Defining Well Clear Separation for Unmanned Aircraft Systems Operating with Noncooperative Aircraft

AIAA AVIATION 2019
ATOMS-15, UAS Traffic Management IV
Christine Chen
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the National Aeronautics and Space Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

© 2019 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.
Detect and Avoid is the capability to remain well clear and avoid collisions.

RTCA-228 Phase 1 Concept of DAA:

- Acquire Intruders
- Suggestive Guidance to Remain Well Clear
- Directive Guidance Issued to Avoid Collision
- Avoidance Maneuver

Cooperative or Noncooperative Aircraft

NMAC – Near Mid-Air Collision
Cooperative – Transponder/ADS-B equipped

*Notional Volumes
Does not indicate any temporal component that may exist.
Well Clear

• DAA Well Clear is the UAS technical means of compliance for satisfying FAR 91.111 and 91.113

 FAR 91.111: ...not operate so close to another aircraft as to create a collision hazard

 FAR 91.113: Vigilance shall be maintained ... so as to see and avoid other aircraft ... pilots shall alter course to pass well clear of other air traffic

• Detect and Avoid (DAA) Systems provide surveillance, alerts, and guidance to Unmanned Aircraft Systems (UAS) to help them maintain well clear of other aircraft
 – Designed as an alternative means of compliance for see-and-avoid regulations
 – DAA systems are essential for safe integration of UAS into the National Airspace System (NAS)
Previous Work

• In 2015, Sense and Avoid Science and Research Panel (SARP) developed a Well Clear Definition for unmanned aircraft based on distance and time

 – RTCA SC-228 adopted definition within Phase 1 DAA MOPS (DO-365)

 – Phase 1 UAS is assumed to be equipped with ADS-B In, airborne active surveillance, and an air-to-air radar

 – Definition driven by TCAS II interoperability, but applied to all intruders regardless of equipage

Phase 1 DAA well clear adopted by FAA

\[P(\text{NMAC}|\text{LoWC}) = 2.2\% \]

- \(h = +450 \text{ ft} \)

- \(\tau_{mod}^* \text{ (estimated time to 4000 ft)} = 35 \text{ sec} \)

* Recommended \(P(\text{NMAC}|\text{LoWC}) = 5\% \)

NMAC – Near mid-air collision (HMD ≤ 500 ft, VMD ≤ 100 ft)
LoWC – Loss of Well Clear
HMD – Predicted Horizontal Miss Distance
Phase 2 MOPS
DAA Well Clear Objective

Objective: Define alternative DAA Well Clear (DWC) for UAS encountering noncooperative aircraft (Noncoop DWC)

• Phase 1 DWC was designed to encompass TCAS II RA alerting thresholds
 − Resulting DWC is very safe but unnecessarily large for noncooperative aircraft, which do not have TCAS

• Noncoop DWC will enable low C-SWaP UAS operations by reducing noncooperative surveillance requirements compared to RTCA SC-228 Phase 1
 − Low C-SWaP UAS are too small or budget-constrained to carry the large, high-power radar required by the Phase 1 MOPS

• Noncoop DWC is anticipated to be applicable to both Phase 1 UAS and low C-SWaP UAS encountering noncooperative aircraft
Low C-SWaP UAS

- Typically operate at 500-10,000 ft MSL with speeds at or below 100 kts
- Extended operations in airspace classes D, E (non-terminal), or G (non-terminal) with transit operations in classes B and C
- Missions include air quality monitoring, aerial imaging and mapping, and law enforcement
- Can carry ADS-B and TCAS but may not be able to carry the Phase 1 radar (> 50 lbs)
Outline

• Background

• Defining Well Clear Separation for Unmanned Aircraft Systems Encountering Noncooperative Traffic
 – Approach
 – Low C-SWaP UAS Results
 – Phase 1 UAS Results

• Summary
Objective: identify and assess DAA Well Clear (DWC) candidates based on safety and operational suitability metrics

Approach: use realistic encounters* in fast-time simulation to evaluate unmitigated and mitigated performance against noncooperative intruders

Unmitigated
- Unmitigated analysis does not include response to a Detect and Avoid system
- Evaluates inherent latent collision risk without mitigations
- Narrows tradespace

Mitigated
- Mitigated analysis includes DAA response using DAIDALUS algorithm
- Validates actual risk of each DWC

* One million encounters
Low C-SWaP UAS Encounter Model

Encounter models generate random aircraft trajectories that are statistically representative of noncooperative trajectories observed from radar data.
Phase 1 UAS Encounter Model

Ownship speed is the main difference between the encounter sets (Low C-SWaP: 40-100 kts, Phase 1: 40-250 kts)

- Shadow B
- Aerosonde
- Cessna 208
- Cessna 510
- Reaper
- Global Hawk
- Socata Trinidad

VFR – Visual Flight Rules
NAS – National Airspace
Metrics

- **Safety metrics indicate whether desired separation is achieved**
 - Risk ratio and loss of well clear ratios: \(\frac{P(\text{NMAC or LoWC} | \text{encounter, with mitigation})}{P(\text{NMAC or LoWC} | \text{encounter, without mitigation})} \)
 - Ratio less than 1 indicates that the mitigated system reduces the risk of NMAC or LoWC; e.g., risk ratio of 0.1 indicates 90% reduction in risk

