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Unmasking the negative greenhouse effect over the Antarctic

Plateau

Sergio A. Sejas', Patrick C. Taylor®' and Ming Cai®

A paradoxical negative greenhouse effect has been found over the Antarctic Plateau, indicating that greenhouse gases enhance
energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and
find that the magnitude and sign of the effect varies seasonally and spectrally. A previous explanation attributes this effect solely to
stratospheric CO,; however, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric
water vapor. A recently developed principle-based concept is used to provide a complete account of the Antarctic Plateau'’s
negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption.
Our findings indicate that unique climatological conditions over the Antarctic Plateau—a strong surface-based temperature
inversion and scarcity of free tropospheric water vapor—cause the negative greenhouse effect.
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INTRODUCTION

Analogous to a greenhouse, the atmosphere is transparent to
incoming solar radiation and opaque to outgoing infrared
radiation. This feature allows solar energy to reach the surface
while impeding the escape of infrared energy to space, warming
Earth’s climate. Put forth by Ekholm in 1901,' the greenhouse
analogy ironically fails to explain the main cause of the warming in
greenhouses (convective inhibition), but does explain the atmo-
spheric effect, which raises Earth’s global mean surface tempera-
ture by ~33K relative to an “Earth” with no atmosphere. First
postulated by Fourier in 1824,% this atmospheric warming effect
keeps the Earth from being a desolate ice ball by enabling liquid
water to flow freely; thus setting the stage for complex life to
develop and evolve? Aside from variations in solar output,
changes in the greenhouse effect (GHE) have driven temperature
change throughout Earth’s history and are currently driving
anthropogenic climate change through increased carbon dioxide
(CO,),* whose specific warming qualities were discovered by
Tyndall® and implications for global climate first postulated by
Arrhenius.®

Greenhouse gases such as CO, warm the planet by absorbing
the upward longwave (LW) radiation (i.e., infrared radiation)
emanating from the surface. Since the atmosphere absorbs the
upward LW radiation, it follows that radiation escaping to space
does not originate from the ground, but rather from an
atmospheric layer at a considerable height above the surface,
termed the radiating layer.” The height of the radiating layer is
determined by the point where the atmosphere becomes optically
transparent. Temperature generally decreases with height above
the surface, implying that the radiating layer emits less LW
radiation than the surface, reducing energy loss to space.'” A
colder radiating layer relative to the surface implies a greater
reduction of energy loss to space and a stronger GHE. The
strength of the GHE can thus be quantified by subtracting the

outgoing LW radiation (OLR) from the surface LW emission at the
samesglocation, with larger positive values indicating a stronger
GHE.>

Before the satellite age in the 1960’s, Earth’s GHE had not been
directly measured. Since then, spectral data from satellites has
corroborated the hypothesis above, as relative minima are found
in the TOA spectrum where greenhouse gases strongly absorb.'®'2
Unexpectedly, however, an exception occurs over parts of
Antarctica for much of the year as relative maxima in the TOA
spectrum have been found in spectral bands associated with
greenhouse gases,'®'® suggestive of a negative GHE. This is a
peculiar feature that implies greenhouse gases enhance energy
loss to space and cool the climate system, seemingly in
contradiction with the long-held view of the GHE.

Applying the radiating layer concept, the negative GHE has
been attributed to stratospheric CO, emission, because strato-
spheric temperatures are typically warmer than the surface over
the Antarctic Plateau.'® Though it follows a logic similar to the
conventional explanation of the positive GHE, this explanation
discounts important effects of vertical variations in atmospheric
emissivity and temperature. The smaller emissivity of the radiating
layer compared to the surface counteracts the effect of the
warmer layer. Thus, the temperature difference alone cannot
explain the negative GHE. In this study, we present a complete
explanation for the peculiar negative GHE and conclude that its
existence over the Antarctic Plateau is due predominately to water
vapor, not CO,.

