

A relocatable lander to explore Titan's prebiotic chemistry and habitability

The Dragonfly Entry and Descent System

IPPW 2019; Oxford, UK

July 12, 2019

Michael Wright (Dragonfly EDL Phase Lead)

Jeff Herath, Helen Hwang, Jim Corliss, Aaron Brandis, Dave Buecher, Doug Adams, Ralph Lorenz

Introduction

- As of June 27, we are going to Titan!
 - launch 2026, arrival 2034
- This talk will focus on the Entry and Descent system that will deliver the rotorcraft safely to its release point
 - see talks by Ken Hibbard (Tuesday) and Doug Adams (tomorrow morning) at this workshop for more details how we get from there to the ground!

• Dragonfly EDL team combines expertise from NASA Ames/Langley and Lockheed Martin

- Aeroshell hardware provider (LM) has extensive hardware expertise for all relevant EDL missions since Pathfinder

• Titan EDL is well understood with robust performance margins across the subsystems

- Extensive heritage exists that can be adapted to this mission application
- Prior work for Huygens risk review (2004) and In-Space Propulsion Program lay the foundation for current EDL models
- Titan EDL is more straightforward than Mars in several important ways

Not included at the moment in the interest of file size for editing

EDL Concept of Operations

- Entry Interface 1270 km
 - Spin stabilized to 2 RPM
- Entry heat pulse: 250 sec.
 - Peak heat flux 250 W/cm² margined
- Drogue deploy E+6 min, ~Mach 1.5.
 - More than 80 minutes spent on drogue
- Main chute deploy E+88 min.
 - Low velocity & opening load
- Lander Release E+105 min.
 - Plenty of time to stage heatshield separation, activate radar & lidar, deploy landing legs

Wake-up avionics, begin telemetry transmission, E-25 min	
Vent heat rejection system, E-20 min	Entry
Turn to entry, switch to tone transmission, E-15 min	Preparation
Cruise stage separation, E-10 min	
Entry interface, $h = 1270$ km, $V = 7.3$ km/s, $\gamma = -49.7^{\circ}$, E-0 min	Ballistic
Peak deceleration, $h = 209$ km; $V = 4.4$ km/s, decel. = 11.2 g, E+4 min	Entry
Drogue parachute deployment, $h = 134$ km, $M = 1.5$, E+6 min	<u>ן</u>
Descent under drogue parachute	
Main parachute deployed by drogue parachute, $h = 4$ km, E+88 min	
Heatshield separation	Parachute Phase
Landing skid deployment	Thuse
Radar and lidar active	
Lander release, $h = 1.2$ km, E+105 min	
Powered flight	Powered Flight
\rightarrow Landing, $h = 0$ km	& Landing

EDL Timeline Comparison...

Aerothermal Environments

- NASA standard aerothermal (convective + radiative) models based tuned for Titan entry
- Total heating calculated over entire aeroshell
 - Conservative margins applied (Orion/MSL methodology)
 - Margined values well within tested limits for chosen TPS
 - Detailed simulations underway ahead of normal design cycle

Thermal Protection System

- Three TPS materials:
 - High TRL and used well within tested limits
 - Arc jet testing confirms performance
 - SMD funded PICA-D will be a drop-in replacement for heritage PICA. Ready by the end of 2019
- TPS sizing analysis uses mature processes developed during MSL/Orion
 - Design thicknesses carry unallocated margin
- TPS manufacture, testing, qualification and assembly follow standard procedures developed at LM and NASA ARC

Parachute Deceleration System

- Drogue Parachute (4.5m DGB)
 - Mortar deploy via trigger at Mach 1.5
 - Functions: stabilize capsule, decelerate through atmosphere, extract main chute
- Main Parachute (13.44m DGB)
 - Low speed subsonic deploy
 - Includes inversion netting
- Huygens heritage swivels prevent line twisting

Engineering Science Investigation

- Dragonfly is the first NASA competed mission subject to the ESI requirement
- ESI Goals:
 - Near surface and in-depth TPS temperature
 - Surface pressure
 - Total and radiative heat flux

• ESI Implementation:

- Partnership with German Space Agency (DLR)
- NASA provided MEDLI-style TC plugs and pressure ports on the heatshield and afterbody
- DLR provided COMARS sensor suite on the afterbody
- DLR provided data acquisition system for all instrumentation

Phase-A Preliminary Layout

Conclusions

- Dragonfly EDL system uses mature, high TRL, flight proven components
 - 3.75m Genesis derived aeroshell, flight proven TPS solutions, Viking derived parachute system
 - Aeroshell provider (LM) has extensive hardware expertise in all relevant EDL missions since Pathfinder

EDL is well understood; with robust performance margins across the subsystems

- Titan EDL is more straightforward than Mars in several important ways
- Timeline is not a significant constraint in EDL design
- Experienced analysis team is using NASA-standard processes and tools with appropriate modifications for Titan
- A lot of analysis has been already done to reduce risk heading into Phase-B
- ESI will collect the most flight data ever from any destination other than Earth or Mars
 - Enabled by strong partnership with DLR

We are ready for Titan!

DRAGØNFLY

EDL Monte Carlo Analysis

- Full analysis in POST2 from EI to lander release
- Delivery accuracy ~149x72 km at release
 - Easily affords lander sufficient accuracy to navigate to selected landing zone
- Dispersions sources
 - Latitude: navigation errors
 - Longitude: on-chute winds

