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Abstract

Phase function  of  light  scattering on large  atmospheric particles  has  very strong peak  in  forward
direction constituting a challenge for accurate numerical  calculations of radiance required in remote
sensing  problems.  Scaling  transformation  replaces  original  phase  function  with  a  sum of  the  delta
function and a new regular smooth phase function. Geometric truncation is one of the ways to construct
such a smooth function. The replacement phase function coincides with the original  one outside the
forward cone and preserves the asymmetry parameter. It has discontinuity at the cone.

Another simple functional form of the replacement phase function within the cone is suggested. It
enables continuity and allows for a number of modifications. Three of them are considered in this study:
preserving asymmetry parameter, providing continuity of the 1st derivative of the phase function, and
preserving mean scattering angle.

Yet another problem addressed in this study is objective selection of the width of the forward cone.
That  angle affects  truncation fraction and values  of the phase function within the cone.  A heuristic
approach  providing  unambiguous  criterion  of  selection  of  the  truncation  angle  is  proposed.  The
approach has easy numerical implementation.

Suggested modifications were tested on cloud phase function using discrete ordinates and Monte Carlo
methods.  It  was  shown that  the  modifications provide better  accuracy of the radiance  computation
compare  to  the  original  geometric  truncation  with  discrete  ordinates  while  continuous  derivative
approach provides significant gain in computer time with Monte Carlo simulations.

Highlights

• Criterion for selection of the angle of truncation is proposed;
• New form of the replacement phase function within the forward cone;
• Preservation of integral characteristics of the phase function is considered;
• Continuity of the phase function at the angel of truncation is considered;
• Comparison of radiance computed various truncation methods is performed.
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1. INTRODUCTION

Accurate  numerical  calculations  of  radiance  transmitted  through  and,  especially,  reflected  by  the
atmosphere  are  required  in  numerous  remote  sensing  applications.  Size  distribution  of  the  major
scattering media in the atmosphere is such that effective size of scattering particles is much greater than
wavelength of visible light. Consequently, scattering of light by those particles is highly anisotropic with
a distinct forward scattering peak. The presence of that peak constitutes one the major problems of
atmospheric radiative transfer (RT).

The problem of the forward scattering peak is  handled with various methods that  are collectively
referred to as truncation of the scattering phase function. The essence of the approach is to replace the
actual  phase  function with a weighted  sum of  the delta  function and yet  another  (truncated)  phase
function that is relatively smoother than the actual one. The difference between the truncation methods
is in the choice of the truncated phase function. Two groups can be distinguished among those methods.
The first group preserves functional behavior of the phase function outside of the forward scattering
cone [1,  2,  3]. The other group deals with Legendre moments of the phase function [4,  5,  6]. While
representation of  the  phase  function  with  Legendre  moments  bears  clear  theoretical  advantages,  its
practical use may not be easy in cases when the phase function is given by a set of scattering angle –
value pairs.  The forward peak may be poorly resolved making computation of the moments a very
challenging problem. Methods based on this representation will not be considered in this study.

New methods belonging to the first group will be presented. Term “geometric truncation” (GT) was
suggested by Iwabuchi and Suzuki [3]. This term will be used to refer to their study. However, the ideas
from other methods preserving phase function outside certain forward cone were used in this study. For
this reason it is important give a brief recap of those studies. First, we note that works of Potter and
Arking [1, 7, 8] used truncation technique without providing explicit functional form of the dependence
of the truncated phase function on the scattering angle Q withing the forward cone. Figures 1 of all of
the above mentioned papers suggest that it is either ~exp(-Q/Qt)  or ~exp(-Q2/s2). Those graphs also
suggest that truncated phase function has continuous derivative at the angle of truncation. Mitrescu and
Stephens [2] suggested replacement of the forward peak with a constant presenting phase function value
at the angle of truncation. While they performed a study on the sensitivity to that angle, no clear recipe
on a priori selection of such an angle was provided. Iwabuchi and Suzuki suggested similar technique
but  their  truncated  phase  function  was  discontinuous  at  the  angle  of  truncation  while  preserving
asymmetry parameter of the original phase function.

