Conjunction Assessment Risk Analysis

Determining Appropriate Risk Remediation Thresholds from Empirical Conjunction Data Using Survival Probability Methods

> Doyle T. Hall Omitron, Inc.

The 2019 AAS/AIAA Astrodynamics Specialist Conference Portland, Maine, 2019 August 11-15 Paper AAS 19-631

Agenda and Overview

• Introduction

- Semi-Empirical Formulation
 - -Cumulative collision probabilities
 - -Risk remediation thresholds
 - -Nominal vs conservative estimates

• Variations with Mission Parameters

- -Mission lifetime (remaining on-orbit duration)
- -Satellite size (hard-body radius)
- -Maneuver responsiveness (commit time)
- Discussion and Conclusions

•<u>Motivation</u> Requirements for collision risk remediation need to be analyzed and quantified for CARA, and the wider the conjunction risk assessment community

•<u>Objective</u> Demonstrate how archived conjunction data can be used to estimate risk remediation collision probability thresholds and associated maneuver rates

Problem: Determine risk remediation parameters that ensure a satellite will survive its remaining on-orbit lifetime without colliding with another cataloged object at a specified confidence level (e.g., 99.9%)

Methodology: Semi-empirically estimate the following

- 1. Collision probability that accumulates during a mission's remaining lifetime
- 2. Collision probability threshold required for performing a risk mitigation maneuver (RMM)
- 3. Required maneuver rates (RMMs per year)

Long-Duration Conjunction Sequence Observed for HST (SCN 20580 – 9.92 years)

Each circle represents a conjunction with archived states and covariances that allow collision probability (Pc) estimation

Resampling to Create Semi-Empirical Conjunction Sequences for Model Missions

This sequence can be re-sampled to create model sequences for hypothetical missions that occupy HST-like orbits

HST Conjunction Collision Probability Updates Secondary: SCN 12586 @ 2016-02-11 02:40:52

Pc values estimated using HBR = 10 m Last update 1.5 to 7 days before TCA: Pc = 2.23e-6

Risk Mitigation Maneuver (RMM) Commit Time Limits and Last-Update Pc Values

HST Conjunction Collision Probability Updates Secondary: SCN 12586 @ 2016-02-11 02:40:52

ASA ROBOTIC CA

Introduction

- Semi-Empirical Formulation
 - -Cumulative collision probabilities
 - -Risk remediation thresholds
 - -Nominal vs conservative estimates

• Variations with Mission Parameters

- -Mission lifetime (remaining on-orbit duration)
- -Satellite size (hard-body radius)
- -Maneuver responsiveness (commit time)
- Discussion and Conclusions

• Single conjunction survival probability

 $S_c = 1 - P_c$

 Cumulative survival probability for a sequence of statistically independent conjunctions

 $S_{cum} = \prod_i S_{c,i}$

Cumulative collision probability

$$P_{cum} = 1 - S_{cum} = 1 - \prod_{i} (1 - P_{c,i})$$

Cumulative collision probabilities can be estimated by combining a sequence of conjunction collision probabilities

Cumulative Collision Probability as a Function of Time

A hypothetical HST-like mission orbiting during 2009-2019 would have reached a cumulative Pc limit of

 $P_{cum}=10^{-3}$

after an on-orbit period of

Duration \approx 4.4 years

Cumulative collision probabilities over extended on-orbit durations can be estimated semi-empirically

Cumulative Collision Probability as a Function Conjunction Pc Value

The HST-like mission could have reduced its cumulative Pc to a goal value of

 $P_{cum} \leq 10^{-3}$

by executing perfectly effective risk mitigation maneuvers at a threshold of

 $P_c > P_{RMM} \approx 2 \times 10^{-5}$

Risk mitigation maneuver Pc thresholds can be estimated semiempirically

 For a single conjunction, the worst-case scenario* is that the collision probability equals the remediation threshold – the highest Pc that can go unmitigated

