

SAFELY ENABLING LOW-ALTITUDE AIRSPACE OPERATIONS Unmanned Aerial System Traffic Management (UTM)

Marcus Johnson, Ph.D.
Flight Test Director
UAS Traffic Management

Core Team: Dr. Parimal Kopardekar, Dr. Joey Rios, John Robinson, Dr. Marcus Johnson, Dr. Thomas Prevot, Dr. Jaewoo Jung, Corey Ippolito, Dr. Chris Belcastro, and Louis Glaab

University of Florida Seminar 2015

marcus.johnson@nasa.gov

Consumer

Public Service Commercial

Integration Challenges

Technology

Detect and Avoid

Command and Control

Human Factors / Autonomy

Contingency Management

Size, Weight, and Power

GPS-Denied Environment

Security

Public

Acceptance

Perception of risk, benefit and capability

Privacy, Liability, Admissible Evidence (Legal)

Ethics

Noise/Environment

Politics and Media

Regulation

Airworthiness

Certification

Registration

Safety Case

Separation Standards

Operational Flight Rules

Economics

Business Model

Size of Market

Volume and Demand

Market Inertia

Market Entry Strategies

Return on Investment

Allowed Operations:

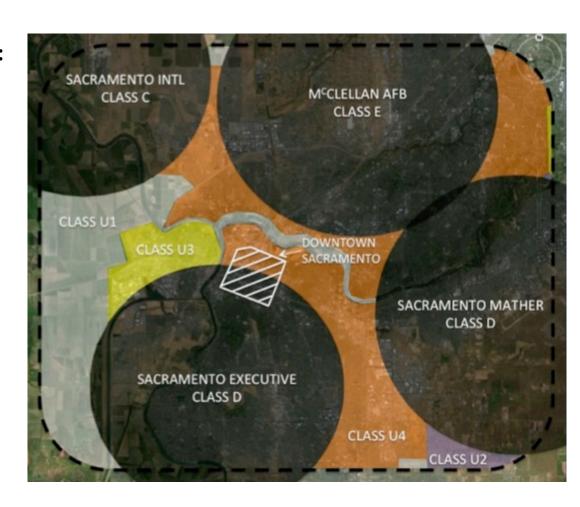
Model Aircraft
Public Operations
Civil Operations

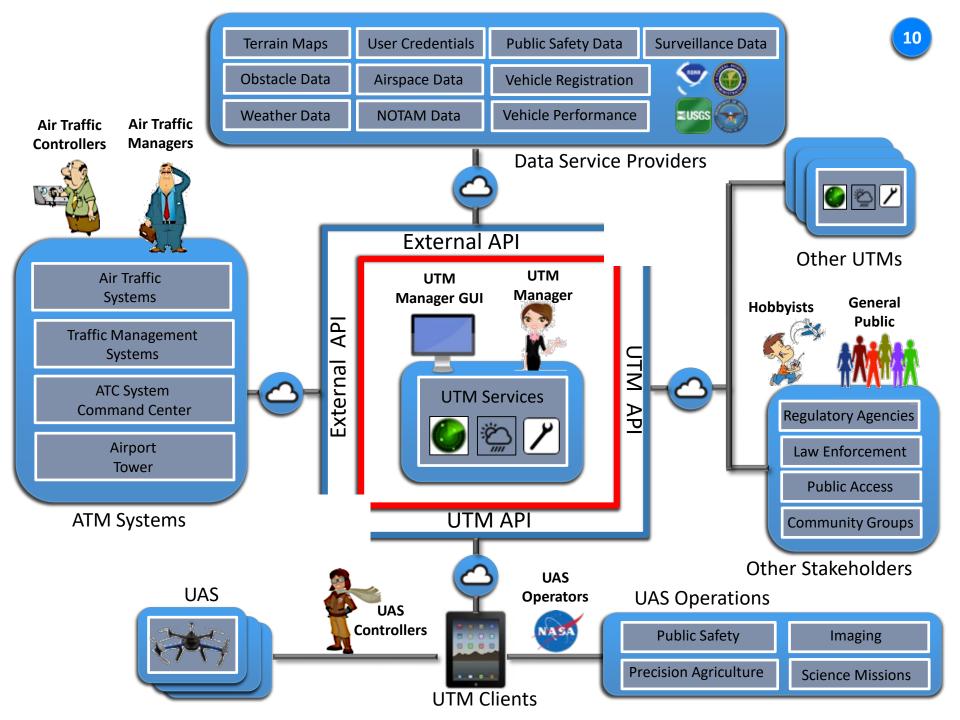
Rules:

