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ABSTRACT 

Since electrons travel over 100 times faster in Silicon-Germanium (SiGe) than in pure Si due to the low effective 

masses associated with Ge and SiGe-based devices continue to replace Si-based solid-state electronic devices. 

SiGe thin film on sapphire was successfully grown at 890oC, using a magnetron sputtering system within 

heteroepitaxial framework. However, SiGe growth at 890oC is a costly and difficult process to produce as a 

uniform wafer for semiconductor device manufacturing due to thermal soak times, and geometric thermal 

shadowing from the wafer holder. To leverage the semiconducting capabilities of SiGe, novel processing 

techniques for SiGe film growth with decreased thermal loading are required. 

This paper introduces the Molten Target Sputtering (MTS) method that produces high mobility SiGe on 

sapphire below 500oC. This non-conventional method has the advantage of high kinetic energy, high-energy 

latency, and high flux density of sputtered atoms by combining benefits of both magnetron sputtering and 

thermal evaporation. For the MTS method, a 1~2 mm (depth and width) ring-shaped groove was cut between 

the center magnet and surrounded by electromagnets creating a circular cavity between the copper plate and 

source target materials that melt the target material. The SiGe grown from the MTS shows continuous 

morphology and 99.7% single crystal Si0.15Ge0.85 films.  The Hall electron mobilities of the Si0.15Ge0.85 are 456 

cm2V-1s-1 and 123.9 cm2V-1s-1 at 5.59 x 1018 cm3 and 3.5 x 1020 cm3 carrier concentration at 22.38oC, respectively. 

This is approximately 5.5 times higher than that of Si and similar to the Ge value at equivalent carrier 

concentrations and temperatures.  

Keywords: Molten Target Sputtering, non-conventional method, high mobility SiGe, below 500oC substrate 

temperature 
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 The demand for high-tech devices such as smart phones, tablet PCs, security systems, and other advanced 

electronic hardware relies on high-speed processors for computing. The performance of traditional silicon chips scales 

by fitting more and more transistors into a constant area or volume of silicon. However, there is a limit to the amount 

of usable structure that can be incorporated into a silicon wafer.  Therefore, a new paradigm is needed to continue to 

improve the performance of solid-state electronic devices. One promising concept is to use silicon-germanium (Si1-

xGex) alloys to make the next generation CPUs. High Ge composition ratio single crystal Si1-xGex on a dielectric 

substrate is a promising material for high-speed electronic devices including heterostructure bipolar transistors (HBT) 

for high-speed computing and high electron mobility transistors (HEMT) [1-3].  Although SiGe can theoretically 

provide semiconductor devices with better performance than Si-based devices, fabricating high quality SiGe is 

technically challenging. For example, the low Ge-content Si1-xGex layers, islands, or twin crystal structures reduce 

electron mobility beyond that of single crystal Si. This is due to the voids and grain boundaries from lattice 

mismatching between the substrate and the host materials that slow the charge carrier movement below that of quality 

Si single crystal films [4,5]. Recently, researchers have demonstrated 99.9% single crystal [111] Si0.15Ge0.85 films on 

trigonal c-plane sapphire substrate in continuous and smooth morphology [6]. The growth process is described in 

detail in the Appendix. However, the film growth requires high operational temperature to energize the cubic SiGe 

structure enough to be rotated and deformed into strained cubic anchored on a trigonal substrate of sapphire. A new 

method to grow such a super heteroepitaxy at a lower substrate temperature has been implemented by energizing the 

atoms in flux allowing for reduction of the substrate temperature to a moderate level, below 500oC. The sufficiently 

energized atoms provide the essential energy needed for the epitaxy process, which deforms the original cubic 

crystalline structures into a strained structure by physically aligning the crystal structure of both materials at a lower 

substrate temperature. The newly developed method differs from conventional method. 

Molten Target Sputtering for single crystal SiGe on sapphire at 500oC 

The requirement of Ge melt over the 890oC substrate temperature hinders the widespread application of SiGe 

because of issues related to geometric thermal shadowing from the wafer holder and total processing time. In order to 

continue to improve semiconductor quality, novel processing technique for producing the SiGe film with less thermal 

loading and shorter times is required. The novel processing technique needs to be a different method of providing 

sufficient energy to the incoming atoms. Since the energy imparted to atoms determines their kinetic energy and 
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elevates the energy latency for the degrees of freedom to readily reconfigure when they arrive at a substrate, it is 

important for these atoms within a diffusion plasma to be preloaded with sufficient energy.  

