

Technology Readiness Assessment for HEEET TPS

Peter Gage, Milad Mahzari, Keith Peterson, Don Ellerby, Ethiraj Venkatapathy

IPPW July 11, 2019

TECHNOLOGY DRIVES EXPLORATION

Heatshield for Extreme Entry Environment Technology (HEEET)

- Leverages advanced 3-D weaving and resin infusion.
- A dual layer system robust and mass efficient across a range of

extreme entry environments

- Objective to:
 - Mature HEEET to TRL 6
 - Develop and verify:
 - ➤ Manufacturing processes
 - ➤ Design tools:
 - ❖ Thermostructural
 - Aerothermal Response
 - Documentation

Thurs 11:54 am The Challenges of Seam Design in Tiled Thermal Protection Systems. Cole Kazemba

Thurs 1:34pm. Damage Assessment During a Structural and Thermal Test Campaign of a 1-meter Diameter Heatshield with a 3-D Woven Thermal Protection System for Extreme Environments. Sarah Langston

Fri. 10:54am Challenges In Qualification Of Thermal Protection Systems In Extreme Entry Environments. Milad Mahzari

Fri 1:57pm White Papers For The Next Decadal Survey: Thermal Protection Systems And Instrumentation. Helen Hwang.

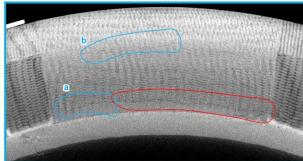
Poster Session I: A25 IV.1 High Velocity Impact Performance of a Dual Layer Thermal Protection System for the Mars Sample Return Earth Entry Vehicle. Ben Libben Poster Session 2: B25. VII.4. Maturation of Heatshield for Extreme Entry Environment Technology (HEEET) through Extreme Aero-thermal Ground Testing at Arnold Engineering Development Complex (AEDC). Joseph Williams

Mission Applications:

Tues 2:48pm. Robotic Mars Sample Return Earth Entry Vehicle Concept Development. Marcus Lobbia Tues 3.00pm. HEEET Material Modeling and Earth Entry Vehicle Landing Analyses for Potential Mars Sample Return. Aaron Siddens

TRL Assessment

- Goal: Decide whether HEEET technology is at TRL 6
 - Technology elements
 - Acreage material
 - Seams including gap-filler in channel between acreage tiles with Nitrile Phenolic film adhesive around gap-filler
- Definition for TRL 6 (NASA Systems Engineering Handbook)
 - A high fidelity system/component prototype that adequately addresses all critical scaling issues is built and operated in a relevant environment to demonstrate operations under critical environmental conditions.
- Exit (or success) criteria are:
 - Documented test performance demonstrating agreement with analytical predictions.
- Have we built high-fidelity prototypes that address scaling issues?
- Have we operated in relevant environments? Difficult for TPS for extreme environments
 - Structural (pressure, thermal-vacuum and point loads on 1 m ETU)
 - Thermostructural (combined loading of flexures)
 - Aerothermal (arc-jets)
- Have we documented test performance demonstrating agreement with analytic predictions?



Prototype Hardware

Document Number	Document Title			
HEEET-4001	Infusion Solution Preparation Specification			
HEEET-4002	Resin Infusion and Curing Manufacturi	ng Specif		
HEEET-4003	Drying and Post Curing Manufacturing	Speci		
HEEET-4011	HEEET Material Handling Specification 8			
HEEET-4013	HEEET Part Marking & Tracking			
HEEET-4014	HEEET Blended Yarn (Insulating)	1 m hardware includes all		
HEEET-4015	HEEET Fiber Receiving Inspec			
HEEET-4016	HEEET Recession Layer Fi	features needed for scale-up		
HFFFT_4018	HFFFT Dry-Woven Mate			

