National Aeronautics and Space Administration

Airspace

Terminal Sequencing and Spacing (TSS)

Jane Thipphavong ATD-1 Project Lead

Integrated Communications Navigation and Surveillance (ICNS) Conference April 23, 2015 Systems Integration

NextGen

Technology Transition

www.nasa.gov

- Background
- ATM Technology Demonstration #1 (ATD-1)
- Terminal Sequencing and Spacing (TSS)
- Technology transfer status
- Potential Data Communications enhancements

Today's National Airspace System

- Aircraft can execute efficient flight paths
 - Efficient profiles can be provided as long as they are not interrupted by other traffic (e.g., conflicts)
- Air traffic controller's role is to keep aircraft separated, maintain throughput, and provide efficient flight paths
 - All three objectives are difficult to meet when traffic demand is high

Objectives

 Demonstrate routine use of Performance-Based Navigation (PBN) during busy traffic periods

 Accelerate transfer of NASA scheduling and spacing technologies for inclusion in late mid-term NAS

ATM Technology Demonstration #1 (ATD-1): Integrated Arrival Solution

Terminal Sequencing and Spacing (TSS): Planned FAA Capabilities

Operational Scenario

NASA TSS Prototype Capabilities

Robinson, J., Thipphavong, J., Johnson, W., "Enabling Performance-Based Navigation Arrivals: Development and Simulation Testing of the Terminal Sequencing and Spacing System," 11th USA/Europe ATM R&D Seminar, Portugal, 23–26 June 2015.

- ATD-1 transferred Terminal Sequencing and Spacing (TSS) technologies to the FAA, Fall 2013
- TSS enables routine use of underutilized advanced avionics and PBN procedures
 - Efficiency-related benefits to airlines operating at the five initial TSS sites estimated to be \$20M/year
 - Additional benefit of improved throughput would be significantly larger
- FAA is planning for an initial capability in the NAS in 2018

Potential Data Communications Enhancements to TSS

- Receive more accurate trajectory information
 - FMS-computed ETAs to waypoints on RNAV route
 - Updated route information
 - Aircraft state (e.g., current airspeed, winds, weight)
- Share TSS arrival plan information to flight deck
 - Assigned runway and associated approach transition
 - Communicate schedule information to facilitate conformance for equipped aircraft

NASA TSS Prototype Capabilities

Shared View Between Controller and Pilot: Early Case

Aircraft is ahead of slot, and a speed advisory from the ground system to reduce to 180 KIAS is displayed to flight crew and controller. The nominal slot speed is 210 KIAS.

Aircraft is in desired position inside slot. The nominal slot speed is 269 KIAS.

- TSS enables routine use of underutilized advanced avionics and PBN procedures
- NASA developed TSS as an operational prototype system
- ATD-1 transferred TSS technologies to the FAA, Fall 2013
- FAA is planning for an initial capability in the NAS in 2018
- Potential data communications enhancements to TSS
 - Receive more accurate trajectory information
 - Share TSS arrival plan information to the flight deck

Points Of Contact

Will Johnson ATD-1 Chief Engineer William.Johnson@nasa.gov