This paper describes the Molten Target Sputtering (MTS), a new method to realize the high deposition rate 

of continuous high Ge-content Si1-xGex films on sapphire substrates with 500oC substrate temperature, from the Ge 

being in the melt-state, while Si is not. The fundamental concept of MTS is described as follows. During conventional 

magnetron sputtering, evaporation can be created using a thermal-isolated target from cooling elements of the 

sputtering gun assembly. When the thermal energy that is released in the surface layers under the plasma is kept in the 

target and the energy is enough to melt the target, an intense evaporation is occurred. The evaporation-involved 

sputtering from the molten target enables enhancement of diffusion mobility of atoms, which results in an 

improvement of surface morphology from the high power density of molecules (≤ 55W/cm2 (cold target), 55~75W/cm2 

(hot target), and ≥ 75W/cm2 (molten target)) compared to the conventional sputtering with solid target [7-9]. The MTS 

provides a high deposition rate of the coating, through the high flux density of Ge molecule during evaporation are 

evolved from the target more effectively than by sputtering, because the MTS is uses ionized molten target to get 

benefit from both sputtering and evaporation [Supporting Information 1].  

 

Figure 1. Side and top view schematics of conventional magnetron sputtering and modified magnetron  

Molten Target Sputtering (MTS) gun. (a) conventional magnetron sputtering: side view (a-1) and top-view (a-2) 
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of conventional magnetron-sputtering gun. (b) molten target sputtering: side view (b-1) and top-view (b-2) of the 

MTS gun. The top-view of MTS gun shows a ring groove for the partial heating of the target material.  

 

Figure 1 depicts  the side and top views of conventional magnetron sputtering (a-1, a-2) and the modified magnetron 

sputtering gun used to melt the Ge source target (b-1, b-2). The physical difference between the two guns is the ring 

groove on the copper heat sink plate. This modification on the gun from the thermal-isolation allows the solid target 

material to melt, so the new system is named Molten Target Sputtering (MTS). For the MTS method, the ring-shaped 

groove (marked by yellow) with the dimension of 1~2 mm both in depth and width was cut between the magnets in 

order to keep a gap between the copper plate and the sputtering source target as shown in (b-1) and (b-2). The heat 

increases on the target material surface from this gap because of the conduction passage of the thermal energy to a 

water-cooled copper sink removed by the void (yellow) below the target. Accordingly, the target surface is additionally 

heated and melts. The magnetic arrangement, where one pole is positioned at the central axis of the target and the 

opposite pole is circumferentially placed around the outer edge of the target, confines the electrons along the magnetic 

flux lines near the target (figure 1 (a-2) and (b-2)).  The Si1-xGex composition ratio depends on the DC power applied 

to each sputtering gun, and the ratio of constituent fluxes remains stable and consistent during the deposition indicated 

by thickness monitoring. The reduced thermal mass of the target material also works to keep the target surface in a 

molten state. Through numerous tests, it was found that the target with less than 3~5mm thickness works better to 

melt the surface. 

The ring groove in the new gun design improves not only (1) the flux density but also (2) the kinetic energy of 

molecules at the target. By raising the temperature of the target materials, (1) the number of detached atoms and 

molecules from the target is increased, and (2) the detached atoms gain more energy from the molten target materials 

than was achieved with the conventional sputtering process. The ring-shaped groove between magnets traps a portion 

of the magnetic field, providing additive force to eject the ionized particles within the plasma, resulting in an increase 

in kinetic energy versus the conventional sputtering process.  
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Figure 2. Target material differences between the conventional magnetron sputtering and the molten target 

sputtering. Photo of plasma from general sputtering on solid target inside the sputtering chamber (a-1). Photo of the 

sputtered solid target with a trace (indicated by arrow) after the conventional magnetron deposition (a-2). HRTEM 

image of the sputtering target after the conventional sputtering process (a-3). Photo of plasma from the molten target 

inside the sputtering chamber (b-1). Photo of the molten and solidified target with plasma trace and irregular shape 

(indicated by arrow) after the molten target sputtering process (b-2). HRTEM image with the twin crystal structures 

(indicated by arrow) from the molten target sputtering process (b-3). 