All methods based on angle – value representation of the phase function require selection of the angle
of truncation. Such selection is also needed in delta-fit technique [5]. However no objective recipe has
been provided so far.  Rozanov and Lyapustin [9] presented RMS error of radiance as a function of
truncation angle for delta-fit and delta-S [2]. Their conclusion was “the optimal width <of the forward
cone> cannot be evaluated in general case because the approximation error depends on the unknown
intensity”. In this study another approach will be suggested based on how much information on single
scattering can be retained from the original phase function and what part of the phase function range
presents the diffraction peak. While there is no rigorous definition of the width of the forward cone and,
therefore, there may be various methods of objective selection, the use of such objective criterion can be
desirable in the situation of comparing accuracy of RT computations for different phase functions with
different multiple scattering RT methods. This problem will be also addressed in this study.

2. STATEMENT OF THE PROBLEM AND NOTATION

If a plane parallel scattering medium is illuminated on its top by light coming in direction m0 = cos q0,
f0 = 0, then the diffuse radiance inside the and its boundaries is a solution of the RT equation (RTE):
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where t is optical depth, w – single scattering albedo (SSA), m = cos q, q, f are the polar and azimuth
angles  of  the  direction  of  propagation  of  light,  P(m,  ’m ,  f –  ’f )  is  the  scattering  phase  function
normalized with condition:

∮
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We will also consider cumulative phase function widely used in Monte Carlo simulations of radiative
transfer:
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Assuming spherical  symmetry of  the scattering centers  and thus phase function dependence on the
scattering angle, phase function can be expanded in Legendre series
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1
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Truncation of the phase function 

P (Ω ' →Ω)→~P (Ω ' →Ω)=4 π f δ(Ω ' →Ω)+(1−f )P ' (Ω ' →Ω) (5)

that also can be written as

P (x)→~P (x)=2 f δ(1−x)+(1−f )P ' (x) (6)

leads to the same RTE (similarity transformation [1 - 6, 9]
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with new single scattering albedo and optical depth:

τ '=τ(1−f ω) ω '=ω(1−f )/(1−f ω) (8)

If truncated phase function P ' (x)  satisfies condition (2) then eqs. (5) and (6) ensure that replacement
phase function 

~P (x)  also does.

The original geometric truncation was suggested as [3]

P ' (Θ)=
1

1−f { Pf , 0≤Θ≤Θt

P (cosΘ), Θ>Θt

, (9)

so that the new phase function 
~P (x)  remains unchanged for scattering angles greater than the angle

of  truncation  Θt .  Normality condition and preservation of  the asymmetry parameter  lead to  the

following system for the fraction of truncation f and constant Pf.

{ 2 f +Pf(1−xt)=∫
xt

1

P (x)dx

2f +
1
2

Pf (1−xt
2)=∫

xt

1

P (x) xdx

(10)

where  xt=cosΘt .  It  is  easy  to  see  that  equations  (10)  contain  three  variables:  the  fraction  of

truncation f, constant Pf, and the angle of truncation. The latter can be used as a variable there if either



the fraction of truncation or constant  Pf is defined. It was as  f =χM (see delta-M truncation [4]) to

determine Pf  and Θt  for a specific phase function and assumed a prerequisite of conservation of

the first moment. They also noted that f and Pf can be determined if Θt  is a prescribed parameter.

The strength of the method is that it retains scattering features everywhere outside the forward cone. It
does not require knowledge of the Legendre coefficients  χ l .  So, the approach based on delta-M

determination  of  the  fraction  of  truncation  looks  unnecessary  complication:  it  requires  accurate
computation of the moments which is a challenging problem in some cases (especially of higher orders).
Moreover, the use of f =χM  is subjective since the choice of order M is also subjective. Therefore,

some other way to prescribe Θt and determine f and Pf  is needed. Section 3 of this paper suggests

an objective determination of the angle of truncation.

It  is  also easy to  see  that  the  resulting phase  function  
~P (x)  has  discontinuity at  the angle  of

truncation. Figure 1 shows phase function  
~P (x)  computed according to system (10) for different

angles of truncation. The jump is of the order of magnitude of the original phase function at the angle of
truncation.  Section  3  suggests  two  modifications  of  the  original  geometric  truncation  providing

3. OBJECTIVE CHOICE OF THE ANGLE OF TRUNCATION

Forward scattering peak  of the phase function presents  the major challenge in  multiple scattering
radiative transfer. It is desirable to replace the actual phase function as a sum of eq. (6). If the phase
function is given as a function of the scattering angle then standard methods of calculus can be used to
find characteristic points of the function such as extrema and points of infliction. In this study we will
consider polydisperse scattering particles that are characterized with particle size distributions and their
integral parameters. If effective diameter of such distribution Deff is much greater than wavelength l, so
that Mie parameter  pDeff/l >>1 then forward peak of the phase function is very strong. Plot of such a
phase  function  itself  is  not  evident.  It  is  more  fruitful  to  consider  a  plot  of  ln (P(Θ))  and  its
derivatives with the goal to find a point that can be considered as an objective limit of the forward peak.



