifications
(attributes can be left blank) are acceptable, as with other in-
terfaces. This interface was used for theMAUT-basedmodels
as well as baselines from the literature.

Tradeoff As our retrieval model was based on an implicit util-
ity function, we created an alternative where users could
provide a simple utility function, as shown in Figure 6. As
with the Point interface above, users could specify desired
attribute values, but also provide exchange rates for each
unit change, for instance in Figure 6, each connection added

Figure 5: Point-based search interface, menu plan study.

Figure 6: Utility function search interface, ticket study.

to a flight is acceptable only if it saves $100 (or more). The in-
terface was only used by the Tradeoff model in the ticketing
user study, which is described in the following section.

5.2 Retrieval Models
We used our proposed models, the de facto item retrieval methods
of Boolean and faceted search, as well as several models from the
literature (see Sec. 2), as listed below. Variables are defined as in
Section 3 unless otherwise specified.
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AIMQ AIMQ estimates relevance using a different normaliza-
tion and global weights derived from functional dependen-
cies (see [22] for details). Items are ranked by decreasing
score order, where the score of di is defined as:

f (Q,Di ) =
∑
j ∈Q

w j

(
1 −min

(
1,

|qj − di j |

qj

))
(6)

where j ∈ Q indicates the jth attribute was given a desired
value (not left blank), andw j is the global weight for the jth
attribute.

AutoRank This is the (unnamed) model of Agrawal et al. They
used an inverse document frequency (IDF) term for weight-
ing, defined below for query element qj as:

w j = log
©­­«

n∑n
k=1 exp(−

1
2

(
dk j−qj
hj

)2
)

ª®®¬ (7)

where n is the number of items, and hj is a “bandwidth”
parameter, chosen by Agrawal as hj = 1.06σjn−

1
5 . This is

combined in their overall scoring function:

f (Q,Di ) =
∑
j ∈Q

w j exp

[
−
1
2

(
di j − qj

hj

)2]
(8)

with items ranked by decreasing score.
CQAds CQAds estimates relevance much like AIMQ, but with

a different normalization, andwithout attribute-specificweights.
In our adaption of CQAds scoring, items are ranked by de-
creasing score order, where the score of di is

f (Q,Di ) =
∑
j ∈Q

(
1 −

|qj − di j |

Rj

)
(9)

where Rj is an estimation of the range of the jth attribute,
defined as the mean of the ten greatest values minus the
mean of the ten least values.

Faceted/Sorted Boolean Faceted search and Sorted Boolean
search have the same retrieval semantics with different user
interfaces. Items that meet the constraints given by the user
are returned and ordered by any provided sort orders.

MAUTs SimpleMAUT and EnhancedMAUT were described in
Section 3, whereas LearnedMAUT was described in Section
4. SimpleMAUT was used only in the ticketing user study
and included user provided attribute priorities, whereas En-
hancedMAUT was used in the meal plan study with uniform
attribute weights. LearnedMAUT was trained and evaluated
post-hoc on data from both user studies.

Tradeoff Contrasting with SimpleMAUT, the Tradeoff model
allowed test subject to directly provide a utility function
by giving an explicit tradeoff rate (in terms of dollars) they
would be willing to spend to get closer to their desired at-
tribute values. Items are ranked by increasing score order,
where the score of Di is defined as:

f (Q,Di ) =
∑
j
tj |qj − di j | (10)

where tj is the tradeoff rate (in dollars) for the jth attribute.
VAGUE The VAGUE framework provides “similar-to” operator

that calculates a weighted Euclidean distance from the query
point and the item. The operator can use subutility functions,
but none are prescribed, so we choose the absolute difference
divided by the standard deviation:

f (Q,Di ) =

√√√∑
j

[
w j

(
|qj − di j |

σj

)]2
(11)

with items ranked by increasing score. As with the MAUTs
above, user provided attribute priorities were used in the
ticketing study and replaced with uniform weights in the
meal plan study.

Only EnhancedMAUT and LearnedMAUT were developed to
support multiply-valued attributes (our meal plans have a separate
rating for each included dish), so we use the (arithmetic) mean to
aggregate such multiple values in the experiment, except where
otherwise noted.

AIMQ,CQAds, theMAUT-basedmodels (EnhancedMAUT, Learned-
MAUT, SimpleMAUT ), and VAGUE all accept the same query input,
differing only in how they rank results. Thus, only SimpleMAUT
and EnhancedMAUT were used during the user study, with the oth-
ers evaluated post hoc using only the first query from each session,
as subsequent queries are influenced by the search engine actually
used. Additionally, LearnedMAUT was trained with data after user
study completion instead of on-line.