 

Figure 2 shows target material differences between the conventional magnetron sputtering and the molten target 

sputtering. The plasma ring around the magnet equator from the molten sputtering target (b-1) looks heterogeneous 

versus the conventional process (a-1) and the wavy zone of target is indirect evidence of the liquid state of the target, 

and the high flux density of molecules. The deposition rate from the molten target sputtering was approximately 10 

times higher than the conventional sputtering from the solid target, and was monitored by a thickness monitor during 

the deposition. This was the direct evidence that the liquid state of the target had higher flux density of molecules than 

the solid target [Supporting Information 2]. The sputtered target in (a-2) shows a trace of solid target after the 

conventional magnetron deposition. The glow discharge plasma stabilized with the assist of the circumferential 

magnetic field from the imbedded magnets inside the copper heat-sink. The target from the molten sputtering in (b-2) 
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shows a mixture of the plasma trace and irregular shape as indicated by the yellow-arrow. The plasma trace on the 

molten target comes from the recycled solid target after the conventional sputtering process before the molten process.  

The deposition rate of the SiGe film increases by increasing target power density, which is connected to the heating 

of the sputtered target.  The cold target with 1/8” thickness of the Ge target material is gradually converted to a hot 

target, and to a molten target as target power density increases: ≤ 55W/cm2 (cold target), 55~75W/cm2 (hot target), 

and ≥ 75W/cm2 (molten target) [8-10]. The high-resolution transmission electron microscopy (HRTEM) image of the 

Ge target from the molten target sputtering process shows twin crystal structures as indicated by yellow-arrows (b-3) 

which is not shown in the target from the conventional sputtering process (a-3) [Supporting Information 2 and 3]. 

As shown in these photos, the molten target material releases more high latency atoms that carry sufficient energy 

towards the substrate for facilitating the formation of a modified crystal structure, from a cubic to a strained structure 

until fully relaxed.  
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Figure 3. Crystallinity of SiGe on sapphire (Al2O3) film grown by molten target sputtering. Photo of SiGe with 

mirror-like surface (a-1) and cross-section of SEM image of the same sample (a-2). Symmetric θ-2θ XRD scan 

shows only the SiGe (111) reflection at 2θ ~27.6 degrees along with the Al2O3 (003), (006), (009), and (0012) 

reflections (b-1). SiGe (220) scan shows three strong reflections (offset by 120 degrees) with three small reflections 

rotated 60 degrees from them indicating greater than 99.7% in-plane orientation of the SiGe (b-2), and sapphire 

(101�4) scan show three strong reflections (a-3). HAADF (High-Angle Annular Dark-Field) image of the SiGe and 

sapphire interface (c-1). ABF (Annular Bright Field) image of the SiGe and sapphire interface (c-2). 

 

Figure 3 (a-1) shows the photo of wafer with a mirror-like surface. The SiGe on Al2O3 was a continuous smooth film 

as shown in Figure 3 (a-2). X-Ray diffraction (XRD) data of these highly single crystalline (>99.7%) SiGe layers on 

c-plane sapphire wafers are shown in figure 3 (b). A symmetric θ-2θ scan, which probed the surface normal direction 

of the sample, showed only the SiGe (111) reflection at 2θ ~27.5 degrees along with the Al2O3 (003), (006), (009), 

and (0012) reflections [Supporting Information 4]. No other SiGe reflections, such as the (220), (311), or (400), 

appeared in the symmetric scan, verifying that all of the crystallites were oriented in the [111] direction. The in-plane 

orientation of the crystallites was measured with a scan of the SiGe (220) reflections. Three strong reflections, offset 

by 120 degrees in the scan, indicated the majority in-plane orientation of the SiGe with three small peaks indicating 

the 60 degrees rotated (twinned) minority in-plane orientation. The majority percentage of the SiGe crystallites was 

determined by comparing the integrated areas under each peak. Single crystalline SiGe layers greater than 99.7 percent 

were fabricated in these growth runs according to these XRD measurements shown in Figure 3. 4k x 4k STEM images 

(figure 3 (c)) provide a field of view with high resolution detail of no twin and highly crystalline SiGe film grown on 

c-plane sapphire. The epitaxial relationship between the SiGe film and the sapphire structure is (111) SiGe // (0001) 

Al2O3 and [011] SiGe // [011�0] Al2O3. 
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Figure 4. Composition ratio of SiGe on sapphire (Al2O3) film grown by molten target sputtering. 

