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Motivation
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Ground pressure signature from a low drag 
business jet concept, M=1.5              

(Wintzer et. al., NASA) 

Schlieren of a 
supersonic T-38  
(Heineck et. al., NASA) 

Propulsion effects are secondary when loud sonic-booms are acceptable



Low Sonic-Boom Design
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X-59 • Shaped pressure signature below aircraft: many shocks, but weaker and of similar strength

• Significant influence of inlet and nozzle exhaust: aft layout critical

• Mass flow rate, stagnation pressure recovery and flow distortion important parameters



Objectives
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Reliable evaluation of mass flow rates through permeable boundaries

• Estimate and control discretization error 
• Consider both computational domain outflow and inflow 
• Applicable to simulating propulsion-system effects, as well as secondary flow paths 
• Explore feasibility of handling more general outputs at domain boundaries

Design optimization subject to mass-flow-rate constraints

• Improve aerodynamic performance and reduce noise due to sonic boom 
• Control discretization error in design space to improve confidence in final designs



Approach & Background
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FLOW SIMULATION

• Steady Euler equations, perfect gas


• Cartesian mesh with cut cells

• Second-order, finite-volume 

discretization


- van Leer flux vector splitting

• RK4 with local time stepping, 

multigrid, and parallel computing
RH(QH) = 0

WALL BOUNDARY CONDITIONS

• Weakly enforced: form flux across 
boundary from boundary state 

• Slip wall:

• Permeable wall: F · n̂ = [0, p n̂, 0]T

Un = 0

Un 6= 0

OUTPUTS OF INTEREST

JH(QH)•Aerodynamic force and 
moment coefficients

GRA
CART3D SIMULATIONS FOR THE 2ND AIAA SONIC BOOM PREDICTION WORKSHOP
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Ground Signal

CFD Domain

Near-field
Signal

Altitude Atmospheric
Propagation

www.nas.nasa.gov/publications/software/docs/cart3d

•Mass flow rates

Jṁ =

Z

B
⇢UndA

Outflow Inflow

•Pressure at a point or along a line, 
equivalent area distribution

Q
Qb



Method of Adjoint Weighted Residuals
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Exact Solution

Approximate Functional

e

E

JH(QH)

Jh(Qh)

J (Q)

H h 

• Goal is to compute relative error

e = |Jh � JH |

• Then use asymptotic analysis to 
estimate total discretization error

• Key step is to reliably estimate 

Jh(Qh)

without solving on the fine mesh

E =

✓
1 +

1

rp � 1

◆
e

Refinement Ratio
Order



Method of Adjoint Weighted Residuals
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Exact Solution

Approximate Functional
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H
=

@JH(QH)

@QH

T

Linearize discrete flow residual and functional to obtain:

Adjoint equation:

• Large linear system

• Defined by the discrete flow residual and functional

‣ Includes all boundary conditions


• Converges to continuous adjoint equation in the fine mesh limit

‣ Adjoint inconsistent formulations can generate spurious 

oscillations near the wall



Adjoints of Permeable Boundary Conditions
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• Suitable for engine inlets, ECS intakes, secondary flow paths

• Specify exit pressure, all other quantities come from interior

Subsonic Outflow Subsonic Inflow

• Formulation assumes subsonic flow at boundary and uses one-dimensional Riemann invariants 

Q
Qb

pset Q
Qb

Tt,set

pt,set
Jṁ = ⇢b Un,b A

• Suitable for nozzle plenums, turbines, ECS vents

• Specify stagnation temperature and stagnation pressure

Qb =

2

664

⇢b
Un,b

Ut,b

pset

3

775 Qb =

2

664

⇢b
Un,b

0
pb

3

775



Adjoints of Permeable Boundary Conditions
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• Rank deficient matrix (rank three in 2D)


• Restricts choice of functionals on RHS to obtain a nonsingular system

‣ Mass flow rate output involves 3 free parameters that match matrix rank, 

preliminary analysis indicates that the adjoint system is well-posed


‣ Similar to slip-wall, where output must be a function of pressure because 
matrix is rank one


‣ Perform numerical study to examine near wall adjoint solution

Subsonic Outflow Subsonic Inflow
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Numerical Study: Near-Wall Adjoint Solutions
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x
y

Inlet Nozzle

Outflow BC

Inflow BC

• Subsonic, two-dimensional nacelle test case


• Specify exit pressure at the outflow of the inlet

• Specify stagnation temperature and pressure at the 

inflow of the nozzle

• Slip-wall boundary conditions everywhere else on the 

wetted surface


• Farfield is ~10 chords away  

M∞ = 0.65 

Test Cases

1. Measure mass flow rate at the outflow of the inlet

2. Measure mass flow rate at the inflow of the nozzle

Mach Contours
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Numerical Study: Near-Wall Adjoint Solutions

x-momentum

Adjoint 

y-momentum

Adjoint 

Test Case 1: Inlet Mass Flow Rate Test Case 2: Nozzle Mass Flow Rate 



Aerodynamic Shape Optimization
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subject to

