

National Aeronautics and Space Administration

Progress Towards Modeling The Mars Science Laboratory PICA-NuSil Heatshield

Brody K. Bessire | IPPW PICA-NuSil | 07.12.19

PICA-N Response Model Development / The Problem

MISP Qualification Run 1 Surface Temperature with NuSil Coating: 85 W/cm²

NuSil Coating Process Development

NuSil Coating Thickness

Mini-Sprite models coated applied at AMES.

• 3 box coats.

•

- Penetration depth ~ 620 microns.
- Nonhomogeneous in-depth distribution of coating.

Mini-Sprite O.D. ~ 1.83 in.

- Panel coated by LMA.
- Number of box coats unknown.
- Penetration depth ~ 220 microns.
- Nonhomogeneous in-depth distribution of coating.

Panel Section = 1.00 in^2

HyMETS PICA-N Mini-Sprite Campaign

HyMETS Test Campaign March 2019.

Mini-Sprite O.D. ~ 1.83"

Mini-Sprite architecture chosen to study viscous flow in shear environment. PICA and FiberForm models (22 Models in Total) with various numbers of box coats (e.g., 0, 3, 8).

- Data collected in 3 atmospheric environments (e.g. Air, N₂, CO₂).
- Each model instrumented with thermocouples to measure in-depth temperature and a pyrometer to measure surface temperature.
- Two R-type thermocouples and two K-type thermocouples spaced ~ 5mm apart.
- Suite of spectrometers used to analyze species in the post-shock region.

High Speed Cameras

PICA-N HyMETS Test Conditions

Material	Model Number	Simulated Atmosphere	Heat Flux (W/cm ²)	Stagnation Pressure (kPa)	Duration (s)
PICA-N	1	Earth	140	5.6	28
PICA-N	2	Earth	140	5.6	30
PICA-N	3	Earth	140	5.6	30
PICA-N	4	Earth	60	4.1	67
PICA-N	5	Earth	224	6.6	29
PICA-N	6	N ₂	131	5.3	29
PICA-N	7	Mars	127	5.2	33
PICA-N	8	Earth	60	3.9	30
PICA	9	Earth	140	5.6	30
PICA	10	N ₂	130	5.3	30
PICA	11	Earth	223	6.6	21
PICA	12	Mars	126	5.3	31

FiberForm-N HyMETS Test Conditions

Material	Model Number	Simulated Atmosphere	Heat Flux (W/cm ²)	Stagnation Pressure (kPa)	Duration (s)
FF-N	1	Earth	128	5.3	11
FF-N	2	Earth	141	5.6	9
FF-N	3	Earth	126	5.3	6
FF-N	4	Earth	59	4.1	32
FF-N	5	N ₂	132	5.3	30
FF-N	6	Mars	127	5.1	7
FF-N	7	Earth	141	5.6	30
FF	8	Earth	141	5.6	7
FF	9	N ₂	134	5.3	30
FF	10	Mars	128	5.2	25

HyMETS Campaign High-Speed Video (45°)

Development of the Model

Stage 2 – Oxidation and In-Depth Phase Separation

Time = 1 - 10s Temp. = 1500 - 1650 °C

• Persistent oxidation of Si_xO_yC_z layer to form SiO₂ layer at the surface concomitant with in-depth phase separation of Si_xO_yC_z to form SiO₂, small domains SiC, and domains of graphitic carbon.

 $Si_xO_yC_z$ (s) \longrightarrow SiO_2 (s) / SiC (s) / C (s)

0,

SiH₄

0

 $O_2 N$

CH₄

0

Η,

• Formation of SiO₂ melt layer.

Stage 3 – Carbothermic Reduction and Differential Recession

Time = 10 - 17s Temp. = 1650 - 1900 °C

 Thin layers of SiO₂, SiC, and carbon react to form SiO and CO (Carbothermic Reduction).

2SiO₂ (s) + SiC (s) 3SiO (g) + CO (g)

 $SiO_2(s) + SiC(s) \longrightarrow 2SiO(g) + C(s)$

 $SiO_2(s) + 2SiC(s) \longrightarrow 3Si(s) + 2CO(s)$

- Carbothermic reduction initiates the breakdown of a stable surface coating which exposes the underlying char layer.
 - Char layer recedes at a higher rate than the Si_xO_yC_z surface leading to differential recession.

7

HyMETS Campaign High-Speed Video (45°)

Differential Surface Recession

Post-Test PICA With NuSil Coating

Stakeholders

Entry Systems Modelling Project Management (ESM)

• M. Barnhardt, M. Wright, A. Brandis, M. Hughes

NASA ARC TSM / Material properties, model development, coating development

- T. Boghozian, J. Garcia, G. Gonzales, F. Milos, M. Stackpoole, M. Switzer, N. Carder, S. White, J. Monk MEDLI2, Mars 2020 / MEDLI2 Analysis and Reconstruction
- T. White, R. Beck, H. Wang

LaRC / HyMETS Testing

- S. Splinter, J. Gragg, B. Butler
- NASA PMM / High-fidelity model development
- N. Mansour, J. Meurisse, J. Thornton, A. Borner, A. Fagnani, J. Ferguson, F. Semeraro

University of Illinois Urbana-Champaign and ALS / Permeability and Micro-CT Experiments

• Prof. Francesco Panerai, D. Parkinson, H. Barnard

Montana State University / Oxidation Studies of NuSil and FiberForm

• Prof. Timothy K. Minton, David Chen

University of Vermont / Gas-Surface Interaction Problems for Atmospheric Entry

Prof. Douglas Fletcher

SRI International / Pyrolysis Studies of PICA and NuSil

• J. White

Questions