Grand Canyon June 1956

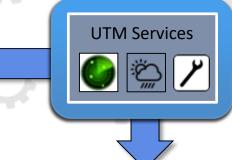
Unmanned Aerial System Traffic Management (UTM)

Near-term Goal: Safely enable initial low-altitude UAS as early as possible Long-term Goal: Accommodate increased demand with highest safety, efficiency, and capacity


Airspace Managed by UTM


Based upon four risk-based criteria:

- Population Density
- Density of Man-made Structures
- Likelihood of Manned Operations
- Number of UTM operations


Bounded by

- Jurisdiction and Airspace
 Management Authority
- UTM Connectivity

UTM Services

- System Health Monitoring
- Vehicle Registration
- User Authentication
- Flight Monitoring

- Flight Planning
- Scheduling and Demand Management
- Separation Assurance
- Contingency Management

Flight

Services

• Spectrum Management

Information Services

Airspace Definition

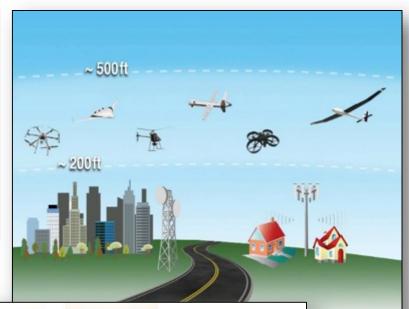
Terrain and

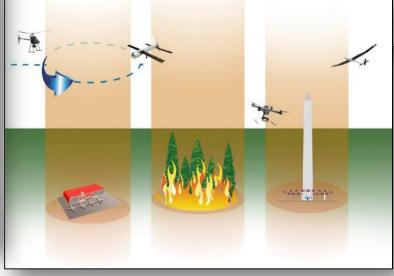
Obstructions

• Traffic Operations

• Weather Information

Security Services



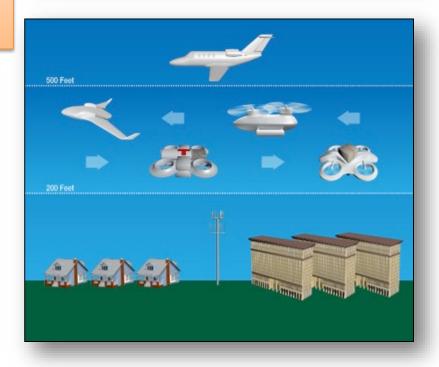

UTM Functions

AIRSPACE OPERATIONS & MANAGEMENT

- ~500 ft. and below
- Geographical needs and applications
- Rules of the airspace: performancebased
- Geofences: dynamic and static

UTM Functions

WIND & WEATHER INTEGRATION

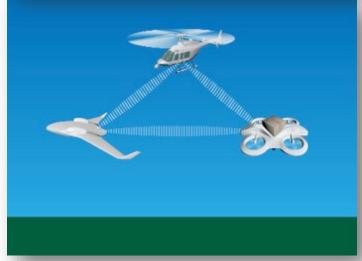

Actual and predicted winds/weather

CONGESTION MANAGEMENT

- Demand/capacity imbalance
- Only if needed corridors, altitude for direction, etc.

UTM Functions

SEPARATION MANAGEMENT


- Airspace reservation
- V2V and V2UTM
- Tracking: ADS-B, cellphone, & satellite based

CONTINGENCY MANAGEMENT

- Large-scale GPS or cell outage
- 9-11 like situations

Example Use Case: Precision Agriculture

- 1 Operation Plan Submitted (4am) LOS, 200 ft AGL, 6-7:30am, Circular Pattern (0.25 NM radius)
- 2 Operation Plan Rejected- Building Over-flight 3 Operation Plan Resubmit- Accepted

