

COMBINING FRACTIONAL CALORIMETRY WITH STATISTICAL METHODS TO CHARACTERIZE THERMAL RUNAWAY

William Walker, Ph.D. ^{1,2} william.walker@nasa.gov

Additional Contributors: John Darst ^{1,2}, Donal Finegan, Ph.D. ³, Peter J. Hughes ^{1,2,4}, Saul Pizano ^{1,2,4}, Eric Darcy, Ph.D. ^{1,2}

Advanced Automotive Battery Conference May 24th-25th, 2019 San Diego, California

National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) ³National Renewable Energy Laboratory (NREL) ⁴University Space Research Association (USRA)

NASA STRATEGY TO PROTECT AGAINST THERMAL RUNAWAY

> Following the 2013 Boeing 787 Dreamliner incident, NASA teams developed new definitions for battery design success criteria:

- o Always assume thermal runaway (TR) will eventually happen
- o Design should ensure that TR event is not catastrophic
- o Demonstrate that propagation to surrounding cells will not occur

Thermal management systems designed to mitigate the effects of thermal runaway and prevent cell-to-cell propagation should consider the following¹:

- No two runaway events are the same; even for the same manufacturer and state-of-charge; there is a range of possible outcomes
- o Onset temperature, acceleration temperature, trigger temperature, trigger cell peak temperature and neighbor cell peak temperature
- o Total energy released through sides and top of the cell body
- o Cell failure type (e.g. side wall vs. top), system pressure increase, gases released and ejecta material

> Optimization of Li-ion battery assemblies that satisfy the aforementioned strategies requires knowledge of the following:

- o Total energy output range during TR for a single Li-ion cell
- o Fraction of TR energy transferred through the cell casing
- o Fraction of TR energy ejected through cell vent/burst paths

FRACTIONAL THERMAL RUNAWAY CALORIMETRY

> As an NESC assessment, NASA developed a new fractional TR calorimetry (FTRC) method for 18650-format Li-ion cells:

- o Collaborators included NESC, NASA JSC, and SAIC
- o Allows discernment between (1) total heat output and (2) fraction of heat released through the cell casing vs. ejecta material
- The energy distributions are determined by post processing temperature vs. time for each calorimeter sub-assembly (i.e. $\sum m_i C_{p_i} dT_i$)
- o Ambidextrous configuration accommodates cell designs with bottom vents (BVs)
- o Uses high flux heaters to initiate TR quickly (i.e. relevant to field failure)
- Simple operation enables multiple experiments per day
- Compatible with high speed X-ray videography⁹
- o Optional interface for measuring the gas exhaust heat

Insulation: FOAMGLAS[®] ONE[™] insulation is used to isolate the calorimeter from the environment

Ejecta Mating Assemblies: Captures ejected solids such as the electrode winding

Cell Chamber Assembly: Includes heating system for thermally induced failure and mounting point for nail penetration system

Housing: Lightweight and shipping ready housing is employed to support hardware mobility

Ejecta Bore Assemblies: Slow down and extract heat from escaping flames and gas

FRACTIONAL THERMAL RUNAWAY CALORIMETRY

> The FTRC currently supports cell chambers designed for the following cell formats: 18650, 21700, and D-Cell:

- Utilizes the same downstream FTRC assemblies (i.e. the only adjustment to test a new cell is to swap out the cell chamber)
- The current architecture supports cells with >5 Ah capacities
- o Stay tuned for new capabilities to support pouch cells and larger format cells...

Nail Penetration System Mating: Each cell chamber facilitates an adapter to connect a nail penetration system

FRACTIONAL THERMAL RUNAWAY CALORIMETRY

- Reliable temperature measurement from the side of the cell is critical to accurate calculation of the fraction of thermal runaway energy released through the cell casing:
 - To support temperature measurement on the cell casing without actually installing a thermocouple, the FTRC cell chambers employ plunger like set screw assemblies that contain an imbedded thermocouple
 - When released, the spring loaded set screw assembly forces intimate contact between the embedded thermocouple and the cell casing

X-Ray Image: Image reveals the contact between the TC set screw assembly and an 18650 Li-ion cells installed in the FTRC during testing at Diamond Light Source in 2019.