R (X,Q) = 0 8X 2 ⌦

Modify Geometry

Initial Mesh

Evaluate Objective

Compute Gradient

Optimize

Adapt & Solve N Adaptive 
Cycles

• Gradient-based approach

min
X

J (X,Q)

dJ

dX
=

@J

@X
�  T @R

@X

• Mesh sensitivities confined to cutcells, triangulation 
connectivity and topology allowed to change

Adjoint Optimization Framework

Adjoint-based mesh 
adaptation part of shape 
optimization framework



Aerodynamic Shape Optimization
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Modify Geometry

Initial Mesh

Evaluate Objective

Compute Gradient

Optimize

Adapt & Solve N+1 Adaptive 
Cycles

Adjoint Optimization Framework

Modify Geometry

Initial Mesh

Evaluate Objective

Compute Gradient

Optimize

Adapt & Solve

Progressive Optimization

subject to

R (X,Q) = 0 8X 2 ⌦

• Gradient-based approach

min
X

J (X,Q)

dJ

dX
=

@J

@X
�  T @R

@X

• Mesh sensitivities confined to cut cells, triangulation 
connectivity and topology allowed to change



Results
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1. Verification


• Two-shock diffuser


2. Analysis


• LBFD prototype example


3. Optimization


• Supersonic Nozzle Shape Optimization



Mass Flow Verification Test
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M∞ = 2 

M2
p2
ρ2

M1, p1, ρ1

Outflow 
B.C.

St
ro

ng
 S
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ck

Weak S
hock

J = ṁ

Ac

• 2D test case that mimics a supersonic inlet

• Two shock system with no spillage at upper lip


- 5° wedge

- Analytic outflow exit pressure specified


• Exact mass flow rate independent of flow state inside inlet

• Slip-wall on wetted surface except for inlet outflow

Two-Shock Wedge

Mach Contours



Flow and Adjoint Solutions
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Mach Contours Density Adjoint



Uniform Refinement
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Adaptive Refinement
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Adaptive Refinement
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Adaptive Refinement
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Adaptive Refinement

!21

103 104 105 106 107
Cells

-3.5

-3

-2.5

-2

-1.5

lo
g 1
0(
Er
ro
r)

Uniform
Adaptive

Adaptation Cycle: 3



Adaptive Refinement
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Adaptive Refinement
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Adaptive Refinement
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Adaptation Convergence History
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X-59 / LBFD Prototype Test Case
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• Typical analysis case: M=1.4 and α = 2.05°


• Assess accuracy of simulations with and without 
mass-flow-rate outputs


• 3 inlets and 4 exhausts

• Specified exit pressure outflow and stagnation 

conditions for inflow

Tail 
Base 
Vent

Main 
Exhaust 
Nozzle
Under 
Nozzle 

Vent

• Adaptation functional is a combination of 
off-body line sensors and mass flow 
rates J = wlJl + wṁJṁ

Jl =

Z L

0

✓
�p

p1

◆2

ds Jṁ =

Z
⇢UndA



Adapted Mesh for Multiple Sensor Locations 
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Final Mesh: ~144 M cells



Output Convergence
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Comparison of Flow Solution and Mesh
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Main 
Inlet

Main 
Inlet

Density Contours

No Mass-Flow-Rate Functional With Mass-Flow-Rate Functional



Supersonic Nozzle Shape Optimization
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Dual-Stream Supersonic Spike Nozzle

• M=1.4

• 2 inflow boundaries: hot core stream and cooler bypass stream

• Goal is to maximize thrust and minimize nearfield shock disturbances 

subject to fixed mass flow rates



Design Variables
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•Design Variables: 7
•Fixed length and minimum radii bounds



Initial Mesh and Computational Domain
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Final Mesh for Baseline Design
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• Each design iteration 
uses 8 mesh adaptations


• Final mesh ~ 20M cells

• Adaptation functional is 

sum of thrust, mass flow 
rates, and line sensor



Optimization Convergence History

!34

Design Iteration
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Baseline optimization: Maximize Thrust



Maximize Thrust
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Several strong shocks in nearfield from cowl, shroud and spike tip 



Maximize Thrust and Eliminate Aft Shock
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Shock-free at spike tip, but thrust reduced by 2.7%



Maximize Thrust and Attenuate All Shocks
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Weak boat-tail and spike-tip shocks, and thrust within 1.7% of baseline



Comparison of Pressure Signatures
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Conclusions
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• Adjoint consistent implementation of permeable boundary conditions 
• Numerical studies show no spurious oscillations in the near-wall adjoint 
• Verification test problem demonstrates convergence to the exact solution at the expected rate 
• Specifying mass-flow-rate outputs in practical, low-boom simulations significantly improves 

prediction of these outputs without compromising pressure-signature accuracy

Reliable evaluation of mass flow rates at permeable boundaries

New capability to handle design optimization problems subject to mass-flow-
rate constraints 

• Efficient reuse of adjoint solutions and error control in low-boom shape optimization

Next step: Investigate adjoint consistency of more general outputs, e.g. total pressure 
recovery and flow distortion
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