RESULTS

Observed negative GHE

Satellite data from NASA’s Atmospheric Infrared Sounder (AIRS)"
instruments illustrate the existence of a negative GHE over the
Antarctic Plateau during much of the year (blue coloring in Fig. 1).
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Fig. 1 Total GHE strength. The monthly-mean total GHE strength
(W*m~2) over Antarctica given by AIRS

This feature is also found in the NASA’s Clouds and Earth’s Radiant
Energy System Energy Balanced and Filled (CERES EBAF)'*'¢ data
set and corroborates the negative GHE over the Antarctic Plateau
for the same months and with a similar monthly variation (Fig. S1).
The negative GHE over the Antarctic Plateau is also corroborated
by previous studies with independent data sets.'®'® Area-
averaged (see Methods section) spectral analyses of the TOA
OLR and surface emission reveal that the energy loss to space (Fig.
2; black lines) in spectral regions associated with strong green-
house gas absorption is greater than surface emission (Fig. 2; red
lines); a clear indicator that greenhouse gases enhance the energy
loss to space and produce a negative GHE. Unexpectedly, we find
the 667 cm™' CO, band (from ~580 to 750 cm ') is not solely
responsible for the negative GHE as previously thought.'® In
addition to the 667 cm™' CO, band, we find water vapor bands
(rotational bands below 550cm™" and vibrational bands above
1350 cm ™~ '; Fig. 2) produce a negative GHE.

Seasonally, the negative GHE peaks in both magnitude and
areal coverage during March (Fig. 1). In March, the entire 667 cm ™"
CO, band and all water vapor bands combine to produce a
negative GHE (Fig. 2f), with a larger contribution by the water
vapor bands to the total negative GHE (Tbl. S1). As austral autumn
transitions to winter, the area and magnitude of the negative GHE
decreases (Fig. 1). The prolonged winter over the Antarctic Plateau
from May to September has a reduced negative GHE due to
cancellation between the negative GHE by water vapor and the
positive GHE by CO, (Tbl. S1, Fig. 2g). The negative GHE over the
Antarctic Plateau during austral winter is thus caused by water
vapor alone. During the transition from austral winter to summer
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in October, there is a reduction of the water vapor negative GHE
(Tbl. S1) as the number of water vapor absorption lines with a
positive GHE increase (Fig. 2h); CO, therefore becomes the
primary cause of the negative GHE observed in October (Fig. 1).
During austral summer (i.e., from November to January; Fig. 1), the
total negative GHE disappears. The spectral analysis in January,
however, reveals that the core of the 667 cm™' CO, band contains
a negative GHE that is hidden by the larger positive GHE in the
water vapor bands and the wings of the 667 cm™' CO, band.
During February, as austral summer transitions to autumn, a
similar situation as in October occurs, except the water vapor GHE
becomes positive (Tbl. S1), as CO, is responsible for the negative
GHE observed in February (Fig. 1). Though CO, clearly contributes
to the negative GHE, during the majority of the year (particularly
during the prolonged winter) water vapor is dominant cause of
the negative GHE. The seasonal picture thus shows that the total
negative GHE over the Antarctic Plateau is primarily driven by
water vapor.

Figure 2 illustrates that the sign of the GHE varies with
wavenumber and season. The sign variation with wavenumber is
surprising, since it implies that CO, and water vapor can have
opposing effects on the Antarctic Plateau’s seasonal climate. For a
given month, the same gas can even have a GHE sign variation
depending on wavenumber, illustrated for example by the
667 cm™' CO, band (wings vs. core; Fig. 2e) in January. Whether
water vapor and CO, warm or cool the Antarctic climate is
determined by the spectral summation of their respective bands.

Explanation of the negative GHE

A recently developed radiative saturation-level concept'’ sum-
marized in supplementary text, is applied to understand, from a
Lagrangian perspective, whether the monochromatic (hereafter
dropped but assumed) upward flux emitted by the surface
increases, decreases, or remains constant in the presence of
absorbers, as it travels from the surface to the TOA. Analogous to
the water vapor saturation vapor pressure, the blackbody radiative
flux depends only on temperature and defines the radiative
saturation point of the upward (and downward) flux; its vertical
profile thus establishes a saturation curve that follows the vertical
temperature profile. The fundamental principle of the radiative
saturation-level concept (schematically illustrated in Fig. 3 and by
observational data in Figs. 4-6) is that following the upward flux it
always progresses toward the local blackbody flux (i.e., the
radiative saturation point) in the presence of absorbers, meaning
the upward flux decreases (increases) with height when it is
greater (less) than the saturation flux, termed oversaturation
(undersaturation).