Quantitative STEM-EDX mapping (a) and line scan of EDX mapping of SiGe film (b). Si and Ge uniformly 

distributed in the film and 85% of Ge concentration confirmed by EDX line profile of the film. Total EELS signal of 

SiGe film (c) o Si K edge is visible from the total EELS signal due to fast acquisition and relatively lower 

concentration of Si. 

 

Figure 4 (a) and (b) show the TEM mapping and quantitative line scan of STEM- Energy Dispersive X-ray (EDX) 

mapping. The mapping shows the Si, Ge, Al, and O elements and homogenous SiGe with 85% of Ge concentration 

[Supporting Information 4]. The total EELS signal of the SiGe film shows no Si K edge due to fast acquisition and 

relatively lower concentration of Si (c). 

 

Figure 5. Mobility, carrier concentration, and resistivity of SiGe film. (a) Hall electron mobility (µ) as a 

function of temperature (both heating and cooling) for three samples with different amount of boron (B) doping 
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(denoted SiGe 1, SiGe 2, and SiGe 3). (b) Carrier concentration (n) as a function of temperature for the same three 

samples. (c) Resistivity of the same three samples as a function of temperature. 

 

Figure 5 shows the Hall mobilities, carrier concentrations, and resistivities as a function of temperature, both heating 

and cooling, and boron doping concentrations. The highest mobility, 456 cm2V-1s-1 at 22.38ºC occurs for a carrier 

concentration of 5.59 x 1018 cm-3. This mobility is about 5.5 times higher than that of the Si given by Masetti et al and 

similar to the Ge value at equivalent carrier concentrations in Figure 5 (a) [11-13]. Both hole mobility and resistivity 

of (1) 3.5 x 1020 cm3 carrier concentrations are 123.9 cm2V-1s-1 and  0.146 mΩcm, (2) 6.11 x 1019 cm3 carrier 

concentrations are 214.4 cm2V-1s-1 and  0.296 mΩcm, (3) 5.59 x 1018 cm3 carrier concentrations are 456 cm2V-1s-1 and  

1.36 mΩcm at 20ºC, respectively as summarized in Table 1. 5.59 x 1018 cm carrier concentration SiGe film exhibits a 

gradual decrease with increasing temperature but not the two other samples with higher carrier concentration. This 

may imply that carrier mobility is independent of temperature in the heavily impurity-doped SiGe with such relatively 

high Ge contents. There was no success in measuring the Hall mobility of SiGe films grown by the conventional 

sputtering at 500oC, due to discontinues film morphology. 

Table 1| Hole mobility and resistivity based on the carrier concentration 

 

It is not possible to compare the hall mobility with films grown by a conventional sputtering system at an identical 

substrate temperature, 500ºC, because of the difficulty in measuring this value due to discontinuities in film 

morphology. The high Hall mobility of SiGe grown by MTS is further evidence for low defect densities and smooth 

film surface. Figure 5 (b) shows the carrier concentrations as a function of temperature for the SiGe films. The slight 

increase in carrier concentration up to 400ºC has been observed for 6.11 x 1019 cm3 boron-doped SiGe samples only. 

The concentrations of the low and high impurity-doped crystals are almost independent of temperature up to 400oC.  
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CONCLUSIONS 

Single crystal SiGe on sapphire was grown at high substrate temperatures, 890oC, to get the structure deformation 

energy of SiGe to align on the sapphire substrate. This process requires long thermal loads and long soak times of the 

substrate at high temperature, making this impractical for commercial mass production. In order to continue to improve 

semiconductor performance and efficiency from the advantage of high mobility of SiGe films, novel processing 

techniques for producing the SiGe film with less thermal loading effort are required.  

From the previous research, both substrate temperature and power for the magnetron gun are the important variables 

for single crystal SiGe on sapphire substrates for straining the cubic structure to match to the sapphire substrate and 

high deposition rate of molecules under heteroepitaxy growth. A new film deposition method, Molten Target 

Sputtering (MTS), provides high deposition rates of the coating from a high flux density of Ge molecule, during 

evaporation are evolved from the target more effectively than by sputtering because the MTS is not evaporation but 

also ionized evaporation.  

The SiGe grown from the MTS shows continuous morphology and 99.7% single crystal Si0.15Ge0.85 films.  The Hall 

mobilities of the Si0.15Ge0.85 are 456 cm2V-1s-1 and 123.9 cm2V-1s-1 at 5.59 x 1018 cm3 and 3.5 x 1020 cm3 carrier 

concentration at 22.38oC, respectively that is higher than that of the Si and similar to the Ge value at equivalent carrier 

concentration and temperature.  

