

1/15

TAO Model

Introduction TAO Equatio TAO in a mo

Results Conclusion

Turbulent Axial Odometer Model

Michael E. Olsen¹ Randolph P. Lillard²

¹NASA Ames Research Center, Moffett Field, CA 94035

²NASA Johnson Space Center, Houston, TX 77058

AIAA Aviation Forum

TAO Model

Olsen, Lillar

Introduction

TAO Equation TAO in a model Results Conclusions

• High Reynolds number experiments expanded understanding

- Flat plate flowfields
- First two items easy, third not so much
- $\,\circ\,$ Reynolds-stress models should benefit from better match of $\underline{\rm all}\;R_{ij}$
- T_{ijk} depend directly on R_{ij} fields (and their derivatives)
- \bullet Attached flow: R_{11}^+ and R_{33}^+ generally don't matter
- Separated flow: $\partial_k T_{ijk}$ and full R_{ij} tensor do matter

TAO Model

- TAO Equation TAO in a model Results Conclusions
- High Reynolds number experiments expanded understanding
- Flat plate flowfields
- First two items easy, third not so much
- $\, \bullet \,$ Reynolds-stress models should benefit from better match of $\underline{\rm all} \; R_{ij}$
- T_{ijk} depend directly on R_{ij} fields (and their derivatives)
- \bullet Attached flow: R_{11}^+ and R_{33}^+ generally don't matter
- Separated flow: $\partial_k T_{ijk}$ and full R_{ij} tensor do matter

TAO Model

- TAO Equation TAO in a model Results Conclusions
- High Reynolds number experiments expanded understanding
- Flat plate flowfields
 - $\begin{array}{c} \textcircled{1} c_f \text{ vs. } Re_{\theta} \dots & (6\% \text{ revision}) \\ \textcircled{2} [\kappa, B^+] \dots & ([.41, 5] \mapsto [.385, 4.1]) \\ \textcircled{3} R^+_{i_1} \dots & (R^+_{1_1} \text{ increases with } Re_{\theta}) \end{array}$
- First two items easy, third not so much
- $\,\circ\,$ Reynolds-stress models should benefit from better match of all R_{ij}
- T_{ijk} depend directly on R_{ij} fields (and their derivatives)
- \bullet Attached flow: R_{11}^+ and R_{33}^+ generally don't matter
- Separated flow: $\partial_k T_{ijk}$ and full R_{ij} tensor do matter

TAO Model

- TAO Equation TAO in a model Results Conclusions
- High Reynolds number experiments expanded understanding
- Flat plate flowfields
- First two items easy, third not so much
- $\,\circ\,$ Reynolds-stress models should benefit from better match of $\underline{\rm all}\ R_{ij}$
- T_{ijk} depend directly on R_{ij} fields (and their derivatives)
- \bullet Attached flow: R_{11}^+ and R_{33}^+ generally don't matter
- Separated flow: $\partial_k T_{ijk}$ and full R_{ij} tensor do matter

TAO Model

- TAO Equation TAO in a model Results Conclusions
- High Reynolds number experiments expanded understanding
- Flat plate flowfields
- First two items easy, third not so much
- $\,\circ\,$ Reynolds-stress models should benefit from better match of all R_{ij}
- T_{ijk} depend directly on R_{ij} fields (and their derivatives)
- \bullet Attached flow: R_{11}^+ and R_{33}^+ generally don't matter
- Separated flow: $\partial_k T_{ijk}$ and full R_{ij} tensor do matter

TAO Model

- TAO Equation TAO in a model Results Conclusions
- High Reynolds number experiments expanded understanding
- Flat plate flowfields
- First two items easy, third not so much
- $\, \bullet \,$ Reynolds-stress models should benefit from better match of $\underline{\text{all}} \, R_{ij}$
- T_{ijk} depend directly on R_{ij} fields (and their derivatives)
- \bullet Attached flow: R^+_{11} and R^+_{33} generally don't matter
- Separated flow: $\partial_k T_{ijk}$ and full R_{ij} tensor do matter