The difference between the upward and saturation fluxes is
mathematically given by the following equation (see supplemen-
tary text),

v4
Fl(z) — nB,(z) = —/ %T‘f(y, z)dz/ (M

0 z/
where Fl(z) and B,(2) are the upward flux and Planck function,
respectively, at a given height z and wavenumber v, and T is the
flux transmittance. As indicated by Eq. (1), the transmittance and
vertical blackbody flux gradient (i.e, temperature gradient)
determine how close the upward flux is to saturation. For a given
temperature gradient, a weaker transmittance results in a smaller
difference between the upward flux and blackbody flux, so the
absorber amount and strength determines the slope at which the
upward flux approaches saturation; greater optical depth yields a
stronger approach (Fig. 3b, e and Fig. 5 vs Fig. 6). On the other
hand, a stronger vertical temperature gradient increases the gap
between the upward and blackbody fluxes, as it makes it harder
for the upward flux to “keep up” with the saturation curve as it
moves towards saturation. However, if the vertical temperature
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Fig. 2 The spectral GHE strength. The calculated spectral upward flux (W*m™2) at the surface (red) and TOA (black) for a January, b March, ¢
July, d October, and the GHE strength (W*m™2) given by the difference between the red and black lines for e January, f March, g July, and h
October. The vertical green and blue lines delineate the spectral regions in which water vapor and CO, effects dominate, respectively.
Calculated for the area-averaged region of the Antarctic Plateau (see Methods section)

gradient changes sign in the atmosphere the integral in Eq. (1)
indicates there will be offsetting contributions, bringing the
upward flux closer to saturation and possibly hitting saturation if
the contributions completely offset.

To demonstrate the radiative saturation-level concept, we
divide the temperature profile over the Antarctic Plateau into
three generalized sections: (1) A lower tropospheric surface-based
temperature inversion; (2) a negative temperature gradient in the
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free troposphere; (3) a positive temperature gradient in the
stratosphere. The saturation curve thus increases with height in
the lower troposphere and stratosphere but decreases with height
in the free troposphere (Figs. 3-6, S2; black line). The upward LW
flux (Figs. 3-6, S2 red lines) approaches the saturation curve with
the proximity to the saturation curve dependent on the vertical
optical depth profile. Its high elevation and polar latitude renders
the Antarctic Plateau as the coldest and driest climate on
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Fig. 3 Schematic of different effects on the upward flux. The effects of a decreasing the strength of the surface-based temperature inversion
layer, b increasing the free tropospheric water vapor concentration, c increasing the strength of the negative temperature gradient in the free
troposphere, d decreasing the strength of positive temperature gradient in the stratosphere, and e increasing the optical depth in the CO,
band on the upward radiative flux (red line) for a temperature profile similar to that over the Antarctic Plateau. The black line is indicative of
the blackbody flux, which also serves as a proxy for the vertical temperature profile. The dashed lines illustrate the deviation due to the effects
of these modifications from the standard profile (solid). The gap between the surface emission (blue) and upward flux (red) at the TOA is
indicative of the strength of the greenhouse effect; the greenhouse effect is negative (positive) when the red line is to the right (left) of the
blue line. A validation of the schematic using the LBLRTM is shown in Fig. S2

Earth.'®' The extremely low water vapor concentration signifies
that the optical depth in water vapor bands will be important only
in the lower troposphere, since water vapor concentration and
density rapidly decrease above the inversion (Fig. S3). On the
other hand, the CO, mixing ratio is uniform but optical depth in
the CO, band decreases with height due to the decrease in
density (i.e, fewer CO, molecules; Fig. S3). This decrease with
height is not overwhelming and the optical depth in the CO, band
remains important into the stratosphere.