Figs. 3(a) and 4(a) show ln (P(Θ))  for two different liquid clouds from OPAC database [10]. It is
clear that the forward peak is limited by scattering angle of few degrees. Red ellipses show the transition
range from the peak. Considering derivatives of ln (P(Θ))  one can see that there are two points that
can be potentially used to determine the limit  of the peak:  minimum and infliction point of the 1st

derivative.  The former lies  before the transition range,  see Figs.  2(c)  and  3(c).  The infliction point
provide more adequate estimate of the transition from the peak. It is also clear from Figs. 2(d) and 3(d)
that cumulative phase function also has transition from one regime to another in the infliction point of
log derivative of the phase function.

Phase functions from Figs. 2 and 3 were computed with Mie scattering code SPHER [11, 12]. These
computations provide phase functions with any desirable angle resolution allowing differentiation with
high accuracy. If the phase function is known from experiment or from numerical modeling then angular
resolution  may  be  poor.  This  and  experimental/modeling  errors  may  lead  to  derivative

d ln(P (Θ))/dΘ  to  be  a  very  noisy  function  so  that  further  numerical  differentiation  becomes
inadequate mean to find the infliction point. The example is shown in Fig. 4. The phase function from
ice clouds data base [13,  14] look smooth but their 1st derivatives are noisy making further numerical
differentiation  troublesome.  In  this  case  the  technique  can  be  modified:  actual  values  of

d ln(P (Θ))/d Θ can be fitted with a polynomial of 4th or 5th degree and then the 1st positive infliction
point of such polynomial can be found with standard means. The infliction points in Fig. 4 was found
with 4th degree polynomial. Adding higher orders does not lead to significant change of the position of
the infliction point.









4. CONTINUOUS MODIFICATION OF GEOMETRIC TRUNCATION

There are many ways to remove discontinuity of the replacement phase function 
~P (x) . If a constant

value within the forward peak is desirable then the preservation of the asymmetry parameter (second
equation in system (10)) needs to be replaced with continuity condition. However, preservation of the
asymmetry parameter may be desirable, so it makes sense to replace actual phase function within the
forward peak with a simple function allowing both conditions to be met. Let us consider the following

P ' (Θ)=
1

1−f {a+b cosΘ , 0≤Θ≤Θt

P (cosΘ), Θ>Θt

, (11)

Then normality condition gives

2 f+a (1−xt)+b(1−xt

2
)/2=∫

xt

1

P (x)dx . (12)

Continuity condition gives

a+b xt=P (xt) . (13)

So far we have obtained 2 equations while one more equation is needed to derive parameters a, b, and f.
Preservation of asymmetry parameter still can be used to close the system as it was used in the original
study [3]. It leads to the following equation:

2 f+a (1−xt
2)/2+b(1−xt

3)/3=∫
xt

1

P (x)xdx . (14)

Asymmetry parameter itself is a functional of the phase function. Therefore, preservation of its value can
be  replaced  with  preservation  any other  functional  that  may present  physical  sense  in  a  particular
application. Mean scattering angle (MSA) will be considered in this study as yet another example of this
kind. MSA is defined as 

⟨Θ⟩=
1
2
∫
0

π

Θ P (Θ)sinΘ d Θ=
1
2
∫
−1

1

arccosμ P (μ)dμ . (15)

It is related to the mean backscattered fraction [15], see eqs. (15a), (15b) there*:
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4 π
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0

2 π

P (x1 , x2 ,ϕ)dx1 dx2 dϕ . (16)

Requiring preservation of MSA we obtain instead of (13)

a f a (Θt)+b f b(Θt)=∫
xt

1

arccosμ P (μ)dμ , (17)

where

f a(Θt)=sinΘt−Θt cosΘt ; f b(Θt)=[sinΘt cosΘt−Θt cos2Θt ]/4 . (18)

Conditions (14) and (17) present examples of preservation of a certain integral characteristics of the
phase function. Along with (12) and (13) they do not provide smooth function behavior at the angle of
truncation,  i.e.  derivative  of  the  phase  function  is  not  continuous  there.  It  is  interesting  to  see
consequences of dropping preservation of asymmetry parameter or MSA in favor of continuity of the 1st

* relationship (16) was well forgotten so it was independently rediscovered years later [16].



derivative of the phase function. For this reason yet another variant of modification will be considered
with condition

−bsinΘt=
dP (Θ)

d Θ
|Θ=Θt

. (19)

It is interesting to note that in this case matrix of the system is diagonal that makes the solution easier.