5.3 Data Used
For both user studies, we wanted test subjects to perform realistic
tasks, using appropriate real world data. We developed twenty short
scenarios for each study based on the literature.

We're meeting with a potential new distributor for
four days in Omaha, starting Monday, January 9, and
ending Thursday, January 12. I need to leave Sunday,
January 8 to get there on time, and have to leave no
later than 2 PM on January 12. I'm giving a presentation
about the meeting to the directors in Burbank at 8 AM
Friday, January 13. It's business travel, so I won't be
paying for the ticket.

Figure 7: Example Scenario for Ticketing Study

For the ticketing study, we consulted a survey from more than
26,000 U.S. households to capture who travels by air and the reasons
why [9], using this breakdown to develop 10 scenarios for pleasure,
8 for business, and 2 for personal business. To make the scenarios
slightly more compelling, we created somewhat vague reasons for
the trip (i.e., “attend a meeting”, “visit relatives”, “take a vacation”).
We chose arbitrary dates to match the scenarios, with personal trips
somewhat longer in duration and with random time constraints
(from 9 AM to 4 PM) for business trips, ranging from nearly trivial
to quite restrictive. For half of the remaining scenarios, we listed
other criteria (such as “get home early”), while leaving the others
open-ended. Figure 7 shows a scenario with constraints for business
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travel. Finally, we also sampled demographic information from the
same survey (gender, age, income) to give more context. To build
the ticket corpus, we randomly selected origin/destinations pairs
from a sample of U.S. domestic travel in 2006 [8] and retrieved
tickets from Expedia (using dates of our choosing) with the same
origin and destination, which at that time yielded approximately
60 round-trip tickets for each scenario, yielding a separate corpus
for each scenario. Each ticket was described by nine attributes
(e.g., price, outbound departure, etc., as in the ideal ticket in Figure
6). Dates and origin/destination were treated as unalterable hard
constraints.

You are choosing meals for Emma, a 30 year old female.
Emma is concerned about her fat intake. She has read that
at most 30% of calories should come from fat, with at most
10% coming from saturated fat. Emma wants a daily meal
plan that follows the nutritional recommendations, with
an emphasis on delicious food, calories from fat, total
fat, and saturated fat.

Figure 8: Example Scenario for Meal Plan Study

For the meal plan study, we consulted a popular nutritional re-
source [27] which tabulated nutritional needs by age and gender,
as well as modifications needed for various diseases and lifestyles.
In addition to these specific recommendations, we also included a
desired nutritional range in the form of Estimated Average Require-
ment and Tolerable Upper Limit [32] when such are defined. We
developed twenty core scenarios, choosing a variety of conditions,
genders, and ages. In addition, four meal plan attributes (tastiness
and three randomly selected nutrients, typically overlapping with
any nutritional modifications) were emphasized to focus the test
subject. In all, 119 scenarios were generated during the user study.
Figure 8 gives an example of one of the meal plan scenarios.

We used the meal plan components (individual dishes) to create
the corpus, as large collections of daily meal plans are not common.
We downloaded roughly fifty thousand recipes from the recipe-
sharing website allrecipes.com to serve as the building blocks of
our meal plan corpus. Allrecipes.com recipes include a variety of
metadata (such as type of dish, meal, and cuisine) and nutritional
info which made it ideal for building daily meal plans. From this,
we used a meal plan generator that selects appropriate main dishes
for breakfast, lunch and dinner, adding additional meal components
(side dishes, drinks, appetizers and desserts) with decreasing proba-
bility as the daily calorie count increases, creating approximately a
quartermillionmeal plans. Twenty of the attributes were nutritional
information (e.g., calories, vitamin A, etc, as in Figure 5) which could
be simply summed. The other attribute was allrecipe.com individual
dish ratings, which were preserved for each meal plan.

5.4 Subject’s tasks and rewards
We developed a game with rewards to motivate test subjects to
take the task seriously and put effort into choosing the best items.
We used Amazon Turk workers as our test subjects, restricting to
workers within the United States and with high completed work
acceptance rates (95% or better). The game was slightly different

in each user study but followed the same basic structure. Several
workers would be given the same scenario andwere asked to choose
the selection(s) that would be most likely to please the person
described in the scenario. There were two roles, the searcher and
judge, as described below:

Searcher This role was used to generate queries and relevance judg-
ments. The searcher used a randomly selected search en-
gine to search the corpus and select items. These selections
were entered into a “contest” and assigned a judge, with the
searcher receiving a bonus if their selection won the contest,
as described below. For the ticketing user study, three tickets
were selected; only one meal plan was selected in the meal
plan user study.

