

UAM Research at NASA (and a dozen other reasons why it's a GREAT time to be an Aerospace Engineer)

The second

John Melton, PhD.

NASA Ames Research Center Moffett Field, CA 94035 john.melton@nasa.gov

The Aerospace Revolution is Well Underway

- A mini-renaissance in aerospace is occurring at all Mach numbers
- Enhanced Mobility, Greener Transport, Access to Space
 - Subsonic: UAM, electric propulsion, X-57, VTOL/ESTOL, urban operations
 - Transonic: Greener commercial aviation, hybrid propulsion systems, SLS/Orion
 - Supersonics: Low sonic boom demonstrator X-59, NewSpace projects
 - Hypersonics: Planetary reentry (Artemis lunar return), NewSpace
- New multi-physics problems require creative new approaches and novel solutions to hardware, software, and "people"-ware issues

We're ALL aerospace engineers, whether we're AE, ME, EE, CE, CS, or ?ES!

The Subsonics Revolution

NASA

- UAS = Unmanned Aerial System ("drones")
- UTM = UAS Traffic Management
- UAM = Urban Air Mobility (urban "air taxis")
- Special challenges for VTOL/ESTOL flights
- Urban interactions noise, winds, clutter
- Vehicle, airspace, and community challenges
- Three sample problems
 - What will these UAM vehicles look like?
 - How will these UAM networks develop?
 - How can we make urban operations safe and efficient?

What is UAM? And Why Now?

- Urban Air Mobility: Enhance overall mobility through the expansion of urban/suburban low-altitude "short"-range VTOL operations
 - New aero-propulsive capabilities provided by propulsive electrification
 - Advances in structures, automation, analysis, computing, and testing
 - Short flight ranges promote "non-traditional" approaches to vehicles and operations

UAM Vehicles: Not Your Father's VTOL . .

PROPULSION EFFICIENCY

high power, lightweight battery light, efficient, high-speed electric motors power electronics and thermal management light, efficient diesel engine light, efficient small turboshaft engine efficient powertrains

SAFETY and AIRWORTHINESS

FMECA (failure mode, effects, and criticality analysis) component reliability and life cycle crashworthiness propulsion system failures high voltage operational safety

OPERATIONAL EFFECTIVENESS

disturbance rejection (control bandwidth, control design) all-weather capability passenger acceptance cost (purchase, maintenance, DOC)

PERFORMANCE

aircraft optimization rotor shape optimization hub and support drag minimization airframe drag minimization

Quadrotor + Electric

Tiltwing + Turboelectric

Lift+Cruise + Turboelectric

Side-by-side + Hybrid

NOISE AND ANNOYANCE

low tip speed rotor shape optimization flight operations for low noise aircraft arrangement/ interactions cumulative noise impacts from fleet ops active noise control cabin noise metrics and requirements

ROTOR-ROTOR INTERACTIONS

performance, vibration, handling qualities aircraft arrangement vibration and load alleviation

ROTOR-WING INTERACTIONS

conversion/transition interactional aerodynamics flow control

STRUCTURE AND AEROELASTICITY

structurally efficient wing and rotor support rotor/airframe stability crashworthiness durability and damage tolerance High-cycle fatigue

AIRCRAFT DESIGN

weight, vibration handling qualities active control

W. Johnson and C. Silva, "Observations from Exploration of VTOL Urban Mobility Designs", 2018

UAM Vehicles: NASA Concept Vehicles

UAM Traffic Simulations for the SF Bay Area

UAM traffic animation serving 30K passengers in one day, 60 Dep/hr NASA/TM-2017-218356

UAM Traffic Simulations for the SF Bay Area

Average Flight Departure Spacing Delay in Minutes

Total Energy Use in kW-h: Battery

NASA/TM-2017-218356

UAM Air Traffic Interactions will be complex

UAM Urban Wind Estimation with Deep Learning

Urban Wind Field used for Deep Learning

Onboard Deep Learning Neural Network

Deep Learning Inputs and Outputs

Other Topics of Ongoing NASA UAM Research

- Controls (and transition)
- Autonomy
- Structures
- Rotors
- Noise
- Manufacturing
- Traffic and network management
- Vertiport designs and operations
- Communications
- Safety and Security

W. Johnson and C. Silva, "Observations from Exploration of VTOL Urban Mobility Designs", 2018

The NASA UAM Grand Challenges (2020+)

- Flight demonstrations of practical and scalable UAM concepts
- Challenge the industry to execute a variety of safety and integration scenarios
- Share lessons learned
- Benefit of NASA test expertise
- Understand what works (and what doesn't)
- Foster development of standards
- No purse or prize money

Davis Hackenberg, AAM Project Manager, NASA

The NASA UAM Grand Challenges (2020+)

Davis Hackenberg, AAM Project Manager, NASA

- Begin testing with real vehicles in virtual/synthetic environments at AFRC
- Understand interfaces and interactions with simulated Air Traffic Systems
- Test real flight hardware within increasingly realistic environments

The Transonics Revolution is just beginning

14- by 22-Foo

- Greener aviation has been a long-term NASA goal
- Better L/D, alternative fuels and noise reduction
- Hybrid and electric propulsion systems

The Transonics Revolution gets us to space

• Recent Orion Ascent Abort-2 Test at Mach 1.2

Testing in Ames 9x7 WTs

images from www.nasa.gov

Assembly at KSC

Successful test July 2, 2019

The Supersonics Re-Re-Revolution (Concorde 88)

- Low Boom Flight Demonstrator X-59 QueSST (2022)
- Aerodynamics and acoustics of the sonic boom
- In-flight shock visualization
- External Vision System
- Go fast AND go green AND go quietly
- Commercial supersonics

Boom and Aerion images from corporate websites, others from www.nasa.gov

What's next? Definitely more X-vehicles!

- More UAS/UTM testing in Corpus Christi (Downtown Reno in May 2019)
- X-56A flutter testing
- X-57 electric demonstrator testing
- UAM Grand Challenge flights in 2020+
- X-59 QueSST Demonstration flights in 2022

Need more NASA technical info? Check online!

- NTRS (NASA Technical Reports Server) https://ntrs.nasa.gov
 STI (Science and Technical Information) https://www.sti.nasa.gov
- NTRS includes access to the entire NACA Report collections (from 1917 to 1958!)
- NTRS includes most of the key technical reports created on X-planes, Apollo and Shuttle
- Most downloads are professionally scanned, and in convenient pdf format
- Able to tailor search queries to get the results you want
- Searching "UAM" returned 600 matching records!
- Searching "Urban Air Mobility" returned 1862 records!
- Searching "Sonic Boom" returned 3887 records!

And it's all completely FREE to download