Figure  5  presents  implementation  of  the  original  and new versions  of  geometric  truncation.  It  is
important to note that continuous derivative GT provides the smallest values of the replacement phase
function 

~P (x)  within the forward cone. This implies the greatest truncation fraction fGT among other
versions.  Consequently effective single  scattering albedo,  see  Table  1,  will  be  the  smallest  for  this

Figure 5. Original phase function P (x)  (black) and replacement phase functions 
~P (x) (without d

peak) for clean continental cumulus (OPAC CUCC, Deff = 11.54 mm, l = 0.55 mm), Qt = 3°: purple –
original GT, red – continuous GT with preserved asymmetry parameter, cyan – continuous GT with

preserved MSA, orange – continuous derivative GT.

5. NUMERICAL TESTS OF GEOMETRIC TRUNCATION WITH RADIANCE 
COMPUTATIONS

The original study [3] proposed geometric truncation for Monte Carlo modeling of radiance. It is very
suitable in the cases when phase function is given as a set of angle – value pairs. However, as a general
method of handling highly anisotropic forward scattering it also can be used with deterministic methods
such as discrete ordinates and spherical harmonics. In this study both numerical tests were performed
with DISORT [17], one of the most popular discrete ordinate RT solver, and the I3RC Monte Carlo code
[18, 19].

5.1. TEST WITH DISORT

5.1.1. Behavior of the phase function moments.

Since DISORT heavily relies on the moment representation of the phase function, consequences of the
original  and  new  versions  of  geometric  truncation  on  the  moment  decay  with  order  need  to  be
considered. Using definition of moments(4) and relationship (6) between the replacement phase function
~P (x)  and truncated phase function P ' (x)  we obtain for the moments:

~χm=f +(1−f )χ ' m (20)



Figures 5 and 6 show decay of the moments  ~χm  and χ ' m , respectively, in comparison with the

original moments. It is clear from eq. (20) that moments ~χm  reach value of the truncation fraction f

as an asymptote. Provided that the same angle of truncation was used, truncation fraction significantly
depends on the version of geometric truncation. In the example considered in Figure 5 the angle of
truncation  Qt = 3° yields the following values of the fraction of truncation: original GT -  f = 0.215,
continuous GT with preserved asymmetry parameter - f = 0.142, continuous GT with preserved MSA - f
= 0.0875, continuous derivative GT - f = 0.318. Figure 5,b shows that continuous derivative approach
reveals the greatest deviation from the original moments while preservation of the asymmetry parameter
the  best  one.  However,  up  to  order  m =  10  moments  ~χm  are  very well  numerically preserved

regardless of the method of truncation. the moments of the truncated phase function are sign alternating.
Figure 6 shows absolute values of them revealing the fastest decay occurs with continuous derivative



5.1.2. radiance reflected by and transmitted through the cloud

Radiance  calculations  were  performed  for  clean  continental  cumulus  cloud  (see  OPAC  []  for
microphysical properties) at the wavelength of 0.55 mm. Single scattering albedo was 0.9999997. Two
optical thicknesses (t = 10 and t = 100) and two Sun zenith angles (q0 = 36.9°, m0 = 0.8 and q0 = 49.5°,
m0 = 0.65) were considered. Version 2 of DISORT was used as an RT solver. That version uses Delta-M
truncation without an option to turn it off. For this reason performance of Delta-M was also tested as it
affects  test  runs of  with geometric truncation.  Reference run used 200 streams (yielding truncation
fraction fDM = c200 = 3.379×10-4) with original moments up to the order of 255. Reference runs used 100
streams.

Table 1. Parameters of GT affecting RT calculations with DISORT.

