Applications of Atomic Layer
Deposition in the Modification of
Carbon Nanotubes
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Motivation — Stray Light Control - **

2306 absorbs 96%; our current piBlack
nanotube formulation absorb > 99.5%
from the visible to FIR

Improving stray light performance of
surface treatments can result in
exponential stray light reduction at focal
plane

Enabling new scientific observations
with higher — Signal-Noise Ratio - S/N
Potentially doubling observational
efficiencies in high contrast scenes
such as those common in Earth
science

Simplifying stray light designs by
reducing number of controls
required for equivalent performance

High contrast scene; Greenland
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MbtiVatiDn.—Stray Ligh-tContfoI 4.

Electron mobility in plane of
carbon hexagonal matrix is
high effectively creating
electron gas behavior similar
to a metal

Light interacts with the
electrons but confinement in
lattice plane results in
absorption and
thermalization of energy

This high electron mobility
and confinement results in
high absorption with little
specular reflection

Formation of single and multi-walled
carbon nanotubes from graphene.
The graphene sheet on the left is

rolled to form a single walled
nanotube (middle) and multi-walled

carbon nanotube (right).



Thermal CVD Growth of CNTs

~ Fe layer

Substrate (Si) Substrate (Si)

Buffer Layer
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nanotube layer
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Stray Light Control — Design Parameters ™
* Parameters for optimization of light absorption
— Low density; achieving an effective index of refraction . L M RLT SH D O
approaching 1 vs graphite (n=4.4) allows reflectionat . = : v 3 R W ofily: LW S
- RN f -’ 1 20 g"l\ Wy i
interface to be minimized B *,‘: < ! Ry
33 4 W5 ey, oMY
— Minimization of amorphous carbon A .: y X i}‘ };
— Length; long enough to absorb light that gets into ‘J” > » 5“5{',\“ - , ?

Orientation; vertically aligned nanotubes are
significantly better absorbers than randomly oriented
formulations

Increasing surface roughness of substrate can
improve absorption by decreasing interface
reflectance as well

 These parameters can be tuned during the growth
process by adjusting:

Catalyst thickness, gas flow and composition,
substrate preparation



Ap.plications and Challenges‘

Goddard in situ Formaldehyde Laser Induced Fluorescence Experiment (Tom Hanisco-PlI)

Challenges:
Coating 3D baffles and the

Ph ing PMT . T
e : : inside of cylindrical tubes
2 CN.T Baffles 6d8 Sl Laser with catalyst and
S/N improvement! . .
controlling gas flow during

Sample in . A CvD

The fluorescence detection
cell of the Goddard in situ
formaldehyde LIF experiment
is shown with a cut-away
view. The laser excites the
sampled air in the center of
the cell.
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Ap'plications and Challenges

Laser Interferometer Space Array (LISA) Gravity Wave Sensor
(Telescope PI — Jeffrey Livas)

Secondary Primary
Mirror (SM) Mirror (PM)

LISA Instrument:
Constellation of 3 Sciencecraft
(not to scale)

Aft Optics

3 meters

Focal Surface

W

S —— LISA Stray Light Challenge
Telescope used in duplex

Tx beam is 10°x intensity of Rx
Beam

Tx beam reflected/scattered off
of center of telescope secondary
Constellation of 3 Sciencecraft with linked Telescopes mirror (SM) must be SupprESSEd

by 10° qw

3 meters
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Ap.plications and Challenges

Solar Coronagraph — Pl Doug Rabin

Challenge:
3D Catalyst Deposition, CVD flow control
Solution: Catalyst sputtering, tapered boat

https://www.nasa.gov/content/goddard/nasa-ultra-black-nano-coating-to-be-
applied-to-3-d-new-solar-coronagraph/#.Vj aOUar8ZM
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Applications.and Challenges

Spherical Occulter Coronagraph CubeSat (SpOC Cube) — PI Phil Chamberlin

)

T—— Challenges to fabricating
A »  spheres include:
/1 ~+.. 1. Uniformly depositing
' catalyst on a sphere
during physical vapor

-3

»
" 3
-

w
- deposition

ﬂ “ 2. Controlling the gas

flows during the
Three titanium spheres chemical vapor
from %4” to 3” in diameter
were fabricated to provide
pathfinder elements for
testing the theory

deposition phase to
prevent shadowing and
uneven growth

https://gsfctechnology.gsfc.nasa.gov/Coronagraph.html
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Challenge B

\

LISA Instrument:
Constellation of 3 Sciencecraft
(not to scale)

3 meters

The deposition of the catalyst is in terms of: uniformity, thickness control,
material regardless of geometry is paramount. Flat surfaces are easy!



‘What is @ Thin Film? - ' i

Thin film: thickness typically <1000nm.

Special properties of thin films: different from bulk
materials, it may be —

* Not fully dense

* Under stress

* Different defect structures from bulk

* Quasi - two dimensional (very thin films)
 Strongly influenced by surface and interface effects

Sputtering
Target

Sputtered
Target
Atom




.Common Denominator i

*Deposition only occurs on substrates that “see” the target.
*Plasma process can damage the substrate

*Poor thickness control

*Poor Step Control

*High Pressure High Temperature Environment

Step Coverage Example

conformal hon-conformal

Step coverage of metal over non-planar topography.