FRACTIONAL THERMAL RUNAWAY CALORIMETRY

- The FTRC is designed to not only facilitate testing of different cell types, but to also help characterize directional/fractional thermal runaway failure behavior (i.e. top vent, bottom vent, ruptures from any location, et...)
- The cell chamber assembly is isolated from the remainder of the up and down stream calorimeter components with low conductivity ceramic bushings:
 - Maintaining this thermal isolation is critical to our team's ability to discern the fraction of energy released through the cell casing vs. through the ejecta material
 - The ejecta mating segment is designed to capture and stop complete jellyroll ejections; with this capability, we can also determine the fraction of energy associated with an ejected jellyroll

FRACTIONAL THERMAL RUNAWAY CALORIMETRY

> The internal baffles and copper mesh are used to create a tortuous path that effectively reduces flow velocity, captures large and fine ejected particulates, and cools down the flowing particles and gases before they exit the system (i.e. captures the energy)

EXAMPLE FTRC TESTING

FRACTIONAL THERMAL RUNAWAY CALORIMETRY

> Images below depict the global testing capability of the device:

- o FTRC testing at the NASA JSC Energy Systems Test Area
- o FTRC testing at the European Synchrotron Radiation Facility (ESRF) for in-situ high speed tomography (left image)
- o FTRC testing at the Diamond Light Source (DLS) Facility for in-situ high speed tomography (right image)

HIGH SPEED XRAY VIDEOGRAPHY

Cell type: Li-ion 18650 **Capacity:** 3 Ah **State of charge:** 100 % (4.2 V)

Bottom vent: No Wall thickness: 250 um Orientation of cell: Upright (vent at top) Location of ISCD radially: None Location of ISCD longitudinally: None Side of ISCD in image: None

Separator type: Normal Positive current collector: Normal Negative current collector: Normal

Location of FOV longitudinally: Top **Frame dimension (Hor x Ver):** 2016 x 1111 pixels **Pixel size:** 10 µm

HIGH SPEED XRAY VIDEOGRAPHY

Cell type: Li-ion 18650 Capacity: 3.5 Ah State of Charge: 100 % (4.2 V) Bottom vent: No Wall thickness: Not known Separator: Polymer Orientation of cell: Positive end up Location of ISCD radially: N/A Location of ISCD longitudinally: N/A Side of ISCD in image: N/A

Location of FOV longitudinally: Top Frame rate: 2000 Hz Frame dimension (Hor x Ver): 1280 x 800 pixels Pixel size: 17.8 µm

HIGH SPEED XRAY VIDEOGRAPHY

Cell type: Li-ion 18650 Capacity: 2.1 Ah State of charge: 100 % (4.2 V)

Bottom vent: None Wall thickness: 250 μm Orientation of cell: Upright (vent at top) Location of ISCD radially: None Location of ISCD longitudinally: None Side of ISCD in image: None

Separator type: Normal Positive current collector: Normal Negative current collector: Normal

Location of FOV longitudinally: Middle **Frame dimension (Hor x Ver):** 2016 x 1111 pixels **Pixel size:** 10 µm

FTRC RESULTS: CHARACTERIZATION OF TOTAL ENERGY RELEASE

- Using Visual Analytics platform, Tableau, to compare data with rapid filtering capability; i.e. instantly compare based on cell type, trigger mechanism, failure mechanism, cell design variables, et...
- Since no two thermal runaway events are the same, test-to-test variability must be taken into consideration for any scientific effort that seeks to characterize the overall range of expected thermal runaway behavior for a given cell type

FTRC RESULTS: CHARACTERIZATION OF TOTAL ENERGY RELEASE

- It is helpful to consider the variability of thermal runaway energy release as a statistical distribution to help answer the following questions:
 - o What is the highest probability energy release? What is the lowest?
 - What is the absolute maximum energy release one could expect? Minimum?
 - How do different cells, of similar capacities, compare in thermal runaway heat output?