Truncation method truncation fraction, fGT Effective single scattering
albedo, ’w , see eq. (8)

Delta-M truncation
fraction, fDM = ’c 100

Delta-M 100 0 0.99999969 7.714×10-2

Original GT 0.2150 0.99999962 -2.674×10-2

GT  with  preserved
asymmetry parameter

0.1419 0.99999965 -5.218×10-3

GT with preserved MSA 8.755×10-2 0.99999967 -5.634×10-3

Continuous derivative GT 0.3180 0.99999956 -3.413×10-3

Table 1 presents truncation fractions due to geometric truncation and due to delta-M approach used in
DISORT. The latter is always much smaller than the former meaning that the major portion of power
concentrated in the forward peak is taken care of by geometric truncation while unavoidable influence of
delta-M is significantly smaller. Effective single scattering albedo also presented in Table 1 is that after
geometric  truncation.  It  does not  include further  correction  applied  within DISORT. The code was
supplied with parameters coming into RTE (7): ’w ,  ’c l , and effective optical thickness after geometric
truncation.

It is known fact (see, e.g. [Rozanov and Lyapustin 2010], Figure 5 there) that delta-M truncation has to
be supplemented with single scattering correction of radiance otherwise relative difference of radiance
obtained with that method and reference solution oscillates as a function of solar and view zenith angles
with magnitude of tens of per cent. Such correction is indeed implemented in DISORT. A user of the
code should should supply as many as possible Legendre moments of the phase function for accurate
reconstruction of single scattering. The algorithm employs first  m moments for multiple scattering RT
then corrects for single scattering using all supplied moments. In the context of this study, supplying all
available  moments  of  truncated  phase  function  ’c l is  not  enough  –  this  enables  correction  to  P’.
Substantial change of the algorithm is needed to implement yet another correction for single scattering
with the original phase function.

Such change of the algorithm is beyond of the scope of this study. But that correction is not needed for
comparison the original GT with new versions proposed here. It can be done without single scattering
correction, i.e.  without the use of  higher order  moments  of  phase function.  Comparison of relative
difference  of  radiances  computed  with  different  truncation  techniques  without  correction  allows to
estimate performance of the techniques themselves while  using correction as  described above gives
delta-M an advantage. So, comparison with correction only allows relatively impartial comparison of
GT techniques between each other. Figures 8 thorough 13 show reference radiance along with relative
differences between the reference solution and those obtained with truncation techniques. It is important



to notice the drastic difference in the performance of delta-M technique with and without correction.
Among  GT  techniques  continuous  derivative  approach  shows  the  best  performance  for  reflected
radiance and better than the original GT for transmitted radiance with and without correction. It also
shows  the  best  performance  without  correction  since  delta-M  approach  generates  very  oscillating
solution.  Performance of the continuous derivative  approach with correction to  the truncated  phase
function  P’ is  comparable  with  delta-M approach with  correction  to  the  original  phase  function  P.
Therefore, continuous derivative approach is the best option in the situation when Legendre moments of
higher orders cannot be easily estimated, e.g. if the phase function is given by a table of angle and values
with insufficient resolution of the forward peak.





function truncation and reference : green – delta-M, purple – original GT, red – GT with preserved
asymmetry parameter, cyan – GT with preserved MSA, orange – continuous derivative GT; b), c), d) –
with single scattering correction (see text), e), f) g) – without correction; b) and e) – f = 0°, c) and f) –

f = 90°, d) and g) – f = 180°.













5.2. TEST WITH MONTE CARLO MODELING

Monte Carlo modeling was performed with I3RC Monte Carlo code with the following set up: 1D
model, the same medium as in previous section, and 1.6×107 photon stories were played in batches by
104 photons. Phase function in all cases was represented by Legendre moments up to order of 255. Table
2 gives values of the last moments along with the difference 1 – ‘w( ) for all variants of GT. Figures 14
and 15 present reflected radiance along with relative difference between the reference solutions and
those obtained with various versions of GT. While the graphs of the relative difference show quickly
changing functions of the view zenith angle, the absolute value of the relative error is within 4% for vast
range of angles. It is also easy to see that the solution with continuous derivative is the least variable. It
is also clear that there is certain systematic positive bias in all graph. The reason for this bias is in
specific design of the RT code. It requires all input variable to be in machine single precision. In the case
of cloud with single scattering albedo very close to unity, machine representation of the values listed in
Table 1 may shifted them to the nearest available machine number. Such a shift can cause bias in albedo
of ~ 1% between original  phase function and SSA and truncated ones.  In  this situation continuous
derivative GT appears to be the best option as providing the least variable deviation from the solution
with original parameters.