Due to the near blackbody emission by the surface®® the
upward flux begins slightly below the blackbody flux (i.e.
undersaturated). The undersaturated nature of the upward flux
implies an increase with height (i.e.,, greater local emission than
absorption), as it attempts to keep pace with the increasing
saturation curve in the inversion layer (Figs. 3-6); the stronger the
inversion (Fig. 3a, S2a and Fig. 4a vs c) and optical depth within
the inversion layer (Fig. 3e, S2e and Fig. 5 vs Fig. 6) the greater the
increase.

Once the saturation point decreases with height above the
inversion, the upward flux crosses the saturation point and
becomes oversaturated (>100%; Fig. S4a-d). The oversaturated
upward flux will decrease with height (i.e., greater local absorption
than emission) tracking the decreasing saturation curve (Figs. 3-6);
again, the magnitude of the decrease depends on the optical
depth and the rate of temperature decrease (Figs. 3b, ¢, e, S2b-c,
e). Above the inversion, the optical depth for the majority of water
vapor absorption lines (below 500cm™" and above 1350 cm ™)

npj Climate and Atmospheric Science (2018) 17

rapidly approaches zero, causing the upward flux to decrease
slowly. The optical depth in the water vapor bands approaches
zero between 200 and 400 hPa (dependent on wavenumber),
marking the water vapor radiating layer, above which the upward
flux becomes nearly constant to the TOA (Fig. 4, S4). The radiating
layer is colder than the surface (Fig. 4), therefore one would expect
the TOA flux in the water vapor band to be less than the surface
emission. However, as illustrated by the spectral analyses in July
and October (Fig. 2¢, d), the TOA flux is greater than the surface
emission for most water vapor absorption lines demonstrating
that the radiating layer concept does not hold.

The combined effects of the strong near-surface temperature
inversion and rapidly decreasing water vapor profile above the
inversion produce a negative GHE in the majority of water vapor
bands for most months (Fig. 2; Tbl. S1), only water vapor
absorption lines with strong optical depth, even at low
concentrations, will produce a positive GHE. During most months,
the weak decrease of the oversaturated upward flux above the
surface inversion keeps the upward flux above its surface value
enabled by the initial increase of the undersaturated upward flux
in the inversion layer. In October, the surface temperature
inversion weakens, increasing the number of water vapor
absorption lines with a positive GHE, but is still strong enough
to produce a negative GHE for the majority of water vapor bands.
In summer (i.e., November-January), the surface inversion further
weakens causing a smaller initial near-surface increase of the
upward flux (Figs. 3a, 4a) that allows the weak upward flux
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2, red) for the 350-351 cm™"' band in a January, b March, ¢ July, and d

October, indicative of the effects of water vapor. The saturation curve (black) is the blackbody flux (W*m~2) for the 350-351cm ™' band. The

green lines show the approximate height of the radiating layer

decrease above the surface inversion layer to be strong enough to
lower the upward flux below its surface value, eliminating the
water vapor negative GHE. During February, as summer transitions
to autumn the surface temperature inversion strengthens again,
reestablishing a negative GHE for some water vapor absorption
lines (not shown), but for a majority of the water vapor bands the
inversion is still too weak to produce a negative GHE.

In contrast, the optical depth in the CO, band remains
significant for a greater height than for water vapor, so the
upward flux decreases below its surface value in the free
troposphere (Figs. 3c-e, 5-6, S2c-e). The deeper and stronger
the free tropospheric negative temperature gradient the greater
the upward flux decrease (Figs. 3¢, 5-6, S2¢). The only exception is
March, since most of the atmosphere is warmer than the surface,
keeping the saturation point above its surface value. Thus, in
March, the outgoing TOA flux is larger than the surface emission
for CO, and all other greenhouse bands (Fig. 2b), indicating a
negative GHE.