Judge This role was used to validate work and provide bonuses.
The judge selects items from a randomly ordered list without
the benefit of a search engine. The judge would see a small
subset of items that included the selection(s) of the searcher;
if the judge chose the worker’s selection, the worker would
get a bonus. A second judge would be given the same set to
judge, and if they made the same selection, they would both
get a reward. study was altered to include only selections
from two searchers using different search engines and two
randomly selected meal plans, so the results from different
search engines could be directly compared (head-to-head).

In addition, the meal plan user study asked each test subject to
provide a justification for their selection. Work was rejected when
justifications were inadequate and eliminated from our study.

Table 1: User Study Data

User Test Tasks Initial Items
Study Subjects Completed Queries Chosen

Tickets 366 553 553 1659
Meal Plans 205 321 321 321

We excluded roughly half of the searcher responses (completed
tasks) from the ticketing user study to eliminate noisy data as fol-
lows. For each scenario, we calculated the median probability of
being matched with another searcher who selected at least one
common ticket, discarding all responses that fell below this median.
The two groups (discarded and preserved) showed a statistically
significant difference on time spent according to a randomization
test (also described below) at p=0.05. In the meal plan study, we
rejected responses with inadequate justifications, eliminating about
10% of the responses. Table 1 summarizes the data for each user
study; only the initial query is used in our analysis, thus its count
is equal to the number of responses. Likewise, subjects were in-
structed to pick exactly three tickets and only one meal plan in the
corresponding study.

5.5 Evaluation Metrics
As mentioned in Sec. 5.2, we use only the first query from each
session to calculate mean average precision (MAP), precision at
k (P@k), and mean reciprocal rank (MRR). However, a test sub-
ject may be likely to choose a higher ranked item when utility is
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roughly the same. Moreover, given a large number of items, the
item ultimately chosen is affected by the retrieval model’s ranking
as not all items will be viewed. This is irrelevant when comparing
the retrieval models used directly by test subjects, but could bias the
results when comparing retrieval models in our post hoc analysis.
To compensate, we break the bond between the test subject’s query
and ultimate selections by using the selections from the other test
subjects on the same scenario, which we refer to as the community
evaluation. For the ticketing user study, we combined these choices
into a single MAP evaluation since all users were given all the
tickets, given the small corpus. For the meal plan user study, the
combined set of search results from any test subject’s session was
such a small fraction of the corpus that there was little to no overlap
among sessions. Therefore, each query was evaluated separately
on each result set. We further only used result sets from queries
that won at least the median number of contests.

As differences in response and acceptance rates per scenario gave
us varying amounts of data, we average our results in two ways.
The first is the micro-average, which is the mean over all responses
without respect to the scenario. The second is the macro-average,
which calculates an overall average from the mean of each scenario
individually. The macro-average compensates for an unbalanced
distribution but may have higher variability, as scenarios with fewer
responses are weighted the same as those with more responses.

We use a randomization test[28] in two ways to calculate statisti-
cal significance. The first method is usedwhen comparing responses
by different subjects in the user study, using in-study models; no
subject was allowed to respond to the same scenario more than
once. Our null hypothesis is that each test subject would have had
the same performance on either of the compared models, and so
the observed difference is merely a chance event stemming from
random assignment of test subjects. The second method is used in
our post-study model evaluation. Here our null hypothesis is each
method was equally likely to have produced the observed difference.
To test the null hypothesis, we randomly redistribute the responses
or the differences, respectively, within the scenarios among the two
models one million times. The p-value is the fraction of times this
redistribution produced a difference for the metric that was at least
as great as the actual observation. We used the same simulation run
to calculate the p-value for all metrics jointly (e.g., instead of using
Bonferroni’s correction), and found the p-values reported below
hold for each family as well.

6 RESULTS
We provide various results of our experiment below, with the leader
bolded and statistically significant difference (at p=0.05 or better)
indicated by the dagger (†), with the overall best performance
bolded. Table 2 shows the results of the ticketing user study with the
searcher’s own selections. The SimpleMAUT model outperformed
all others by a statistically significant difference, and the Sorted
Boolean model, despite its widespread use, performed the worst.
Table 3 shows the results for community-judged MAP, calculated
from the other test subject’s ticket selections (see Section 5.5), with
the maximum a posteriori estimate of model parameters used for
the LearnedMAUT model. All models except Autorank performed

relatively well, with LearnedMAUT performing the best, mostly by
statistically significant differences.