Monte Carlo simulations of radiative transfer are known to be very time consuming. Therefore, it is
important to check the impact of the truncation techniques on computer time. Table 3 presents computer
times per one batch of 104 photons for different optical thicknesses of the cloud and Sun zenith angles. It
is  not  surprising  that  the  greater  SSA supplement  is  the  shorter  computer  time  is.  Greater  SSA
supplement means greater effective absorption and shorter photon lifetime leading to faster simulation.
For this reason continuous derivative GT is the best option providing significant advantage in computer
time comparing to the original GT (about 10% depending on geometry) and comparing with modeling
with the original optical parameters (>30%).





Monte Carlo, open circles - DISORT



CONCLUSION

The study considered variations of the original geometric truncation of the scattering phase function. It
addressed problems of objective selection of the angle of truncation and discontinuity of the replacement
phase function at the angle of truncation. A robust criterion of selection of the forward cone limit was
suggested. The criterion is based on numerical evaluation of the phase function derivative and search for
its  first  infliction  point.  The  search  for  that  infliction  point  can  be  done  with  either  numerically
differentiation of the phase function or with fitting the first derivative with a polynomial of 4th or 5th

degree and finding first positive infliction point of that polynomial.

Three variations of the replacement phase function were suggested. Unlike the original approach, all
new versions provide continuous replacement of the phase function. The normality condition for the
replacement phase function provides one equation relating parameters of such replacement. Imposed
continuity  condition  ultimately  requires  either  to  use  more  complex  functional  form  of  the  phase
function  within  the  forward  cone  if  some  other  conditions  (such  as  preservation  of  asymmetry
parameter) need to be met. A simple weighted sum of a constant and cosine of scattering angle was
considered. This form allows to preserve the asymmetry parameter. However, it also provide flexibility
in  the  choice  of  another  condition  instead  of  preservation  of  asymmetry  parameter.  Those  other
conditions can be requirements to preserve a certain functional of the original phase function or a certain
property of the phase function. Among the conditions of the former type,  preservation of the mean
scattering angle was considered. The latter type of conditions was presented by the requirement for the
replacement phase function to have continuous derivative at the angle of truncation.

It  was  found  that  the  method  preserving  mean  scattering  angle  returns  the  smallest  fraction  of
truncation  while  derivative  continuity  approach  returns  the  greatest  one  given  the  same  angle  of
truncation. This makes continuous derivative geometric truncation the fastest option for Monte Carlo
modeling. It  was also shown that this version provides the least variable relative difference between
simulations with and without truncation.

Calculations of reflected and transmitted radiance showed that continuous derivative GT provides the
best match with the reference solution among considered geometric truncation methods regardless of the
use  of  single  scattering  correction.  It  also  provides  accuracy  comparable  with  delta-M  under  the
unfavorable use of that correction. Overall, this version of GT fixes deficiencies of the previous versions
of the truncation approaches based on preservation of  the phase function outside the forward cone:
simple functional form, easy implementation, and smooth continuity at the angle of truncation.
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Table 2. single scattering albedo supplement and the highest order moment of the phase function for original medium and
different truncation methods
absorption Original phase

function
Original GT GT, asymmetry

preserved
GT, MSA preserved GT, continuous

derivative

1 – ‘w( ), 10-7 3.1 3.8 3.5 3.3 4.4

c255
(‘) 2.626×10-6 7.994×10-4 -2.040×10-3 -2.494×10-3 -7.126×10-5

Table 3. Average times for 104 photons simulations with different geometries and truncation methods; computations performed 
on the Intel Xeon E5620 2.4GHz.

Geometry

Original
phase

function
time, s

Original GT
GT, asymmetry

preserved
GT, MSA preserved

GT, continuous
derivative

time, s % of original time, s % of original time, s % of original time, s % of original

m0 = 0.65,
t = 10

58.75 47.4 80.7 50.27 85.6 55.82 95.0 41.66 70.9

m0 = 0.65,
t = 100

560.3 443.9 79.2 485.8 86.7 517.6 92.4 387.3 69.1

m0 = 0.80,
t = 10

57.38 44.93 78.3 48.97 85.3 53.22 92.8 39.02 68.0

m0 = 0.80,
t = 100

617.5 456.5 73.9 531.2 86.0 586.4 95.0 419.0 67.9