TAO Model

- TAO Equation TAO in a model Results Conclusions
- High Reynolds number experiments expanded understanding
- Flat plate flowfields
- First two items easy, third not so much
- $\, \bullet \,$ Reynolds-stress models should benefit from better match of $\underline{\mathsf{all}} \, R_{ij}$
- T_{ijk} depend directly on R_{ij} fields (and their derivatives)
- ${\ }{\ }$ Attached flow: R_{11}^+ and R_{33}^+ generally don't matter
- Separated flow: $\partial_k T_{ijk}$ and full R_{ij} tensor do matter

TAO Model

- TAO Equation TAO in a model Results Conclusions
- High Reynolds number experiments expanded understanding
- Flat plate flowfields
- First two items easy, third not so much
- $\, \bullet \,$ Reynolds-stress models should benefit from better match of $\underline{\mathsf{all}} \, R_{ij}$
- T_{ijk} depend directly on R_{ij} fields (and their derivatives)
- ${\ }{\ }$ Attached flow: R_{11}^+ and R_{33}^+ generally don't matter
- Separated flow: $\partial_k T_{ijk}$ and full R_{ij} tensor do matter

TAO Model

- TAO Equation TAO in a model Results Conclusions
- High Reynolds number experiments expanded understanding
- Flat plate flowfields
- First two items easy, third not so much
- $\, \bullet \,$ Reynolds-stress models should benefit from better match of $\underline{\mathsf{all}} \, R_{ij}$
- T_{ijk} depend directly on R_{ij} fields (and their derivatives)
- ${\ }{\ }$ Attached flow: R_{11}^+ and R_{33}^+ generally don't matter
- Separated flow: $\partial_k T_{ijk}$ and full R_{ij} tensor do matter

(1) Recent Experiments (1990's on) : R_{ij} are not pure functions of u_{τ} R_{11}^+ grows with Re_{θ} , arguably R_{13}^+ and R_{33}^+ are pure F(u_{τ})

⁽²⁾ Challenge: reproduce this behavior in a RANS model Motivation: Why do we care about R_{11}^+ , R_{33}^+ ?

(1) Evidence for this behavior in R_{ij} for canonical separated flows

② Separated flows: all R_{ij} important (no longer a TSL — Mohr's circle)

3 Modeling $\partial_k(T_{ijk})$: accurate R_{ij} predictions necessary

Recent Experiments (1990's on) : R_{ij} are not pure functions of u_τ R⁺₁₁ grows with Re_θ, arguably R⁺₁₃ and R⁺₃₃ are pure F(u_τ)
Challenge: reproduce this behavior in a RANS model
Motivation: Why do we care about R⁺₁₁, R⁺₃₃?
Evidence for this behavior in R_{ij} for canonical separated flows
Separated flows: all R_{ij} important (no longer a TSL — Mohr's circ

 Recent Experiments (1990's on) : R_{ij} are not pure functions of u_τ R⁺₁₁ grows with Re_θ, arguably R⁺₁₃ and R⁺₃₃ are pure F(u_τ)
 Challenge: reproduce this behavior in a RANS model
 Motivation: Why do we care about R⁺₁₁, R⁺₃₃?
 Evidence for this behavior in R_{ij} for canonical separated flows

Separated flows: all R_{ij} important (no longer a TSL — Mohr's circle)
 Modeling $\partial_k(T_{ijk})$: accurate R_{ij} predictions necessary

Q Recent Experiments (1990's on) : R_{ij} are not pure functions of u_τ R⁺₁₁ grows with Re_θ, arguably R⁺₁₃ and R⁺₃₃ are pure F(u_τ)
 Q Challenge: reproduce this behavior in a RANS model
 Motivation: Why do we care about R⁺₁₁, R⁺₃₃ ?
 Q Evidence for this behavior in P. for comprised constant flows

(1) Evidence for this behavior in R_{ij} for canonical separated flows

② Separated flows: all R_{ij} important (no longer a TSL — Mohr's circle)

3 Modeling $\partial_k(T_{ijk})$: accurate R_{ij} predictions necessary

4/15

The Turbulent Axial Odometer(TAO) equation

TACP - Transformational Tools & Technologies Project

TAO Model Motivation: An Outer Scale in a Field Equation

• If wishes were horses

Cebeci-Smith would still be among us $(Re_{ heta} \text{ unavailable})$

Physical phenomenon responsible — very long structures seen in high Re

Concept: How long has this streamline been in turbulent flow

An Equation for streamline length l_p (An odometer):

$$\rho \partial_t (l_p) + \rho u_i \partial_i (l_p) = \rho (u_i u_i)^{\frac{1}{2}}; (l_p |_0 = 0)$$

