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Introduction

The Mars Science Laboratory (MSL) was protected during i1ts Mars
atmospheric entry by an instrumented heatshield that used NASA's Phenolic
Impregnated Carbon Ablator (PICA) [1]. PICA 1s a lightweight carbon
fiber/polymeric resin material that offers excellent performances for
protecting probes during planetary entry. The Mars Entry Descent and
Landing Instrument (MEDLI) suite on MSL offers unique in-flight validation
data for models of atmospheric entry and material response. MEDLI
recorded, among others, time-resolved in-depth temperature data of PICA
using thermocouple sensors assembled in the MEDLI Integrated Sensor Plugs
(MISP). The objective of this work is to showcase the capability of the
Design, Analysis, and Optimization of Thermal Protection Materials (DAO-
TPM) software. DAO-TPM i1s a Python based framework that works as a link
between mission design, acrothermal and radiative environment computation,
Thermal Protection Systems (TPS) microstructure analysis, material response
and optimization tools. The toolbox has a Graphical User Interface (GUI) that
allows the user to build as well as run the various software and utilities used
to design, analyze and optimize a heatshield during atmospheric entry.

Applications in DAO-TPM

DAO-TPM includes a set of modeling tools. The General Mission Analysis
Tool (GMAT) [2] provides an open source software system for space
mission design, optimization, and navigation. The Direct Stmulation Monte
Carlo SPARTA code [3] computes the environment around the heatshield in
the rarefied regime, while in the continuum regime, the aerothermal
properties are computed using the Data Parallel Line Relaxation (DPLR)
CFD code [4]. The environment radiative heating i1s provided by the
Nonequilibrium AIR radiation (NEQAIR) program [5]. The Porous
Microstructure Analysis (PuMA) software [6] provides the effective
material propertiecs of PICA through a combination of predictive
simulations and experiments. Mutation++ library [7] computes the
thermodynamic and chemistry properties. The Porous material Analysis
Toolbox based on OpenFOAM (PATO) software [8,9,10] 1s used to perform
the material response of the heatshield. The DAKOTA library [11] 1s used
to calibrate physical models in PATO and PuMA. In future work, DAKOTA
will be used to do sensitivity analysis and quantification of margins and
uncertainty of the thermal response at the MISP locations.
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Fig. 1 MSL simulations at the macro-scale using NEQAIR, SPARTA, DPLR and PATO.

MSL simulations at the macro-scale

NASA’s next mission to Mars, Mars 2020, will use the spare heatshield of
the Mars Science Laboratory (MSL) for thermal protection during entry,
descent and landing. In preparation for Mars 2020 post-flight analysis, the
predictive material response capability 1s benchmarked against flight data
from the MEDLI. This work represents an important milestone toward the
development of validated predictive capabilities for designing thermal
protection systems for planetary probes.
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Calibration of PICA pyrolysis gases

A new model for the PICA pyrolysis 1s developed and calibrated [12] based
on high fidelity thermal decomposition experiments [13]. The model
calibration 1s achieved by coupling PATO with Dakota. The calibration is
based on precise quantification of pyrolysis gases. These are obtained from
mass spectroscopy analysis during thermal decomposition at fast heating
rates. The experimental data are fit using a multi-objective genetic algorithm
by optimizing the model parameters for an element based formulation. This
new model captures both the material mass loss and the gaseous elements
produced during pyrolysis.
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Fig. 3 Calibration of PICA pyrolysis
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