(a) Conformal step coverage, with constant thickness on horizontal and vertical surfaces.
(b) Poor step coverage, here thinner for vertical surfaces.
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Atomic Layer Deposition ' P

A thin film“nanomanufacturing” tool that allows for
L the conformal coating of materials on a myriad of
surfaces with precise atomic thickness control.

Based on:

=  Paired gas surface reaction chemistries

- Benign non-destructive temperature and pressure environment
. Room temperature -> 250 °C (even lower around 45 °C)
- Vacuum



_ ALD Analogy (Checkers)
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_ ALD Analogy Chemistry
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ALD - -

Precursor A

Atomic-level thickness control ...

... equivalent to a 60 um layer
over a city-sized wafer



ALD Advantageous Property = s

100 o ‘ Batch Process
Epitaxial Growth

Substrate Independence
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e Gordon, Roy (2008). Atomic Layer Deposition (ALD): An Enable for Nanoscience and Nanotechnology.
PowerPoint lecture presented at Harvard University, Cambridge, MA.
e Elam, Jeffrey (2007). ALD Thin Film Materials. Argonne National Laboratory




High Aspect Ratio (Radiator Pigments) By

4

High Aspect Ratio
AZ TECHNOLOGY Nanostructure

Sputter 50 nm InO ALD 50 nm ZnO




Results' - - . 6

!

WD:483mm  SEM MAG:200kx 200 nm Uncoated 200 Kx - WD:500mm  SEM MAG: 200 kx 200 nm
View field: 1.38 ym  Date(m/dly): 10/12/18 University of Maryland AIM Lab View field: 1.38 um  Date(m/dly): 10/12/18 University of Maryland AIM Lab

SEM HV: 15.0 kV Det:In-BeamSE || ||| ' XEIA3 TESCAN SEM HV: 15.0 kV. Det:In-BeamSE || )|/ ' XEIA3 TESCAN

Uncoated Pigment Coated Pigment
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The Materials ISS Experiment Flight Facility
(MISSE-FF) with MISSE Sample Carriers (MSCs)
in the fully open position exposing
samples/experiments to the harsh
environment of space in low-Earth Orbit (LEO).
Image courtesy of Alpha Space.

An earlier MISSE mission
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Potential Applications - e @

Tribo-Electric
Current Sousss

Tribo-Electric
Current
Source
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Element of choice (Ni) - | v

Nickelocene Ozone
Ni(ll) Oxide

@ P + m I ex situ Reduction

|
Ni

Provides a method of
Functionalization for BP

Direct Ni Growth on BP

CNT Growth

* During Growth Process Ni(ll) Oxide reduces to Ni

* Ni(ll) Oxide is Oxygen rich and reduction results in

40% decrease in thickness

* Resulting in Ni Cluster q



Experimental Procedures

Reactor Parameters:

Reactor Temperature: 245 C

Ni Precursor Temperature: 90 C
Argon Flow Rate: 20 SCCM
Ozone Weight Percent: 8%
Ozone Flow Rate: 20 SCCM

NASA

Ni Pulse Time: .6 Sec (2*.3 sec) «
Ni Residence Time: 15 Sec

Ozone Pulse Time: .2 Sec

Ozone Residence Time: 15 Sec '

Hydrogen Reduction:
5 Hours

450 C

5% Hydrogen in Argon
Flow Rate 550 sccm



Results - SEM & EDS of Ni coated_buckVPaP.?fﬁ..lﬁ'

Ni Lal_2
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RESU|tS - 500 cycles NiO-reduced
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Electron Image 22
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1000 cycles NiO-reduced

'ap'er squected to more depositior

Electron Image 18

Ni infiltrated
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_.Composition line scan across 1000 cycles NiO-reduced ¥as
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500 cycles NiO-NOT reduced

nreduced sémple has twice the O con
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Gr'owth of CNT & ALD - e 6

Thick film Thin film
4 catalyst
4

4
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Precursors and Reaction Pathway

Nickelocene Ozone

|
Ni +

é L;} in situ Reduction q [..[_,. (

Substrate + Catalyst + Gas = CNNT
Si,Ti, flat, 3d + Iron,Ni + Ethylene

Ni(l1) Oxide

@ P + m > ex situ Reduction



Initial Results
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Hemispherical Reflectance
35_19_1X55PM_NiO_AI2D3 Tube OCISktCond

|
35_19_445PM_NiO_AI2D3 Tubp_HF -
3 6_19_1048AM| NiO_AI203 Tube 2xH2 _10minEthy
3619 110PM_NiO_AI2D3 Tube_15minsEthy

—36 §9 HIUAM WiO AI203 Tube HDF 1 ¢ T

oAl iwh ,.‘
»wmummw’i

I D k)

750 1000 1250 1500 1750 2000 2250 2500
Wavelength (nm)



" Acknowledgments

d

\.‘\\.\

N
' RN
!
!

1

il =
e’,' : fif"f. \'}} A

/

Adomaitis Research Group

( . 78 |

NASA