The MTS can be applied for heteroepitaxy framework film growth that requires a high substrate temperature for 

structure deformation to match to the substrate lattice parameter. 
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METHODS 

Sample preparation and film deposition: A 2-inch c-plane sapphire substrate (1-side polished, MTI Corporation) 

was cleaned to obtain a surface without native oxide layer or organic and inorganic contaminants, such as the chemical 

mechanical polishing (CMP) slurry by using acetone (ACS grade), iso-propanol (ACS grade), and deionized water 

sequentially before deposition. The cleaned sapphire wafer was loaded on a molybdenum wafer holder with the epi-

ready side facing downward in the bottom-target design sputtering chamber. The wafer was preheated by using a PBN 

/ PG (Pyrolytic Graphite) ceramic heater (Momentive Inc.) through two-steps (200°C and 1000oC) at the base pressure 

of the sputtering chamber, 1 x 10-6 Torr. The sapphire wafer was baked at 200°C for 20 minutes to remove water 

vapor, any volatile contaminants, and native oxide layer. After this, the wafer was heated to 1000oC for another 60 

minutes to desorb any oxygen atoms [14,15]. To prevent thermal shock and wafer cracking, the substrate ramped to 

1000°C with the increment of 5°C/minute. The pressure for the SiGe film deposition was 7mTorr with a 5 sccm of 

high-purity, research grade Ar (99.9999%) flow. The Si (undoped, 99.999%, Kurt J. Lesker) target-loaded magnetron 

gun ran at 200W and Ge (n-type, 5-40 Ω·cm, 99.9999%, Kurt J. Lesker) target with 3~5 mm thickness was melted by 

the MTS process. The Si target shutter opened for 5 minutes for the pre-sputtering of the initial Si-rich monolayers of 

SiGe, and was followed by the opening of the Ge shutter.  For the mobility test, the boron target with 1~3W RF power 

was co-sputtered during the SiGe film deposition process, which resulted in heavy doping above 1019/cm3. During the 

30 minutes deposition, the growth rates of both Si and Ge were monitored from the quartz thickness monitor (Maxtek, 

Inc.) as 0.7 Å/minutes and 10 Å/minute, respectively. 
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Photography and SEM: The photography images were taken by using a Canon Powershot SD400 5MP Digital Elph 

Camera. The SEM cross-section of SiGe on sapphire was taken from the SEM (JSM-5800). 

XRD characterization: The SiGe film was scanned with a Panalytical X’Peret Pro XRD system along the 2θ-ω and 

phi (Φ) scan. The vertical atomic alignment was measured with a symmetric 2θ-ω scan, which probes the surface 

normal direction from 5 to 120o to establish overall film quality. The majority percentage of the SiGe crystallites was 

determined by comparing the integrated areas under each peak. The Φ scan is parallel with the (111) SiGe surface 

normal, and each scan completed one whole revolution of the wafer at a constant position designed to find all the 

{220} reflections. A similar Φ scan is done with the sapphire (0001), parallel with the (111) SiGe surface, to find all 

the {101�4} reflections [16-18]. A high quality SiGe film will have three peaks in the SiGe scan, corresponding to the 

three {220} planes in the film. The presence of six peaks, 60° offset from one another, corresponds to two twins, 

rotated 60° with respect to one another, each with three {220} reflections. Relative peak heights of these twins are 

compared to determine how much of each twin exists in the SiGe film. 

TEM sampling and TEM characterization: TEM samples were prepared using a FEI Quanta 3D FEG focused ion 

beam (FIB) [19]. The interface between SiGe and Al2O3 was characterized using an FEI Titan 200kV TEM. An 

aberration-corrected scanning transmission electron microscope (STEM) equipped with a high-angle annular dark 

field (HAADF) detector and an annular bright field (ABF) detector, and an energy-dispersive X-ray spectroscopy 

(EDX) were used to analyze the atomic structure of SiGe specimen. All the TEM images and EDX mapping images 

were collected using a 200kV acceleration voltage. The STEM image was obtained with an 18 mrad convergence 

angle using 50µm C2 aperture. The HAADF STEM image was developed using Fischione HAADF and FEI DF4 

detectors. The ABF STEM image was obtained using a combination of FEI DF4 / DF2 detectors after adjusting the 

suitable camera length. The EDX was used to detect the chemical element distribution of the SiGe / Al2O3 interface. 