Inspection detects flaws that are less than critical CP2 CP1

oven Cuttin

ng Process Specification & Form

Receiving Inspection for Recession Layer AS4 Tows

d Material Inspection and Acceptance Requirements

anufacturing Process Specification

spection & Acceptance Requirements

ial Machining Process Specification & Acceptance Requirements

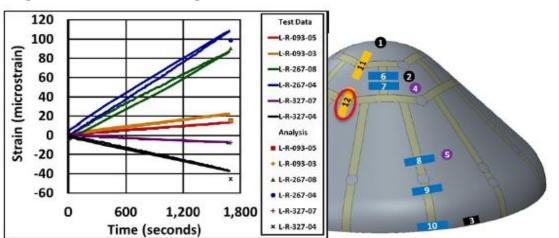
tegration Process Canada

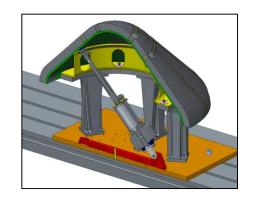
spection and A Comprehensive procedures

facturing Requi support consistent reproducibility

ırface Densification

out Plug Manuf. and Integration Process Specification


Small test articles use consistent procedures



Structural Capability Load Cases other than Entry

Sample result for point load case

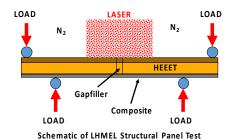
	Component	Mode	Property	Basis for Allowable	Margin Approach	Margin / Factor	Confide nce
F	Tile Failure		IP tensile strength	Material Testing	Structural	> 5	High
			IP shear strength	Material Testing	Structural	> 3	High
		IP cracks	TTT tensile strength	Material Testing	Structural	> 5	High
			Interlayer Shear Strength	Material Testing	Structural	> 1	High
	Base bond	Adhesive mech. failure	Joint tensile strength	Joint Testing	Structural	> 5	High
			Joint shear strength	Joint Testing	Structural	> 5	High
	Seam bond I	Mech failure	Joint tensile strength	Joint Testing	Structural	> 5	High
			Joint shear strength	Manufacturer Database	Structural	> 5	High
			Triple point strain	Joint Testing	Structural	> 1	High

Weakest correlation in regions of high curvature

- Material properties affected by forming
- Uncertainty is acceptable

Margins much larger than model uncertainty Evaluation

Delivered test results that correlate with model

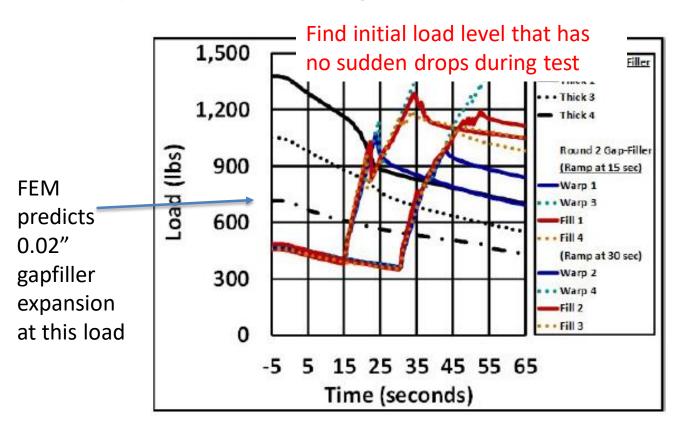


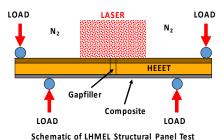

Thermostructural Environments for Entry

Mission-accurate heating rates on seam article are challenging in ground facility

- Can deliver relevant material state by heating for longer at lower rates
- Can apply bending load throughout heating (as material changes state)
- Can vary bending load after material state changes are in progress

Evaluation


Achieved relevant environments for thermostructural load throughout entry

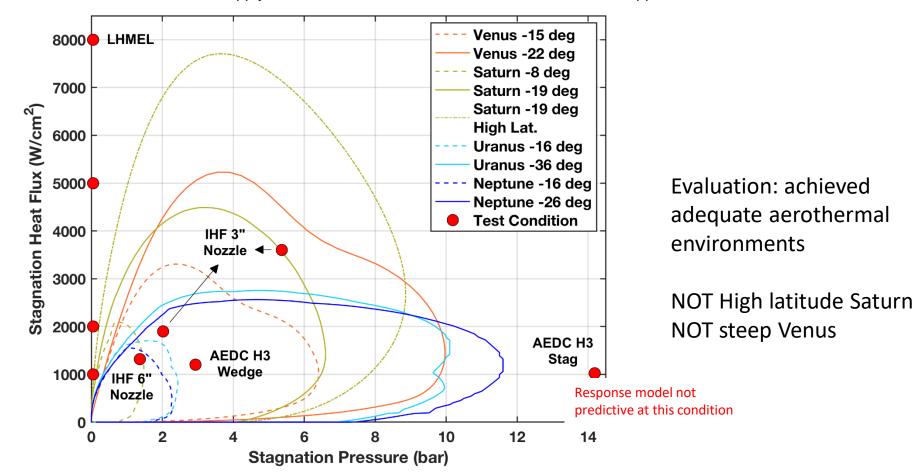


Thermostructural Capability at Entry

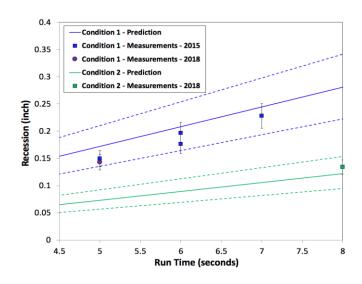
- Challenging to develop predictive model for local stresses at seam
 - Uncertainty in material properties
 - Stress concentration at interface between char and virgin adhesive
- Rely on estimation of gapfiller expansion at RT pre-loading

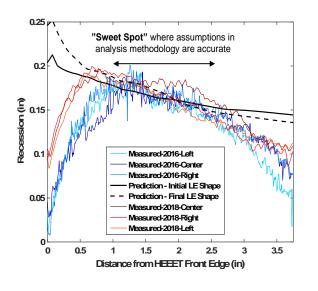
Panels with closeout plugs had no failure below 0.009" expansion (not shown)

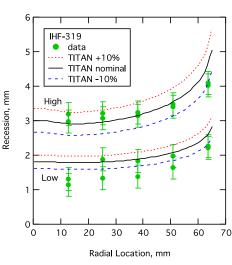
Need up to 0.003" expansion.