 $P_c = P_{RMM}$

• The cumulative probability accounting for this worst-case includes one additional event with the threshold probability

$$P_{cum}^{cons} = 1 - (1 - P_{RMM}) \left[\prod_{i} (1 - P_{c,i}) \right]$$

<u>Conservative</u> risk remediation estimates add one threshold-level event to model conjunction sequences

Regular estimates do not add such an event

*Assuming the satellite's maneuver execution system is perfectly safe and reliable

- Introduction
- Semi-Empirical Formulation
 - -Cumulative collision probabilities
 - -Risk remediation thresholds
 - -Nominal vs conservative estimates
- Variations with Mission Parameters
 - -Mission lifetime (remaining on-orbit duration)
 - -Satellite size (hard-body radius)
 - -Maneuver responsiveness (commit time)
 - Discussion and Conclusions

Semi-Empirical Cumulative Pc Estimates Increase with On-orbit Duration

Cumulative Pc estimated for HST's orbital regime

- -Hard-body radius = 10 m
- -Solid line: median over all state/covariance samples
- Dashed lines: 95% range of sampling variations

• For 10 years on-orbit

- -Median estimate: $P_{cum} \approx 0.007$
- **-95%:** $0.003 \le P_{cum} \le 0.013$

The semi-empirical method provides rough estimates

- Hypothetical mission parameters:

 Orbital regime: HST (CARA LEO-2)
 Remaining duration = 5 years
 Cumulative Pc goal ≤ 10⁻³
 HBR = 10 m
 RMM type = Translational
 RMM commit time = 1.5 days
 RMM consider time = 7.0 days

 Conservative mode estimates:
 - Pc threshold: $P_{RMM} \approx 8.5 \times 10^{-5}$
 - RMM rate: $\dot{N}_{RMM} \approx 1.1$ /year

Remediation thresholds change as a function of a mission's remaining on-orbit duration

Remediation Requirements Vary Significantly with a Mission's Remaining On-Orbit Duration

Mission parameters: HST-like orbit, HBR = 10 m Cumulative collision risk requirement: $P_{cum} \le 10^{-3}$ Conservative mode estimates

	Duration = 2 years	Duration = 5 years	Duration = 15 years
P _{RMM}	4.1×10 ⁻⁴	8.5×10 ⁻⁵	1.1×10 ⁻⁵
	0.3	1.1	5.7

Flying shorter missions significantly reduces the remediation activities required to achieve a lifetime cumulative risk goal

Remediation Requirements Vary Significantly with a Mission's Hard Body Radius

Mission parameters: HST-like orbit, 5 year duration Cumulative collision risk requirement: $P_{cum} \le 10^{-3}$ Conservative mode estimates

	HBR =	HBR =	HBR =
	5 m	10 m	20 m
P _{RMM}	4.6×10 ⁻⁴	8.5×10 ⁻⁵	2.9×10 ⁻⁵
	0.1	1.1	7.7

Flying smaller satellites significantly reduces the remediation activities required to achieve a lifetime cumulative risk goal

Remediation Requirements Vary Significantly with a Mission's Hard Body Radius

Mission parameters: HST-like orbit, 5 year duration Cumulative collision risk requirement: $P_{cum} \le 10^{-3}$ Conservative mode estimates

	HBR =	HBR =	HBR =
	5 m	10 m	20 m
P _{RMM}	4.6 ×10 ⁻⁴	8.5×10 ⁻⁵	2.9×10 ⁻⁵
	0.1	1.1	7.7

Corollary: Artificially inflating mission hardbody radii can significantly increase risk remediation workloads and activities

Remediation Requirements Vary Significantly with a Mission's Maneuver Commit Time

Mission parameters: HST-like orbit, 5 year duration, HBR = 10 m Cumulative collision risk requirement: $P_{cum} \le 10^{-3}$ Conservative mode estimates