Turn this length into a Reynolds number, $R_o=k^{rac{1}{2}}l_p/
u$:

$$\partial_t(\rho R_o) + \partial_i(\rho u_i R_o) = \rho \sqrt{u_i u_i} \frac{\sqrt{k}}{\nu}$$

Add boundary layer sync and laminar reset:

$$\partial_t(\rho R_o) + \partial_i(\rho u_i R_o) = \rho \frac{\sqrt{u_i u_i} \sqrt{k}}{\nu} + \partial_i \left((\mu + \sigma_t \mu_t) \partial_i R_o \right) - \frac{\rho \omega R_o}{(1 + R_T)}$$

Simple BC! Inflow: $R_o |_0 = 0$, Wall: $\partial R_o = 0$)

TAO in a mode

The Turbulent Axial Odometer(TAO) equation 4/15

TACP - Transformational Tools & Technologies Project

TAO Model Motivation: An Outer Scale in a Field Equation

If wishes were horses

Cebeci-Smith would still be among us (Re_{θ} unavailable)

• Physical phenomenon responsible — very long structures seen in high Re

• Concept: How long has this streamline been in turbulent flow?

$$\rho \partial_t (l_p) + \rho u_i \partial_i (l_p) = \rho (u_i u_i)^{\frac{1}{2}}; (l_p|_0 = 0)$$

$$\partial_t(\rho R_o) + \partial_i(\rho u_i R_o) = \rho \sqrt{u_i u_i} \frac{\sqrt{k}}{\nu}$$

$$\partial_t(\rho R_o) + \partial_i(\rho u_i R_o) = \rho \frac{\sqrt{u_i u_i} \sqrt{k}}{\nu} + \partial_i \left((\mu + \sigma_t \mu_t) \partial_i R_o \right) - \frac{\rho \omega R_o}{(1 + R_T)}$$

Simple BC! Inflow: $R_o |_0 = 0$, Wall: $\partial R_o = 0$)

TAO in a model

The Turbulent Axial Odometer(TAO) equation 4/15

TACP - Transformational Tools & Technologies Project

TAO Model Motivation: An Outer Scale in a Field Equation

- If wishes were horses
 - Cebeci-Smith would still be among us (Re_{θ} unavailable)
 - Physical phenomenon responsible very long structures seen in high Re
 - Concept: How long has this streamline been in turbulent flow?

An Equation for streamline length l_p (An odometer):

$$\rho\partial_t(l_p) + \rho u_i \partial_i(l_p) = \rho(u_i u_i)^{\frac{1}{2}}; (l_p|_0 = 0)$$

$$\partial_t(\rho R_o) + \partial_i(\rho u_i R_o) = \rho \sqrt{u_i u_i} \frac{\sqrt{k}}{\nu}$$

$$\partial_t(\rho R_o) + \partial_i(\rho u_i R_o) = \rho \frac{\sqrt{u_i u_i} \sqrt{k}}{\nu} + \partial_i \left((\mu + \sigma_t \mu_t) \partial_i R_o \right) - \frac{\rho \omega R_o}{(1 + R_T)}$$

Simple BC! Inflow: $R_o |_0 = 0$. Wall: $\partial R_o = 0$)

TAO in a mode

The Turbulent Axial Odometer(TAO) equation 4/15

TACP - Transformational Tools & Technologies Project

TAO Model Motivation: An Outer Scale in a Field Equation

If wishes were horses

Cebeci-Smith would still be among us (Re_{θ} unavailable)

• Physical phenomenon responsible — very long structures seen in high Re

• Concept: How long has this streamline been in turbulent flow?