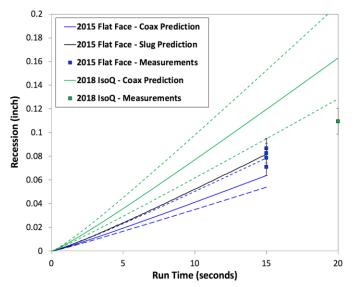

Large margins

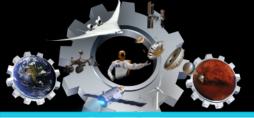
Aerothermal Environments


- Challenging to achieve extreme environments in ground facilities (Mahzari, Friday at 10:54)
 - Introduced testing of 1" models in 3" nozzle at IHF
 - All parameters are not matched simultaneously
 - Need to account for cold wall vs hot wall
 - Limitations would apply to ANY material intended for extreme environment applications



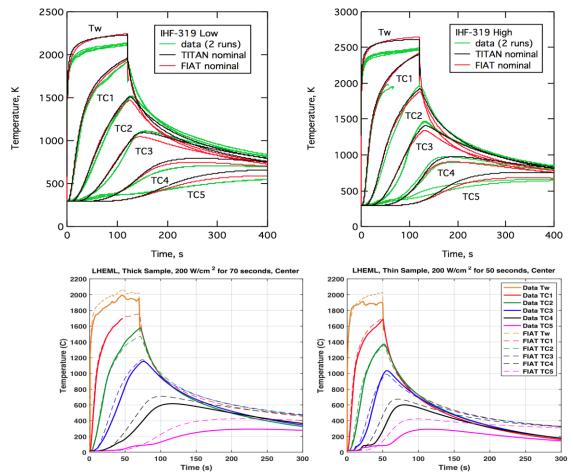



Recession Prediction



Excellent results for most tests

- Concern for 2" models in 6" nozzle
 - ➤ Over-predicts for iso-Q in 2018
 - ➤ Under-predicts for flat face in 2015
 - Uncertainty is bounded by recession margin (50% recommended)


Evaluation

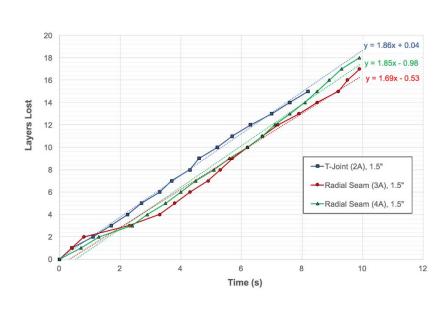
 Test results have adequate agreement with recession model

In-depth Temperature Prediction

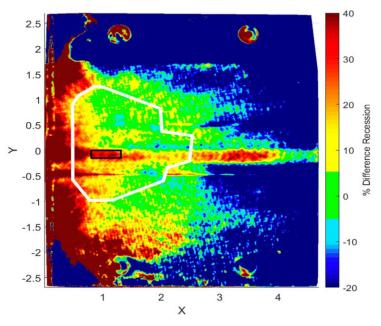
Stagnation testing in IHF 13" nozzle

Laser testing at LHMEL

Limited measurements under seams show no elevated temperatures relative to acreage


Evaluation

Test results have adequate agreement with model predictions of temperature



Recession of Seams

No run-away observed

Difficult to assess augmentation due to uncertainty in applied environment

- Measured recession augmentation in 2018 test ranged from 11 to 51%
 - Most measurements in 20-40% range
 - Probably exacerbated by thin leading edge
- Evaluation adequate recession predictability, can be handled with margin

Final TRL Assessment

- Have we built high-fidelity prototypes that address scaling issues? Yes
- Have we operated in relevant environments?
 - Aerothermal (arc-jets) Yes
 - Thermostructural (combined loading of flexures at LHMEL) Yes
 - Structural (pressure, thermal-vacuum and point loads on 1 m ETU) Yes
- Have we documented test performance demonstrating agreement with analytic predictions? Yes
- HEEET system is assessed to be at TRL 6
- Limitations
 - Not at TRL 6 for thickness much greater than 2"
 - Not at TRL 6 for applied environments above 5 atm and 3600 W/cm2
 - No mission opportunity (except Jupiter) appears to require these levels
- But don't just take our word for it
 - "The IRB concurs [...] that the overall objective of achieving TRL 6 has been completed"