During all other months, the sign of the GHE in the CO, band
also depends on the stratosphere. In the stratosphere, the
saturation point once again increases with height eventually
exceeding the surface value due to warmer temperatures than the
surface. The upward flux therefore once again crosses the
saturation point and transitions from decreasing to increasing
with height (Figs. 3c—e, 5-6) as it follows the saturation curve.
Whether the GHE becomes negative depends on the gap between
the upward flux and its surface value at the stratospheric
transition point, the local optical depth, and the strength of the
positive temperature gradient. The smaller the gap the smaller the
upward flux increase needed to surpass the surface value; the
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stronger the stratospheric positive temperature gradient and
optical depth, the greater the upward flux increase with height
(Figs. 3d, e, S2d-e). Since optical depth is dependent on
wavenumber and the optical depth generally decreases from
the center of the 667 cm™' CO, band outwards, the 667 cm™' CO,
band core would be more likely to produce a negative GHE than
the wings. The optical depth is also dependent on height, so the
lower the tropopause the lower the stratospheric transition height
and the stronger the optical depth are; therefore, the lower the
stratospheric transition from oversaturation to undersaturation
occurs the more likely a negative GHE is produced in the 667 cm™'
CO, band.

During the prolonged Antarctic winter (i.e, from May to
September), the stratospheric upward flux increase is relatively
weak since the transition from oversaturation to undersaturation
occurs high in the atmosphere, as shown for July in Figs. 5c and
6¢, implying a weaker optical depth. The optical depth is too weak
at this height for the upward flux increase to surpass its surface
value, explaining the positive GHE for the overwhelming majority
of the CO, band. During the seasonal change in October, the
stratospheric transition from oversaturation to undersaturation
occurs at a height much lower than in winter (Fig. 6d), where the
optical depth is stronger. The stronger optical depth enhances the
stratospheric upward flux increase such that the upward flux
surpasses its surface value for the central portion of the 667 cm™'
CO, band (from about 640 to 690 cm ™). The weaker optical depth
in the outer portions of the 667 cm ™' CO, band (~580 to 640 cm ™'
and ~690 to 750 cm™") and higher stratospheric transition height
(Fig. 5d) relative to the central portion keep the upward flux
increase from surpassing its surface value, thus producing a
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Fig.5 CO, effects on the upward flux in the wings. The upward flux (W*m~2; red) for the 700-701 cm ™" band in a January, b March, c July, and
d October, indicative of the effects of CO, toward the wings of the 667 cm™' CO, band. The saturation curve (black) is the blackbody flux
(W*m™2) for the 700-701 cm™' band. The blue lines show the approximate height of the radiating layer

positive GHE for the outer portions of the 667 cm™' CO, band. In
summer, the stratospheric transition occurs at an even lower
height than October, as seen during January (Figs. 5a, 6a).
However, the large gap between the upward flux value at the
stratospheric transition height and its surface value and weaker
stratospheric temperature gradient keep the upward flux increase
in the stratosphere from surpassing its surface value for most of
the 667 cm™' CO, band (Figs. 2e, 5a), but does just surpass its
surface value for the very strong optical depth in the central part
of the 667 cm™' CO, band (i.e., from ~650 to 680 cm™'). During
summer the positive GHE for the majority of the 667 cm™' CO,
band obscures the negative GHE produced by the central core of
the 667 cm™' CO, band. During February, CO, produces a net
negative GHE (Tbl. S1) as the stratospheric transition height
remains low (as in January) but the gap between the upward flux
value at the stratospheric transition height and its surface value is
greatly reduced, as the surface begins to cool and the surface
temperature inversion strengthens, allowing the stratospheric
upward flux increase to surpass its surface value for most of the
667 cm ™' CO, band (not shown).