Table 4 shows results on scenarios with explicit constraints (35%
of the ticketing scenarios), again with the searcher’s own selections.
Surprisingly, though restricting results is more effective on these
scenarios, Sorted Boolean is still outperformed by the unconstrained
SimpleMAUT. Table 5 shows why; approximately a third of the
final selections had been eliminated by the test subjects’ initial
constraints. Though restricting the result set was more effective
eliminating unwanted choices from the constrained scenarios, as
expected, it also eliminated final selections at almost the exact
same rate for both constrained and unconstrained scenarios. This
further demonstrates the the hazard of using hard constraints to
approximate soft preferences, even when the user need also has hard
constraints.

Table 6 gives the community-evaluated MAP scores for models
in the meal plan user study. Qualitatively, the results are similar to
the ticketing user study despite differences in the domain and cor-
pus size, with the LearnedMAUT model outperforming the others.
A unique feature of the meal plan domain was the multivalued dish
rating attribute, which we aggregate with a generalized mean. The
value ofψ in our experiment was close to the geometric mean (av-
eraging around -0.25 and varying by fold, where a value of 0 yields
the geometric mean). Changing the baselines to use the geometric
mean (instead of arithmetic as shown in Table 6) yielded better
results, mostly by a statistically significant differences; even so, the
differences with the LearnedMAUT result remained statistically
significant.

Another way to evaluate search result quality is to see how
often a model was used to find the winning meal plan. Table 7
shows searchers using the EnhancedMAUT search engine were
very successful, beating the competition (i.e., searchers using a
different search engine) nearly two thirds of the time. Moreover, if
we use the search engine to rank the contest entries (given as “Judge
MRR”), the advantage of the EnhancedMAUT model is even clearer.
A direct comparison is given in the “head-to-head” performance in
Table 8, with each row in the table listing the “victories” in matches
between the pair of search engines in the columns. For example,
the EnhancedMAUT and Faceted search engines have competed 53
times (i.e., entered into the same contest, as described in Section
5.4), with the EnhancedMAUT paradigm winning 35 contests and
losing 18. As with the other comparisons, the difference between
EnhancedMAUT and the others is statistically significant.

Explicitly constraining the result set hurt the performance of
Sorted Boolean and Faceted (RQ2). Hard constraints are not well-
suited to expressing preferences, and we found that test subjects
often ultimately selected items that were eliminated by their ini-
tial restrictions. Though the user interfaces for Sorted Boolean and
Faceted are quite different, the underlying query semantics are iden-
tical, and we observed nearly identical retrieval performance. On
the other hand, the Tradeoff model had a very similar ranking func-
tion to SimpleMAUT, but with explicit utility function parameters,
and this lead to poor performance. Indeed, models that allowed
users to give an explicit ranking (Sorted Boolean, Faceted and Trade-
off ) performed worse than the models that implicitly ranked by
attempting to glean query intent (RQ3). Overall, test subjects were
most successful using the implicit MAUT query models (RQ1).
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Table 2: In-Study Model Results on Ticketing User Study

MAP MRR P@1 P@5 P@10 P@20
Model micro macro micro macro micro macro micro macro micro macro micro macro

Sorted Boolean 0.378† 0.368† 0.481† 0.476† 0.396† 0.390† 0.249† 0.244† 0.149† 0.145† 0.085† 0.081†

Tradeoff 0.387† 0.380† 0.447† 0.459† 0.314† 0.332† 0.254† 0.241† 0.168† 0.167† 0.105† 0.104†
SimpleMAUT 0.542 0.526 0.693 0.678 0.587 0.566 0.336 0.323 0.237 0.234 0.138 0.138

Table 3: Tickets: Community-evaluated MAP

MAP@10 MAP@25
Model micro macro micro macro

AIMQ 0.394† 0.377† 0.385† 0.370†

Autorank 0.246† 0.269† 0.244† 0.267†

CQads 0.453† 0.453† 0.445† 0.447†

VAGUE 0.457 0.430† 0.451 0.427†
LearnedMAUT 0.502 0.492 0.490 0.482

Table 4: Tickets: Constrained Scenarios

MAP MRR
Model micro macro micro macro

Sorted Boolean 0.382† 0.361† 0.515† 0.509†
SimpleMAUT 0.568 0.543 0.703 0.684

Table 5: Tickets Eliminated by Subject’s Restrictions

Candidate All Constrained Unconstrained
Ticket Scenarios Scenarios Scenarios

Chosen 134 (34%) 49 (34%) 85 (33%)
Not Chosen 3503 (50%) 1627 (61%) 1876 (44%)

