Analysis of Interactions Between Urban Air Mobility (UAM) Operations and Conventional Traffic in Urban Areas: Traffic Alert and Collision Avoidance System (TCAS) Study for UAM Operations

> Vishwanath Bulusu Banavar Sridhar Andrew C. Cone David Thipphavong

AIAA Aviation (June 20, 2019)

The skies today!

The skies of future?

Explore already-existing approved routes

Helicopter Routes in Dallas-Fort Worth

*"FAA Helicopter Routes Map for Dallas-Fort Worth Area," <u>http://aeronav.faa.gov/content/aeronav/heli_files/PDFs/Dallas-Ft_Worth_Heli_7_P.pd</u> 2019. Images produced by the U.S. Government and in the public domain.

Can UAM vehicles fly <u>existing routes</u> with minimal <u>impact</u> on conventional air traffic?

Routes Explored

Helicopter Routes in Dallas-Fort Worth Metropolitan Region

Impact Evaluated

TCAS Resolution Advisories (RA) on Conventional Aircraft.

**FAA Helicopter Routes Map for Dallas-Fort Worth Area," http://aeronav.faa.gov/content/aeronav/heli_files/PDFs/Dallas-Ft_Worth_Heli_7_P.pdf, 2019. Images produced by the U.S. Government and in the public domain.

*"FAA Helicopter Routes Map for Dallas-Fort Worth Area," <u>http://aeronav.faa.gov/content/aeronav/heli_files/PDFs/Dallas-Ft_Worth_Heli_7_P.pd</u> 2019. Images produced by the U.S. Government and in the public domain.

*"FAA Helicopter Routes Map for Dallas-Fort Worth Area," <u>http://aeronav.faa.gov/content/aeronav/heli_files/PDFs/Dallas-Ft_Worth_Heli_7_P.pd</u> 2019. Images produced by the U.S. Government and in the public domain.

Traffic Alert & Collision Avoidance System (TCAS)

<u>Criteria</u>: DMOD – Protected Volume

Time – τ_{mod} and τ_{vert}

Altitude - ZTHR

Source: http://www.eurocontrol.int/msa/public/standard page/ACAS Overview Principles.html

Traffic Alert & Collision Avoidance System (TCAS)

Aircraft State information

Ownship Altitude (ft)	SL	Tau(sec)	DMOD(nmi)	ZTHR(ft)
<1000 (AGL)	2	N/A	N/A	N/A
1000-2350 (AGL)	3	15	0.20	600
2350-5000	4	20	0.35	600
5000-10000	5	25	0.55	600
10000-20000	6	30	0.80	600
20000-42000	7	35	1.10	700
>42000	7	35	1.10	800

Advisories (based on Sensitivity Level (SL)) Traffic Adv.(TA) – *Traffic* Resolution Adv. (RA) – *Climb, Descend, etc*

TCAS RA Criteria used

A Resolution Advisory (RA) is issued if

Advisories -

1. τ_{mod} < threshold and

- 2. τ_{vert} < threshold OR Vert. Sep. < ZTHR and
- 3. Conventional Aircraft Altitude > 1000 ft AGL

TCAS RA Criteria Used

A graphical representation

STUDY APPROACH

Assumptions

- All UAM vehicles same aircraft type. (Speed, turn rate, etc)
- UAM trajectories completely deterministic in first run.
- Altitude uncertainty studied in second run.
- Conventional aircraft modelled with TCAS II version 7.1.
- UAM not modelled with TCAS but provide required state information.
- Conventional aircraft adhere to published navigational routes.

Simulation

NASA

DFW runway operational configurations -

- Nominal Day in South Flow (June 03, 2017).
- Nominal Day in North Flow (November 11, 2017)
- Peak Demand Day in South Flow (July 20, 2017)
- Peak Demand Day in North Flow (August 7, 2017)

Total Test Cases = 16 (4 routes X 4 runway operational configurations)

Uncertainty Study – only for peak traffic – August 7, 2017

Software:

- SaaControl Fast-time simulation developed by NASA for the UAS integration into NAS project (NASA/TM-2017-219507)
- Matlab for detailed analysis and altitude uncertainty study

RESULTS

Area of Interest

Google Maps, "Dallas/Fort Worth International Airport Area Satellite View," https://www.m/data=13m1!1e3, 2019. Accessed: 2019-05-16.

North of DFW

 $\frac{SL > 2}{Vert. Sep. > 600 ft}$ $\tau_{vert} > threshold$

No RAs!

<u>SL_2</u> TCAS issues no RAs

Horz. Dist. – 0.62nm Vert. Sep. – 1000 ft

➤ Horz. Dist. – 0.2nm

CPA Horz. Dist. – 0.62nm Vert. Sep. – 1000ft Slant Range – **0.64nm**

Horz. Dist – 0.65nm Vert. Sep. – 0 ft

Horz. Dist. – 0.64nm Vert. Sep. – 0ft Both on ground

Google Maps, "Dallas/Fort Worth International Airport Area Satellite View," <u>https://www.google.com/maps/@32.9162036,-97.0537879,2021(</u> m/data=!3m1!1e3, 2019. Accessed: 2019-05-16.

North of DFW

A sample encounter at crossing

South of DFW

<u>SL_2</u> TCAS issues no RAs

No RAs!

 $\frac{SL > 2}{Vert. Sep. > 600 ft}$ $\tau_{vert} > threshold$

South of DFW

But NOT SAFE!

Altitude Uncertainty

- Analyzed sensitive area south of DFW.
- Errors assumed only in UAM trajectory altitude (not in Conventional aircraft)
- Added normally distributed error with 0 mean and StD = {5, 10, 15, 20, 30} in feet.
- Lowered mean altitudes by 0, 5 and 10 feet.
- Conventional trajectories unchanged.
- Analyzed highest traffic day August 7, 2017.

Altitude Uncertainty Results

Altitude Uncertainty Results

Potential Solution – Lowering mean altitude by 10 ft reduces the chance of triggering RAs to under 10% even with a 5 ft error StD

Conclusions

- UAM *adhering precisely* to designed routes triggered **no RAs** on conventional aircraft.
- Altitude uncertainty analysis
 UAM vehicles operating at or below 990 ft MSL triggered no RAs with maximum error of 15 ft.
- Limitations –
 Not a referendum on Safety
 Not a Route Analysis Attend talk in afternoon: Savvy Verma

Future Work

- To enable operations with high trajectory determinism,
 Very high navigational performance requirement on UAM
- Analysis approach and software tools can be extended to other airports.
- UAM below 967ft MSL (360ft AGL) near DFW will be automatically ignored by the current system.
 - Early UAM operations anywhere below 360 ft AGL.
 - Long term TCAS logic update?

Questions/Comments/Suggestions?

Appendix

Analysis

North of DFW

Aircraft Altitude = A_C (>1000 ft) UAM Altitude = A_U Vertical Separation = $A_C - A_U$ (>600 ft) Vertical Closure Rate: $|A_C|$ ft/min $\tau_{vert} = (1 - A_U/A_C)*60 \text{ sec} > 36 \text{ sec}$ $\tau_{vert} > 15 \text{ sec} => \text{ no RA}$ (Even if $\tau_{mod} = 0$)

A sample encounter (worst case)