In this method, a coherent focused probe scanned across the specimen, and the resultant x-ray emission spectrum was 

recorded at each probe position. These spectra were then used to construct an elemental line scan. The acquisition 

time for a <112> zone-axis of SiGe on sapphire EDX mapping was 11 minutes under a 512 × 512 pixel image size, 

250pA beam current, and spot size of 6. The Electron Energy Loss Spectroscopy (EELS) has been performed over a 

range of 400 ~ 2300eV. 
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Hall-effect measurements: The Hall mobility, carrier concentration, and resistivity were measured as a function of 

temperature from room temperature, 20ºC to 400ºC using a Physical Property Measurement System (Quantum Design) 

at the NASA-JPL thermoelectric laboratory [20,21].  A square shaped van der Pauw geometry sample (10mm x 10mm), 

with ohmic contact (<1mm x 1mm) at the sample corners, was used for the measurement, under a reversible 1 Tesla 

magnetic field. 

APPENDIX 

Single crystal SiGe on sapphire at 890oC from magnetron sputtering: NIA / NASA researchers exhibit best 

practice 99.9% single crystal Si0.15Ge0.85 films in continuous and smooth morphology [6]. A conventional magnetron 

sputtering system was used for the Si0.15Ge0.85 film growth at a 890 oC substrate temperature, with 200W DC 

(~40W/cm2, cold target) power supplied to both solid Si and Ge source target, respectively. At an 890oC temperature 

under 7mTorr working pressure, the Ge on the substrate was melted and. Based on the data analysis of the previous 

work, several key factors for high mobility SiGe film growth were found [Supporting Information 5]. One of the 

crucial factors for a successful formation was structure deformation of SiGe from cubic to a strained structure [6,16,22-

23]. This strained structure is created from the increase in, lattice spacing distance of SiGe while maintaining the cubic 

crystal structure after the first Si-rich layer on SiGe film aligns over the O-terminated Al2O3 substrate. Recently, the 

thermal expansion calculations between SiGe and Al2O3 substrates show that SiGe can form single crystal films in the 

450-550oC temperature range, along with increased DC power up to 600W (~59W/cm2, hot target) and the 500oC 

substrate temperature was chosen as starting substrate temperature for this work [22]. The single crystal structure of 

SiGe was verified by x-ray diffraction (XRD) but atomic force microscope (AFM) images show the film is inferior to, 

which is another important factor for device application for high mobilities. From these facts noted from the previous 

research, (i) molten Ge from the higher than 850oC substrate temperature along with the (ii) high deposition rate (flux 

density) of Ge source target (higher than 200W, ~40W/cm2 power density) are important parameters for uniform / 

continuous single crystal Si0.15Ge0.85 film growth. Especially, the previous work describes the thermal dynamic energy 

required for [111]-axis SiGe structure deformation from diamond cubic to strained cubic structures to align with the 

[0001]-axis of the trigonal structure sapphire. Without the Si and Ge structure deformation, undesirable twins and 

dislocations generate from the dissimilar crystal structure and the deformation energy comes from the heated substrate 

of 890 oC, especially with the high Ge-content [7,24-25].  
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Supporting information 1. 

Molten Target Sputtering (MTS) deposition has special features such as enhanced kinetic energy and flux of ionized 

atoms.  The following are comparisons with between magnetron sputtering, MTS, and thermal evaporation, with the 

advantages of MTS highlighted;  

1. High kinetic energy of molecules: The electron mobility of molecules from the MTS are higher than the ones from 

the conventional sputtering (5eV) and similar to the thermal evaporation (50eV) ones. The high molecular mobility 

from the MTS would improve the deposited film quality [1,2]. 

2. High flux density of molecules: MTS generates high plasma density as more electrons come out from the molten 

target than the solid target. As a result, the deposition speed would be increased from the MTS compared to the 

conventional sputtering and similar to the thermal evaporation. 

The deposition rate from the cold target is controlled by sputtering from the hot target by the combined action of 

sputtering and sublimation, and from the molten target mainly by evaporation [3]. This is the reason why the deposition 

rates of the coating deposited from the hot and molten targets are higher than that of the coating sputtered from the 

cold target. The highest deposition rate of the coating is achieved in the evaporation from the molten target. The 

deposition of coating from the molten magnetron sputtering is not limited to evaporation, ionized evaporation also 

occurs since evaporated atoms pass through a magnetron discharge in order to be effectively ionized [3]. Both hot and 

molten targets are a subject of intensive development in numerous labs as the new sputtering systems have yet to be 

mastered [3].  