- **Operational suitability metrics indicate the appropriateness and severity of alerts required to remain well clear**
 - Alert ratio: \(\frac{P(\text{Alert} | \text{encounter, with mitigation})}{P(\text{NMAC} | \text{encounter, without mitigation})} \)
 - Alert ratio measures the alert frequency relative to the nominal NMAC frequency; an alert ratio of 1 indicates the mitigated system only alerts when absolutely necessary
 - Severity: Counts of Caution and Warning alerts

Additional metrics were computed but are not shown here
Outline

• Background

• Defining Well Clear Separation for Unmanned Aircraft Systems Encountering Noncooperative Traffic
 – Approach
 – Low C-SWaP UAS Results
 – Phase 1 UAS Results

• Summary
Unmitigated Analysis: Trade Space Down Selection

- DWC Candidates chosen based on trade study [1] of potential DWC using unmitigated collision risk (P) and maneuver initiation range (MIR) as metrics:
 - DWC1 achieves smallest MIR of candidates with 5% unmitigated collision risk
 - DWC2 is simple because it does not have a time component
 - DWC3 was proposed for terminal area UAS operations
 - DWC4 achieves an unmitigated collision risk smaller than 5%

<table>
<thead>
<tr>
<th></th>
<th>DWC1</th>
<th>DWC2</th>
<th>DWC3</th>
<th>DWC4</th>
<th>Phase 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMD*</td>
<td>2000 ft</td>
<td>2200 ft</td>
<td>1500 ft</td>
<td>2500 ft</td>
<td>4000 ft</td>
</tr>
<tr>
<td>τ_{mod}^*</td>
<td>15 s</td>
<td>0 s</td>
<td>15 s</td>
<td>25 s</td>
<td>35 s</td>
</tr>
<tr>
<td>h*</td>
<td>450 ft</td>
<td>450 ft</td>
<td>450 ft</td>
<td>450 ft</td>
<td>450 ft</td>
</tr>
</tbody>
</table>

HMD – Horizontal Miss Distance

System Operating Characteristic for Low C-SWaP Encounters

- SOC allows simultaneous evaluation of safety and operational suitability
- Risk and LoWC ratio are largely insensitive to DWC definition
- HMD appears to have the largest effect on alert ratio
 - DWC1 and DWC3 have the same τ_{mod}^*, but DWC1 alerts more frequently

<table>
<thead>
<tr>
<th>HMD*</th>
<th>2000 ft</th>
<th>2200 ft</th>
<th>1500 ft</th>
<th>2500 ft</th>
<th>4000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{mod}^*</td>
<td>15 s</td>
<td>0 s</td>
<td>15 s</td>
<td>25 s</td>
<td>35 s</td>
</tr>
</tbody>
</table>

HMD – Horizontal Miss Distance
Effect of Surveillance Range

- DWC 1, 2, 3 are largely insensitive to reduced surveillance ranges.
- DWC 4 and Phase 1 experience large increases in risk ratio and loss of well clear ratio when surveillance range is reduced (see 2 NM blue bars).

New DWC candidates support surveillance ranges down to 2 NM.
Outline

• Background

• Defining Well Clear Separation for Unmanned Aircraft Systems Encountering Noncooperative Traffic
 – Approach
 – Low C-SWaP UAS Results
 – Phase 1 UAS Results

• Summary
Trends similar to results for low C-SWaP UAS
- HMD appears to have the largest effect on alert ratio

System Operating Characteristic for Phase 1 UAS Encounters

<table>
<thead>
<tr>
<th>HMD</th>
<th>2000 ft</th>
<th>2200 ft</th>
<th>1500 ft</th>
<th>2500 ft</th>
<th>4000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWC1</td>
<td>τ_mod 15 s</td>
<td>0 s</td>
<td>15 s</td>
<td>25 s</td>
<td>35 s</td>
</tr>
</tbody>
</table>

HMD – Horizontal Miss Distance
FOV – Field of View
Effect of Ownship Speed on Safety

Sensitivity of DWC definition to ownship speed:

- **HMD*** has the larger impact at low speeds
- **τ_{mod}** has little effect on safety at low speeds
- Smaller τ_{mod}* reduces the safety ratios at high speeds

τ_{mod} may not be necessary in DAA Well Clear definition for noncooperative intruders
Conclusions

- Performed unmitigated and mitigated analysis of four candidate well clear definitions for low C-SWaP UAS against noncooperative intruders
 - NMAC and LoWC risk not sensitive to DWC parameters
 - Safety and operational suitability not dependent on τ_{mod^*}
 - Indicates τ_{mod^*} may not be necessary

SC-228 selected DWC2 (2200 ft, 450 ft, 0 τ_{mod^*}) for low C-SWaP UAS and Phase 1 UAS encountering noncooperative aircraft

- Future work:
 - Development and validation of sensor requirements based on the noncoop DWC
 - Additional human factors evaluation of noncoop DWC
 - Additional safety analyses in the presence of sensor noise
Bibliography (images)

- Aerosonde by Michael Paetzold, source image, Creative Commons Share-Alike License 3.0, text applied on bottom of image on slide 7