Table 6: Meal Plans: Community-evaluated MAP

MAP@10 MAP@25
Model micro macro micro macro

AIMQ 0.313† 0.287† 0.332† 0.306†

Autorank 0.218† 0.193† 0.252† 0.230†

CQads 0.337† 0.314† 0.355† 0.332†

VAGUE 0.323† 0.324 0.343† 0.343
LearnedMAUT 0.393 0.382 0.407 0.396

The models that accept single attribute values instead of ranges
(AIMQ, AutoRank, CQAds, MAUT variants, Tradeoff and VAGUE)
vary widely in their performance, despite their similarities. AIMQ,
AutoRank and CQAds did not use the user attribute prioritizations,
whereas VAGUE and SimpleMAUT did. However, further experimen-
tation showed that the user attribute prioritizations (versus uniform
prioritizations) convey only a slight advantage that was not statisti-
cally significant; thus we dropped user attribute prioritizations from

Table 7: Meal Plans: Searcher Success by Search Engine

Paradigm Win Rate Judge MRR

EnhancedMAUT 0.61† 0.65†

Faceted 0.44 0.17
Sorted Boolean 0.45 0.11

Table 8: Meal Plans: Head-to-Head

Enhanced Sorted
MAUT Faceted Boolean

54† 29
35† 18

23 25

the EnhancedMAUT /LearnedMAUT model. AIMQ and AutoRank
suffered because of their estimated attribute weights; replacing
these with uniform weights improved performance. In contrast,
LearnedMAUT was significantly better than other models in every
category (RQ1). Overall, the research baseline models suffered as
they did not have a way to adjust to new domains of application.
They did not learn from usage, either adjusting their parameters
based from an analysis of the corpus or from assumptions. This
may have worked in domains used in their development, but not
elsewhere. In contrast, we have trained and tested LearnedMAUT
in two disparate domains, with it performing well in both.

7 CONCLUSIONS
In this paper, we explored the retrieval of items solely by their
attribute values in two user studies conducted with Amazon Me-
chanical Turk. We proposed two models derived from multi-criteria
decision making theory, a basic model SimpleMAUT and an ad-
vanced version, EnhancedMAUT, whose model parameters were
tuned in a learning-to-rank framework, LearnedMAUT. We com-
pared these to the de facto explicit retrieval models, where the user
explicitly describes what to return and how to order it. We also
compared our methods to several implicit retrieval models found in
the literature, where retrieval and ranking is implied by the user’s
description of what is desired.

Our models outperformed these widely adopted explicit retrieval
models. We analyzed the performance of the explicit retrieval mod-
els to understand why they did not perform better. Applying con-
straints to limit the result set is hazard-prone; the mismatch be-
tween constraints and preferences often eliminates the desired
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items. Overall, users were more successful when providing an im-
plicit ranking rather than explicitly describing the result set (either
with constraints and sorting or by providing a utility function, as in
the Tradeoff model). This largely matches the findings of decades
of research in unstructured text retrieval, so retrieving items by
attribute may not be as different as presumed. Nonetheless, not all
implicit retrieval models are equivalent, in particular the MAUT-
based models outperformed these baselines in our experiments. The
baseline implicit models made different assumptions, notably in
normalization and weighting, that did not always hold in practice.

We were able to learn a better retrieval model using a pairwise
learning-to-rank approach, yet numerous possibilities remain. Anal-
ysis of query performance showed that underspecification was of-
ten the cause of poor retrieval performance, so enhancing retrieval
with universal preferences could improve results. Also, we learned
a global retrieval model, but personalized models and interactive
retrieval are also promising avenues. Finally, we assumed mutual
utility independence, but interaction among attributes should also
be explored.

We developed a multi-attribute utility model to solve a particular
problem, namely retrieving items by their attribute value. This is a
common task itself, but the framework we developed could be ap-
plied to other retrieval problems with multiple dimensions, such as
incorporating diversity or recency into document retrieval, match-
ing subgraphs in semantic search, and so on. Casting retrieval as
utility estimation provides a new way to think about the problem;
multi-criteria decision making offers a technique for combining
multiple evaluations; and our subutility functions translate raw fea-
tures into utility estimates, fitting a variety of possible preferences.
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