3. Assist the substrate heating: The energy of the ejected electrons from the sputtering target follows the gun power 

on the metal target. For example, when 400V is applied to the Ge target during the deposition, individual electrons 

from the target also contain 400V and move to the substrate along with the Ge molecules for film deposition. The high 

voltage electrons from the MTS assists the substrate heating and ultimately improve the film quality. 

4. Ionized atoms: The molecules from the MTS are ionized atoms from the plasma; this is not the same as thermal 

evaporation 
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Supporting information 2. 

 

Figure (a-1) and (b-1) are images of the Ge target after sputtering. (a-1) shows the circular groove on the Ge target 

from the plasma during the conventional sputtering. (b-1) shows uneven shape of Ge target from the MTS. (a-2), (a-

3), (a-4) are the SEM and TEM images of the solid Ge target from a conventional sputtering system and (b-1), (b-2), 

(b-3), and (b-4) are the SEM and TEM images of the Ge target from the MTS. The TEM samples were prepared by 

focused ion beam (FIB) lithography. The surface of the solid target from the conventional magnetron sputtering is 

rough and has steps like figure (a-2). On the other hand, figure (b-2) shows the molten target surface is smooth. Figure 

(a-5) and (b-5) show the HRTEM image of the Ge targets from the conventional sputtering and MTS, respectively. 

Figure (b-5) shows the twin lattice and stacking faults in the Ge target and supports that the Ge target was melted and 

then solidified.  
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Supporting information 3. 

 

EDX mapping of Ge targets after sputtering by using (a) the conventional system and (b) the molten target system 

(MTS). (a-1) and (b-1)  are HRTEM HAADF images of the Ge targets from the conventional and MTS systems, 

respectively. Element mapping of Ge (a-2 and b-2), O (a-3 and b-3), C (a-4 and b-4) and combined Ge / C / O. The 

composition ratio is the same between the Ge targets from both conventional sputtering and the molten target 

sputtering. Both have oxide layers on the Ge target surface. 
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Supporting information 4. 

 

X-ray diffraction (XRD) 2θ-Ω scan of SiGe (red line) and Ge (black line) grown on the sapphire substrate. By 

increasing Ge content the (111) diffraction peak in Si1-xGex progressively shifts to lower angles from that of Si in 

comparison with Ge. The variation in lattice constant follows the general trend of bulk Si1-xGex in Vegard limit [4,5]. 

These results confirm appropriate alloying of Si and Ge in the SiGe film. The sample has the composition of Si0.15Ge085. 
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The following pertains to the research performed by the author and associates at the NASA Langley Research Center 

/ National Institute of Aerospace which motivated development of the Molten Target Sputtering technique. 

 

(1) Reference: “Rhombohedral epitaxy of cubic SiGe on trigonal c-plane sapphire”, Y. Park et al, J. Crystal Growth, 

310, 2014-2731 (2008) 

Highly [111]-oriented rhombohedral hetero-structure epitaxy of cubic SiGe semiconductor on trigonal c-plane 

sapphire was characterized by X-Ray Diffraction (XRD).  

 

- In order to promote continuous single crystal Si0.15Ge0.85 film growth on c-plane sapphire substrate the substrate 

temperature has to exceed 850 o C substrate temperature, have 200W DC power for both Si and Ge source target, and 

7sccm Ar flow with 5mTorr working pressure. 

- The orientation relationship between Si0.15Ge0.85 and Al2O3 is (111)SiGe || (0001)Al2O3, [011]SiGe || [011�0]Al2O3  

- Both the single and twin SiGe (111) had 60o rotated orientations.  The type of twin formed varied between the 

evaluated 820oC and 890oC fabrication temperatures.  The volume percentage of the twins depended on the magnetron 

sputtering power. 

- Increasing the sputtering target power from 150W to 300W with a 820oC substrate temperature, the Full Width Half 

Maximum (FWHM) intensity was decreased, SiGe (111) peak intensity increased, and twin intensity was increased. 

- By increasing the substrate temperature from 820oC to 850oC at 200W DC power, the ratio of single orientation 

increased, switching the ratio of the majority from twin to single  

- Both the substrate temperature and Si and Ge source target power respectively determine the type of the twins and 

volume percentage of dominant twins. 