The conventional radiating layer explanation incorrectly attri-
butes the negative GHE in the CO, band solely to the warmer
stratospheric temperatures relative to the surface.'®> Located
approximately between 1 and 5hPa, the CO, band radiating
layer is warmer than the surface, but a positive GHE is observed in
the CO, band wings (Fig. 5). The radiating layer concept breaks
down due to the neglect of the radiating layer emissivity and the
variations of vertical emissivity and temperature below it, which
dictate the saturation curve and how the upward flux approaches
it. Since the saturation curve is dictated by temperature, the more

npj Climate and Atmospheric Science (2018) 17

closely the upward flux follows the saturation curve (i.e.,, greater
optical depth), the more likely the radiating layer explanation
holds. This explains why the conventional explanation seemingly
holds for the CO, band core but breaks down for the CO, band
wings.

DISCUSSION

In general, for a negative GHE to occur temperature must increase
with height, driving the maximum saturation value above the
surface emission; a condition satisfied over the Antarctic Plateau
by warmer stratospheric temperatures relative to the surface and
by the surface-based temperature inversion. However, this is a
necessary but insufficient condition, as the optical depth
determines how efficiently the upward flux moves toward
saturation, and a negative temperature gradient above the
inversion can cause the upward flux magnitude to decrease
below the surface emission. Overall, the entire vertical tempera-
ture and optical depth profiles below the TOA determine the
magnitude and sign of the GHE. Over the Antarctic Plateau the
strong surface-based temperature inversion, persistent for most of
the year,?' and the scarcity of free tropospheric water vapor above
the inversion, are the primary factors that cause the negative GHE.

Over most of the globe, the GHE is positive because strato-
spheric temperatures warmer than the surface and intense surface
inversions are rare, and free tropospheric water vapor is more
abundant than over the Antarctic Plateau. Even if the stratosphere
were warmer than the surface, producing a negative GHE in the
CO, band core, the positive GHE in the water vapor band would
obscure this negative GHE, as over the Antarctic Plateau during
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Fig. 6 CO, effects on the upward flux in the core. Same as Fig. 5 but for the 670-671 cm™" band, indicative of the effects of CO, in the core of

the 667 cm™' CO, band

January (Figs. 1, 2e). Even in the Arctic, where strong, surface-
based temperature inversions occur frequently, the greater depth
and concentration of water vapor above the inversion drives the
upward flux to decrease below the surface value, producing a
positive GHE. Our analysis is therefore not contradictory to the
well-established and long-held view that greenhouse gases warm
the planet. For typical vertical temperature and water vapor
profiles the same physics explained by the radiative saturation-
level concept dictates that the GHE is positive. Thus, it is the
unique climatological conditions over the Antarctic Plateau, which
represent an endpoint of terrestrial climate, that cause the
negative GHE.

Our analysis reveals that even given the same greenhouse gas
mixing ratio, as indicated by the nearly uniform CO, mixing ratio
all over the globe, the sign of the GHE strongly depends on the
vertical temperature gradient. This dependence on the vertical
temperature profile is important, since it implies an increase
(decrease) of greenhouse gases does not necessarily enhance
(suppress) the GHE, as indicated by the negative radiative forcing
produced by increasing the CO, mixing ratio over the Antarctic
Plateau.'>**?* While the negative radiative forcing is not
responsible for the weak but statistically insignificant surface
cooling observed over the Antarctic Plateau,>?* it may partially
explain why greenhouse gas increases over Antarctica have not
triggered a similar amplified warming response as in the Arctic
and provides evidence that observed changes in Antarctica are
currently driven by remote connections and internal climate
variability.* Moreover, the vertical temperature dependence
implies that the strength of the GHE is determined by factors
not limited to greenhouse gas mixing ratios. The seasonal
temperature profile for example is heavily influenced by the solar
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insolation,”’ while the strength of the surface inversion is also

dependent on the dynamics."”