	Commit at TCA-6 hours	Commit at TCA-24 hours	Commit at TCA-36 hours
P _{RMM}	1.2×10 ⁻⁴	9.6×10 ⁻⁵	8.5×10 ⁻⁵
	0.3	0.7	1.1

Flying more responsive mission maneuver systems significantly reduces the remediation activities required to achieve a lifetime cumulative risk goal

- Introduction
- Semi-Empirical Formulation
 - -Cumulative collision probabilities
 - -Risk remediation thresholds
 - -Nominal vs conservative estimates
- Variations with Mission Parameters
 - -Mission lifetime (remaining on-orbit duration)
 - -Satellite size (hard-body radius)
 - -Maneuver responsiveness (commit time)
- Discussion and Conclusions

Discussion

Advantages of the semi-empirical method:

- 1. All required states and covariances can be extracted from the CARA conjunction archive (no simulations required)
- 2. Different mission and satellite parameters can be studied by resampling the archived states and covariances
- Disadvantages of the semi-empirical method:
 - 1. Provides rough estimates, limited by sampling variations
 - 2. Results only apply to orbital regimes occupied by primary satellites contained in the conjunction archive
 - 3. Assumes archived state/covariance distributions can be applied to model missions

The semi-empirical method has limitations, but can be used effectively for testing/calibrating simulation software, as well as for some pre-mission planning

Omitron

- Archived conjunction data can be used to estimate collision risk remediation Pc thresholds and maneuver rates
 - -Allows varying mission parameters such as HBR, on-orbit duration, cumulative Pc goal, and maneuver commit times
 - -Provides rough estimates, limited by sampling variations
 - -Enables simulation model testing and pre-mission planning
 - -Can also incorporate "collision consequences" (see paper)
- Semi-empirical analysis quantifies the reduction in collision risk mitigation activities achieved by
 - -Flying shorter missions
 - -Flying smaller satellites
 - -Flying more responsive satellites

Each circle represents a conjunction with archived states and covariances that allow collision probability (Pc) estimation

ASA ROBOTIC CA

 Approximate number of conjunctions expected for a model satellite deployed near an observed primary's orbit

$$N_{mod} \approx N_{obs} \times \left[\frac{T_{mod}}{T_{obs}} \right]$$

- States and covariances sampled from the archive*
 - $\left\{\mathbf{X}_{i,k}^{pri}, \mathbf{C}_{i,k}^{pri}, \mathbf{X}_{i,k}^{sec}, \mathbf{C}_{i,k}^{sec}\right\} \qquad i = 1 \dots N_{mod} \qquad k = 1 \dots N_{sample}$
- Collision probability sequence experienced during the mission
 - $P_{c,i,k} = \text{PcFunction}(H, X_{i,k}^{pri}, C_{i,k}^{pri}, X_{i,k}^{sec}, C_{i,k}^{sec}) \qquad H = \text{HBR}$

Method samples archived states and covariances to create long-term conjunction sequences for model missions

*Assumes statistical independence, and that the model and observed missions have similar state and covariance distributions

• Remediated cumulative collision probability for a model mission that performs risk mitigation maneuvers (RMMs)

 $P_{cum}^{rem} = 1 - \prod_{i} \left(1 - P_{c,i}^{rem}\right)$

Remediated collision probabilities

$$P_{c,i}^{rem} = \begin{cases} P_{c,i} & \text{For } P_{c,i} \leq P_{RMM} \text{ (no RMM required)} \\ \rho_t P_{RMM} & \text{Translational RMM} \\ \rho_r P_{c,i} & \text{Rotational RMM} \end{cases}$$

Method estimates P_c thresholds for executing risk mitigation maneuvers, P_{RMM} , and associated maneuver rates, \dot{N}_{RMM}

Mission parameters: HST-like orbit, 5 year duration, *HBR* = 10 m Cumulative collision risk requirement: $P_{cum} \le 10^{-3}$