An Equation for streamline length l_p (An odometer):

$$\rho\partial_t(l_p) + \rho u_i \partial_i(l_p) = \rho(u_i u_i)^{\frac{1}{2}}; (l_p|_0 = 0)$$

Turn this length into a Reynolds number, $R_o = k^{\frac{1}{2}} l_p / \nu$:

$$\partial_t(\rho R_o) + \partial_i(\rho u_i R_o) = \rho \sqrt{u_i u_i} \frac{\sqrt{k}}{\nu}$$

$$\partial_t(\rho R_o) + \partial_i(\rho u_i R_o) = \rho \frac{\sqrt{u_i u_i} \sqrt{k}}{\nu} + \partial_i \left((\mu + \sigma_t \mu_t) \partial_i R_o \right) - \frac{\rho \omega R_o}{(1 + R_T)}$$

Simple BC! Inflow: $R_o |_0 = 0$ Wall: $\partial R_o = 0$)

TAO in a mode

TAO Model Motivation: An Outer Scale in a Field Equation

- If wishes were horses
 - Cebeci-Smith would still be among us (Re_{θ} unavailable)
- ${\scriptstyle \bullet }$ Physical phenomenon responsible very long structures seen in high Re
- Concept: How long has this streamline been in turbulent flow?

An Equation for streamline length l_p (An odometer):

$$\rho\partial_t(l_p) + \rho u_i \partial_i(l_p) = \rho(u_i u_i)^{\frac{1}{2}}; (l_p|_0 = 0)$$

Turn this length into a Reynolds number, $R_o = k^{\frac{1}{2}} l_p / \nu$:

$$\partial_t(\rho R_o) + \partial_i(\rho u_i R_o) = \rho \sqrt{u_i u_i} \frac{\sqrt{k}}{\nu}$$

Add boundary layer sync and laminar reset:

$$\partial_t(\rho R_o) + \partial_i(\rho u_i R_o) = \rho \frac{\sqrt{u_i u_i} \sqrt{k}}{\nu} + \frac{\partial_i \left((\mu + \sigma_t \mu_t) \partial_i R_o \right)}{(1 + R_T)} - \frac{\rho \omega R_o}{(1 + R_T)}$$

(Simple BC! Inflow: $R_o|_0 = 0$, Wall: $\partial R_o = 0$)

5/15

TAO Equation Solutions: Flat Plate

TACP - Transformational Tools & Technologies Project

 R_o

k

Simplest flowfield: (and it works as designed)

- Extremely small away from the turbulent flow
- $\partial_3 R_o \approx 0$ in log layer (linearly proportional to x_1)
- So far So good, but for a vehicle?

Exact Equations – Incompressible

TACP - Transformational Tools & Technologies Project

TAO Model

Olsen, Lilla

Introduction TAO Equation TAO in a mod

Results Conclusion

$$\partial_{t} (R_{ij}) + \partial_{k} (u_{k}R_{ij}) = -R_{jk}\partial_{k}\overline{U_{i}} - R_{ik}\partial_{k}\overline{U_{j}} - \partial_{k}T_{ijk} + \nu\partial_{k}\partial_{k}R_{ij} + \Pi_{ij} - 2\nu\overline{\partial_{k}(u_{i}')\partial_{k}(u_{j}')} \partial_{t} (T_{ijk}) + \partial_{l} (u_{l}T_{ijk}) = -T_{ijl}\partial_{l}\overline{U_{k}} - T_{jkl}\partial_{l}\overline{U_{i}} - T_{kil}\partial_{l}\overline{U_{j}} + R_{ij}\partial_{l}R_{kl} + R_{jk}\partial_{l}R_{il} + R_{ki}\partial_{l}R_{jl} + \nu\partial_{l}\partial_{l}T_{ijk} + \Pi_{ijk} - \partial_{l}(Q_{ijkl}) - \varepsilon_{ijk}$$

$$\begin{split} \Pi_{ij} &= \frac{1}{\rho} \left[\overline{u'_j \partial_i(p')} + \overline{u'_i \partial_j(p')} \right] \\ \Pi_{ijk} &= \frac{1}{\rho} \left[\overline{u'_i u'_j \partial_k(p')} + \overline{u'_j u'_k \partial_i(p')} + \overline{u'_k u'_i \partial_j(p')} \right] \\ Q_{ijkl} &= \overline{u'_i u'_j u'_k u'_l} \\ \varepsilon_{ijk} &= 2\nu \left(\overline{u'_i \partial_l(u'_j) \partial_l(u'_k)} + \overline{u'_j \partial_l(u'_k) \partial_l(u'_l)} + \overline{u'_k \partial_l(u'_i) \partial_l(u'_j)} \right) \end{split}$$