- In order to fabricate high single dominant with low FWHM, 200-300W DC power and a substrate temperature of 

>850oC are required, as well as a smooth surface (111) Si0.15Ge0.85 film on (0001) Al2O3 (c-plane sapphire) substrate  

 

 (2) Reference: “Temperature dependence of crystalline SiGe growth on sapphire (0001) substrates by sputtering”, 

H.J. Kim et al. J. Crystal Growth, 353, 124-128 (2012) 



23 
 

The type of twin formed at the two temperatures, 820°C and 890°C varied.  The early and final stage morphologies 

affected by the substrate temperatures from the Scanning Electron Microscope (SEM) and Transmission Electron 

Microscopy (TEM) characterizations are given below; 

 

- At a substrate temperature of 820ºC, (1) early stage of film growth, each island has its own orientation. At the final 

stage (2) of the film growth, two non-connected islands with 60o twin relationship have formed. 

- With the substrate temperature higher than 850ºC, (1) early stage of the growth has two islands with 60o twin 

relationship. A the final stage (2) of the growth, the ratio of the twins was decreased and the surface morphology 

became smooth without voids or noticeable boundaries 

- The volume of twins was suppressed by increasing the growth temperature from 820oC to 890oC at 200W DC power. 

This also improved the crystalline morphology.  

 

(3) Reference: “Low temperature rhombohedral single crystal SiGe epitaxy on c-plane sapphire”, A. J. Duzik et al., 

SPIE proceeding volume 9802, Nanosensors, Biosensors, and Info-Tech Sensors and System, 98020D, (2016) 

A new model showed that both pure Ge and SiGe can form single crystal films at the 450-550°C substrate temperature 

based on thermal expansion calculations.  Single crystal Si0.15Ge0.85 was grown at a 500°C substrate temperature and 

600W DC power of the Si and Ge source target.  However, the final stage film did not show a continuous film, instead 

forming island morphology.  

 

(4) Reference: “Lattice-alignment mechanism of SiGe on Sapphire”, Hyun Jung Kim et al., Acta Materailia, accepted 

(2017) 

After the atomic layers of the unstrained Si-rich SiGe form on the sapphire interface, the Ge concentration increases 

modestly and the unstrained form of cubic structures turns into a strained structure up to the Ge concentration uniform. 

Finally, the lattice spacing distance of Si0.15Ge0.85 reaches normal level and the strain is relaxed.  

 

 (5) Summary from the previous work 



24 
 

  

Zinc-blende or cubic structure of materials like Si and Ge cannot be structurally settled as a regular formation of 

crystal on the trigonal structure of sapphire substrate due to lattice constants mismatch. Forming SiGe with twins on 

the sapphire substrate is normal. Nevertheless, we growth nearly single crystal Si0.15Ge0.85 on sapphire from the 

heteroepitaxy framework. 

The clean sapphire substrate without native oxide layer and the first Si-rich layer of SiGe film align to the O-terminated 

Al2O3 substrate, which is the first step for Si0.15Ge0.85 film growth. After that, structure deformation of SiGe from cubic 

to strain structure is crucial for a successful formation of heteroepitaxy. Single crystal growth of epitaxy materials 

requires a certain amount of energy that triggers a deformation process of the shape of cubic and zinc-blende structure 

into a strained structure which then aligns the deformed structures on the Si-O bonded layers for SiGe formation, 

especially for high Ge concentration SiGe film. 

Based on the data analysis of the previous work of the team at NASA LaRC / NIA, the (i) substrate temperature must 

be higher than 850oC for Ge melt and (ii) magnetron DC power must be higher than 200W for a high deposition rate. 

From these facts out of the previous research, (ii) molten Ge along with the (ii) high deposition rate (flux density) of 

Ge are important parameters for uniform / continuous single crystal Si0.15Ge0.85 film growth. 

The previous work generated the following question: Can we grow uniform singe crystal Si0.15Ge0.85 film at 500°C if 

we melt the Ge target before it reaches the substrate with a high deposition rate?  If so, which deposition system can 

be used to melt the target for high flux density? This paper highlights a new method, Molten Target Sputtering (MTS) 

which melts the Ge target with a high deposition rate at 500oC substrate temperature. The MTS method resulted in the 

growth of Si0.15Ge0.85 film.   
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