The newfound understanding of the role of water vapor in
producing a negative GHE also has implications to our under-
standing of past and future climate. A colder Arctic climate in the
past (e.g., the ice ages) would imply drier conditions with the
potential to produce a negative GHE in water vapor bands, over
locations with strong, surface-based temperature inversions (e.g.,
Greenland); an effect that could have maintained or enhanced the
extremely cold climate conditions. As the global climate warms,
the redistribution of heat and water vapor by large-scale dynamics
could potentially reverse the sign of the GHE over the Antarctic
Plateau causing the negative GHE to disappear entirely from the
climatological annual cycle. A positive GHE throughout the year
over all of Antarctica could potentially make it more similar to the
Arctic, which has experienced an amplified warming 2-3 times
greater than the global-mean warming over the past 50 years.?
Global climate models’ future projections corroborate this
speculation, as large warming over the Antarctic continent is
projected by the second half of the 21 century.”**” A worrisome
prospect as locked up in Antarctica is enough ice to raise sea level
by ~73 meters,”® melting even a small percentage of that ice
would have significant societal impacts.

METHODS
Data

The observational monthly data sets are obtained from the AIRS, which has
been validated over the Antarctic Plateau region,29 and the Clouds and the
Earth’s Radiant Energy System (CERES). The AIRS'* and CERES'*'® data are
quality-controlled, averaged, and binned into 1°x1° grid cells.
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‘Climatological’ monthly values were calculated by averaging the 13-year
period from 2003-2015, beginning with the first full year of AIRS data.
While CERES EBAF provides both OLR and surface LW emission data, AIRS
provides OLR data but does not output surface LW emission. AIRS surface
skin temperature is used instead to compute the surface LW emission from
the Stefan-Boltzmann law, assuming a surface emissivity of 0.99.%° The
total GHE strength is then estimated by subtracting the OLR (F;OA) from the
surface upward LW flux (ijc),

GHE = Fsch - F7T'OA @

Radiative transfer model

In order to understand the cause of the negative GHE and apply the
radiative saturation-level concept, the Line-by-Line Radiative Transfer
Model®® (LBLRTM) was employed. Since only the LW portion of the
spectrum is of interest in this study, wavenumbers from 100 to 2000 cm ™"
were analyzed using the LBLRTM. Temperature, humidity, ozone, and other
greenhouse gas data from AIRS, monthly values averaged over the 13-yr
period, were used as input in the LBLRTM to calculate the spectral fluxes
over the Antarctic Plateau, which the LBLRTM calculates reasonably well."'®
Spectral observations from AIRS were also used to validate the LBLRTM
calculations. In situ observations indicate AIRS has an approximately
vertically uniform cold temperature bias over the Antarctic Plateau, near
—3Kon average.31 Even with this bias, the vertical structure of the AIRS
atmospheric temperature profile agrees well with dropsonde data;’’
therefore, the influence on the computed negative GHE magnitude is
estimated to be less than 10%. The data were area-averaged over the
Antarctic Plateau, for months with a negative GHE (Fig. 1) only grid points
with a negative GHE were used in the area-average calculation; for months
without a negative GHE latitudes between 75°S and 90°S and longitudes
between 30.5°E and 120.5°E were used for the area-average calculation.
The radiative transfer calculations were done at 24 vertical pressure levels
between 1000 and 1 hPa, corresponding to the vertical levels of the AIRS
data.

The LBLRTM is able to calculate monochromatic intensities but not
monochromatic fluxes. Extremely narrow band fluxes of 1em™ ! width,
however, are calculated, which are high resolution enough for the radiative
saturation-level concept to approximately hold. The spectral GHE is
calculated for every 1cm™' band by subtracting the upward TOA flux for
the given band from the upward surface flux for the same band, similar to
the calculation given by Eq. (2). The blackbody flux for every 1cm™' band
is given by

bbflux = mB(T)Av 3)

where Av is the band width and B(T) is the average of the Planck function
within that band. The saturation percentage (Figs. S4a-d) is calculated by
dividing the upward flux by the blackbody flux and multiplying by 100 at
all vertical pressure levels and for all 1cm™' width bands in the
100-2000 cm™" range.

Data and code availability

The data that support the findings of this study are available upon request
by contacting sergio.sejas@nasa.gov. AIRS data are freely accessible online
via https://airs.jpl.nasa.gov/data/get_data. CERES data were obtained from
the NASA Langley Research Center CERES ordering tool at http:/ceres.larc.
nasa.gov/. Code for the LBLRTM is available for download via http://rtweb.
aer.com/.
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