TAO Model (See Paper) 8/15 TACP - Transformational Tools & Technologies Project

TAO Model

Introduction TAO Equation TAO in a mod Results

$$\begin{aligned} \partial_t \left(\rho k\right) + \partial_l \left(\rho u_l k\right) &= \rho \left[R_{ij} S_{ij} - \beta^* k \omega\right] + \partial_l \left(\left(\mu + \sigma_k \mu_T\right) \partial_l k\right) - A_4 \partial_l \left(\rho \right) \\ \partial_t \left(\rho \omega\right) + \partial_l \left(\rho u_l \omega\right) &= \alpha \rho S^2 - \beta \rho \omega^2 + \partial_l \left(\left(\mu + \sigma_\omega \mu_T\right) \partial_l \omega\right) \\ \partial_t \left(\rho R_{ij}\right) + \partial_l \left(\rho u_l R_{ij}\right) &= A_0 \rho \omega \left(R_{ij}^{(eq)} - R_{ij}\right) \\ \partial_t \left(\rho T_{ijk}\right) + \partial_l \left(\rho u_l T_{ijk}\right) &= A_0 \rho \omega \left(T_{ijk}^{(eq)} - T_{ijk}\right) \\ \partial_t \left(\rho R_o\right) + \partial_i \left(\rho u_i R_o\right) &= \rho \frac{\sqrt{u_i u_i} \sqrt{k}}{\nu} + \partial_i \left(\left(\mu + \sigma_t \mu_t\right) \partial_l R_o\right) - \frac{\rho \omega R_o}{\left(1 + R_T\right)} \end{aligned}$$

where:

$$R_{ij}^{(eq)} = \frac{2}{3}k\delta_{ij} - \frac{A_1}{\omega}(\mathcal{P}_{ij} - \frac{1}{3}\bar{\mathcal{P}}\delta_{ij}) + \dots$$

$$\psi = \max(\Psi_L, \Psi_R \ln(1 + R_o/R_m)) \quad A_6 = \frac{2}{3} \frac{1 + \psi^2}{R_{NN} + \psi} \quad A_1 = \psi/A_6$$
$$\mathcal{K} = \frac{1 + \psi^2}{A_6} \quad \beta^* = \psi/A_6 \qquad \beta = \beta^*/n_D \qquad \sigma_\omega = \frac{\beta/A_6^2 - \alpha}{\mathcal{K}A_8^2}$$

Flat Plate Solution

9/15

- $M_{\infty} = 0.2$
- $Re_L = 100^6$
- "Flight" freestream turbulence
- 513×513 grid (Grid convergence checked)

- Retained law of the wall axial velocity distribution
- Able to get good $c_f(Re_{\theta})$ predictions
- –Did no harm–

Flat Plate Reynolds-stresses

TACP - Transformational Tools & Technologies Project

- Much improved R_{11}^+ predictions
- Better R_{33}^+ predictions
- Overall much improved R_{ij} prediction behavior (Mohr's circle)

12/15

Flat Plate Turbulent Transport

TACP - Transformational Tools & Technologies Project

- $Su = T_{111}/R_{11}^{1.5}$
- Not the most important transport term, but checkable
- Overall prediction encouraging (low in log region, high at edge)
- B.L. Edge position not identical in CFD/experiment

- Transport Small, except at BL edge
- $\mathcal{P} = \varepsilon$ dominant balance in log layer

Conclusions/Future Directions

TACP - Transformational Tools & Technologies Project

TAO Model

Olsen, Lillar

Introduction TAO Equation TAO in a model Results Conclusions

Conclusions

14/15

- R_o works as a turbulent odometer/outer scale
 - Much improved R_{ij} predictions obtained
- T_{ijk} consistent with experiment (depends on R_{ij} predictions) Future directions
 - ${\ensuremath{\, \bullet \, }}$ Matching/tuning more experiments (esp those with T_{ijk})
 - Junction Flow Experiment
 - Driver CS0, Spinning Cylinder
 - Separated flows (promising results with earlier versions)
 - Junction Flow Experiment
 - Johnson Bump

15/15

Acknowledgements

TAO Model Olsen, Lillard Introduction TAO Equation TAO in a model Results Conclusions

This research was sponsored by NASA's Transformational Tools and Technologies (TTT) Project of the Transformative Aeronautics Concepts Program under the Aeronautics Research Mission Directorate.

TACP - Transformational Tools & Technologies Project