14

FTRC RESULTS: CHARACTERIZATION OF TOTAL ENERGY RELEASE

- It is helpful to consider the variability of thermal runaway energy release as a statistical distribution to help answer the following questions:
 - o What is the highest probability energy release? What is the lowest?
 - What is the absolute maximum energy release one could expect? Minimum?
 - How do different cells, of similar capacities, compare in thermal runaway heat output?

Distributions for 24 cell types, spanning 3 cell formats, derived from 237 FTRC experiments

NASA

FTRC RESULTS: CHARACTERIZATION OF TOTAL ENERGY RELEASE

- In addition to consideration of test-to-test variability, average total heat output should be considered as a function of trigger mechanism; for this study we have heater trigger, internal short circuiting device (ISC) triggered, and nail penetration
- Nail penetration usually leads to the least violent thermal runaway events while heater induced thermal runaway results in more violent failures

FTRC RESULTS: ENERGY RELEASE FRACTIONS

- > The calculated energy fractions are traceable to every calorimeter assembly, sub-assembly, and individual component
- > The primary assemblies used for fractional calculations are the following:
 - o Cell Chamber Assembly (Red)
 - Positive Ejecta Mating Assembly (Indigo)
 - o Positive Ejecta Bore Assembly (Indigo)
 - Negative Ejecta Mating Assembly (Black)
 - Negative Ejecta Bore Assembly (Black)

FTRC RESULTS: ENERGY RELEASE FRACTIONS

> Very important to consider the energy release fractions as a function of BOTH trigger mechanism and failure mechanism

SUMMARY

- FTRC techniques and the associated results provide the means to develop optimized Li-ion batteries while also maintaining necessary safety and margin
- FTRC, and the associated results, enables the discernment of the fractions of thermal runaway energy released through the cell casing and through the ejecta material:
 - Due to the variability in thermal runaway responses, we recommend at least 10 runs to establish statistically defendable results
 - o Can analyze the spread of heat sources when cells rupture and compare to when they remain intact
- > There is not a linear correlation between stored electrochemical energy and total thermal runaway heat output
- > Thermal runaway behavior should always be considered as a function of:
 - o Cell format and associated design variables
 - o Trigger mechanism and failure mechanism (i.e. top vent, bottom vent, side wall rupture, spin groove breach, et...)
 - o Test-to-test variability and the associated statistical distribution
 - Both as TOTAL energy release and as energy release FRACTIONS
- > Recent findings suggest that thermal runaway heat output should be considered as a function of cell lot
- > Average total heat output should be considered as a function of trigger mechanism:
 - Nail penetration usually leads to the least violent thermal runaway events while heater induced thermal runaway results in more violent failures
 - o In some cases (Saft D-VES16), the internal short circuiting device results in the worst case failure

SUMMARY

- FTRC techniques and the associated results provide the means to develop optimized Li-ion batteries while also maintaining necessary safety and margin
- **FTRC**, and the associated results, enables the discernment of the fractions of thermal runaway energy released through the cell

SNEAK PREVIEW OF NEW CAPABILITIES

- Actively working to address the unique challenges associated with pouch cell thermal runaway events which requires a substantially different FTRC architecture
- > Not all applications utilize small format Li-ion cells another effort is underway to develop FTRC for cell's with capacities >100 Ah

ACKNOWLEDGEMENTS

> NASA Engineering and Safety Center

• Steve Rickman and Christopher Jannello, Ph.D.

> NASA JSC Engineering Directorate (EA):

- Power and Propulsion Division (EP)
- Structural Engineering Division (ES)
- National Renewable Energy Laboratory (NREL)
- **FTRC Team Members**
- NASA JSC Energy Systems Test Area (ESTA)
- Diamond Light Source (DLS) Facility
- European Synchrotron Radiation Facility (ESRF)

NASA

QUESTIONS?

23