- 4 UAS Controller Observes Clear Skies and sends "ALL CLEAR" message to UTM (5:55am)
- 5 Aircraft Takes Off (6:00 am) 6 UTM Reports Adverse Weather- UAS Controller continues (6:30 am)
- 7 Mission Complete- UAS Lands (7:15 am) 8 UAS Controller Terminates Operation Plan (7:20 am)

Build 1: August 2015

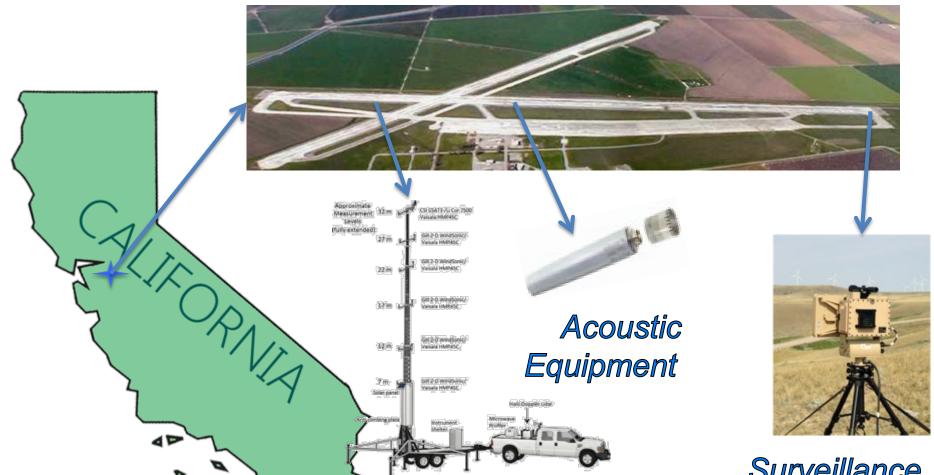
Line of Sight Operations
Low Risk Environment
Airspace Reservation
Geo-fencing for Separation
No Fly Zones
User Authentication

Build 2: October 2016

Beyond Line of Sight Operations
Low Risk Environment
Segmented Flight Plans
Weather and Traffic Advisories
Altitude Stratification
Contingency Management (Alerting)
System Health Monitoring

Build 3: January 2018

Beyond Line of Sight Operations
Suburban Environment
In-Flight Separation Provisions
Contingency Management (Resolutions)
On-demand Public Service Operations
Spectrum Management
Interacting UTMs
Limited Connections to ATM
Weather and Traffic Avoidance


Build 4: March 2019

Beyond Line of Sight Operations
Urban Environment
Detect and Avoid
GPS-Denied Environments
Large Scale Contingency Management
Dynamic Airspace Reconfiguration
High Density Operations

UTM Build 1 Flight Test

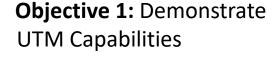
Crows Landing, CA

Weather

Equipment

Surveillance Equipment

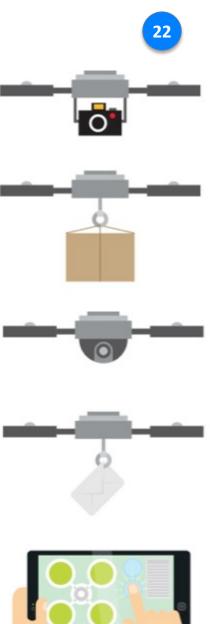
Demonstration Objectives


Objective 5: Collect Data on Noise Signature of UAS Vehicles

Objective 2: Collect Data on UAS Navigation Performance Error

Objective 3: Collect Data on Aircraft Tracking Performance

Objective 4: Collect Weather Observations for Forecasting Models



UTM Build 1 Demonstration Highlights

- 8 Different types of UAS (2 fixed wing, 6 multi-rotors)
- Variety of surveillance, weather, and acoustic equipment
- Flight included 2 aircraft conducting missions simultaneously
- General Statistics:
 - 108 flights over 8 days
 - ~18 hours of flight time
 - Flights averaged about 11 minutes (ranging from 2- 38 minutes)
- Data analysis is being conducted and a draft report is expected by the end of Nov. 2015

- UAS is a divisive, multi-faceted topic
- A variety of integration challenges need to be overcome
- UTM is a solution to safely manage airspace for UAS operations
- Near-term goal is to safely enable initial lowaltitude operations within 1-5 years

