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What 1s HEEET?

* Heat Shield for Extreme Entry Environment Technology (HEEET) is a Dual- * Hypervelocity impacts (HHVI) are characterized by projectile velocities that exceed the local
lic resin matrix speed of sound in the target material. Such impacts result in stresses at the shock front that

Layer 3-D woven material infused with a low density pheno

* Recession Layer (RL)

* Layer-to-layer weave using fine carbon fiber - high density for recession

performance
* Insulating Layer (IL)
* Layer-to-layer weave with carbon phenolic blended yarn
insulative performance

* Arcjet tests have shown 1L.-alone aerothermal capability as well

* ~30% more recession measured compared to RL

High Density Carbon Weave
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Infused High Density Carbon Weave

Hypervelocity Impacts and
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far exceed the failure stresses of both the target and projectile.

* The result is a “flow” of material in the region of the shock front, well-described by the
equations of hydrodynamics. It has been shown that increasing velocities (up to a
threshold) result in more fluidic behavior at the shock frontl®!

* As velocity increases, craters go from being more ellipsoidal (greater depth than diameter)

Hypervelocity impact damage can be characterized by Ballistic Limit Equations (BLEs)
which predict penetration depth as a function of projectile kinetic energy, target material
properties, and projectile material properties!!]

* BLEs are semi-empirical, based on test generated data. The HEEET BLE is

Puggsr = 0.787d (—2—)* V3

A common format is based on Blast Wave Theory, which predicts a crater volume
proportional to the kinetic energy deposited in the target material by the projectilel?! [3/14]

Volumec,qrer KEProjectile

| * Since crater volume is constant for a given amount of energy, as crater volume increases,
penetration depth decreases for constant projectile kinetic energy

* Therefore the BLE predicts impact depth for low velocity shots should bound higher

Ballistic Limit Equations
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PHEEET

Expected Micormeteoroid Environments

* A 10 million point Monte Carlo simulation of Micrometeoroid (MM)
impacts encountered along the MSR-EEYV trajectory provides :
impact energy likelihoods

* Three energies were selected to test at

* 500 J —represents ~1/100,000 probability particle
* 1400 J — represents ~1/500,000 probability particle °

* 15000 J —represents ~1/1,000,000 probability particle HEEET
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Whipple Shields

Whipple Shields are a thin outer layer meant to break up an incoming

particle before it interacts with your vehicle

Testing this year will evaluate if a thin RL will provide any Whipple

Shield effect to the underneath IL

Standoff distance does play a signification role in the effectiveness of

a Whipple Shield, meaning RL layer effectiveness against MM/OD

damage will likely be small

* Increasing RL thickness coupons will be evaluated against I1L.-only
control samples

Theoretical HV1 HVI W/ Whipp_le Shield
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Figure 1: Effects of a Whipple Shield on HVII®

In-Test Photos
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High Velocity Impact Testing (HVIT) Performance
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Conclusions

* A thin Recession Layer does not yield a
significant improvement in measured crater
depth, meaning it is not a mass-etficient

mitigator for MM/OD damage

400 J impacts (representing ~1/500,000
icle) on HEEET IL are likely flyable,

ermal analysis

yresenting ~1/1,000,000
d un-flyable
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- HEEET BLE (to be updated with n
data) was formed oft of full scale RL R
coupons (~.50” RL) with about half the\
data points in this test series. This explain's‘&\

the poor predictions the current BLE

generates

* Anew IL-only HEEET BLE will be

generated from the results of this test series




