Conjunction Assessment Risk Analysis

Implementation Recommendations and Usage Boundaries for the Two-Dimensional Probability of Collision Calculation

> Doyle T. Hall Omitron, Inc.

The 2019 AAS/AIAA Astrodynamics Specialist Conference Portland, Maine, 2019 August 11-15 Paper AAS 19-632

Agenda and Overview

Introduction

- -Motivation and objectives
- -Review latest 2D-Pc vs *Brute Force Monte Carlo* comparison for archived conjunctions
- -Review previous discussions of 2D-Pc validity criteria

Analysis

- Investigate "offset-from-TCA" variations as an indicator of 2D-Pc inaccuracy
- Develop a diagnostic boundary test to indicate potential large-amplitude 2D-Pc method underestimations
- Conclusions and Recommendations

- <u>Motivation</u> The probability of collision (Pc) between two Earth-orbiting satellites can often but not always be approximated adequately using the semi-analytical "2D-Pc" formulation^{1,2,3}
- <u>Objective</u> Develop a test to indicate when the 2D-Pc method reliably provides sufficiently accurate Pc estimates, so that high-fidelity *Brute Force Monte Carlo*³ (BFMC) Pc simulations do not have to be executed for all conjunctions

¹J.L. Foster and H.S. Estes, "A Parametric Analysis of Orbital Debris Collision Probability and Maneuver Rate for Space Vehicles," NASA/JSC-25898, Aug. 1992.
²M.R. Akella and K.T. Alfriend, "The Probability of Collision Between Space Objects," *Journal of Guidance, Control, and Dynamics*, Vol. 23, No. 5, pp. 769-772, 2000.
³D.Hall *et al* "High-Fidelity Collision Probabilities Estimated Using Brute Force Monte Carlo Simulations" AAS 18-244, Aug. 2018

BFMC-Pc vs 2D-Pc Comparison for Archived Satellite Conjunctions

- 43,595 CARA archive conjunctions

 2017-05-01 to 2018-11-15 with 2D-Pc ≥ 10⁻⁷
- 2D-Pc works well for the vast majority¹
 - But there are many more differences between 2D-Pc and BFMC-Pc than expected from random variations
- 2D-Pc significantly <u>underestimates</u> BFMC-Pc for an extremely small (but measurable) fraction of events
 - BFMC-Pc/2D-Pc ≥ 2.5 for 22 of the analyzed conjunctions (0.05%)
 - Diamonds show such "large-amplitude"
 2D-Pc underestimation failures
 - Most concerning type of 2D-Pc approximation inaccuracies

- + CDM-Pc/2D-Pc < 2.5 (43573 of 43595)
- ▶ 2.5 ≤ CDM-Pc/2D-Pc < 5 (11 = 0.025%)</p>
- $5 \le CDM-Pc/2D-Pc < 10 (5 = 0.011\%)$
- CDM-Pc/2D-Pc ≥ 10 (6 = 0.014%)

¹D.Hall *et al* (2018) "High-Fidelity Collision Probabilities Estimated Using Brute Force Monte Carlo Simulations" AAS 18-244

- The formulation of the 2D-Pc approximation assumes the following^{1,2}
 - 1. At TCA the primary-to-secondary relative position uncertainty distribution can be approximated as Gaussian
 - 2. During the conjunction, the relative satellite trajectories can be approximated as linear
 - 3. During the conjunction, the relative position covariance can be approximated as constant
- 2D-Pc estimates can be inaccurate if any of these three assumptions are violated sufficiently

¹J.L. Foster and H.S. Estes, "A Parametric Analysis of Orbital Debris Collision Probability and Maneuver Rate for Space Vehicles," NASA/JSC-25898, Aug. 1992. ²M.R. Akella and K.T. Alfriend, "The Probability of Collision Between Space Objects," *Journal of Guidance, Control, and Dynamics*, Vol. 23, No. 5, pp. 769-772, 2000.

Doyle Hall | 5

Chan (2008)¹ Analysis of the Encounter Region for Valid 2D-Pc Estimation

Figure 3.1. Requisite path length for integration. The length must be 17σ for the rectilinear approximation to be valid.

¹K.Chan (2008) "Spacecraft Collision Probability" The Aerospace Press, El Segundo CA

Short-term encounter validity interval: $\Delta t = \max(|\tau_0|, |\tau_1|, \tau_1 - \tau_0)$

¹V.Coppola (2012) "Evaluating the Short Encounter Assumption of the Probability of Collision Formula" AAS 12-248, Feb 2012

Agenda and Overview

- Introduction
 - -Motivation and objectives
 - Review latest 2D-Pc vs Brute Force Monte Carlo comparison for archived conjunctions
 - -Review previous discussions of 2D-Pc validity criteria
- Analysis
 - Investigate "offset-from-TCA" variations as an indicator of 2D-Pc inaccuracy
 - Develop a diagnostic boundary test to indicate potential large-amplitude 2D-Pc method underestimations
- Conclusions and Recommendations

 Normally, 2D-Pc estimates are calculated using states and covariances at TCA

 $P_{c,0} = P_c(t=0)$

 However, 2D-Pc estimates can also be calculated using states and covariances propagated to times offset from TCA

 $P_{c,t} = P_c(t \neq 0)$

 If the 2D-Pc assumptions are satisfied, then this yields about the same Pc estimates within the validity interval

 $P_{c,t} \approx P_{c,0}$ for $|t| \leq \Delta t$

IDEA: Variations in offset-from-TCA estimates could provide an indicator of 2D-Pc inaccuracy (S. Alfano, Nov 2018)

Known AQUA conjunction¹ with BFMC-Pc = 2D-Pc

Omitron

¹D.Hall *et al* (2018) "High-Fidelity Collision Probabilities Estimated Using Brute Force Monte Carlo Simulations" AAS 18-244

Using Offset-from-TCA Variations as an Indicator of Overall 2D-Pc Accuracy

 Offset-from-TCA 2D-Pc variations can be measured using the extrema found during the validity time interval

 $P_c^{max} = \frac{max}{|t| \le \Delta t} [P_{c,t}]$

P_c^{min} similar

• A "variation metric" can be defined as

 $V = \log_{10} \left[P_c^{max} / P_c^{min} \right]$

so that

 $V \rightarrow 0$ for small variations $V \rightarrow \infty$ for large variations

OBSERVATION: All conjunctions found to have large 2D-Pc underestimation inaccuracies also have large variation metrics, *V*

VAN ALLEN conjunction¹ with BFMC-Pc = $320 \times 2D$ -Pc

Omitron

¹D.Hall *et al* (2018) "High-Fidelity Collision Probabilities Estimated Using Brute Force Monte Carlo Simulations" AAS 18-244

Distribution of 2D-Pc Underestimates as a Function Offset-from-TCA Variations

Boundary Condition that Isolates 2D-Pc Method Underestimation Failures

 All 2D-Pc underestimations exceeding ×2.5 occur above a boundary variation metric of

 $V_{b} = 0.8$

• The majority of events have variation metrics smaller than this boundary value

> $V \le V_b$ for 91% of events $V > V_b$ for 9% of events

2D-Pc Boundary Test: If $V > V_b$ then 2D-Pc *could* underestimate the true Pc by a factor of 2.5 or more

2D-Pc Boundary Test Missed Detection Frequencies

Includes all analyzed data

Number of 2D-Pc Underestimate Missed Detections (among 43,595 conjunctions with 2D-Pc >= 1e-7 occuring 2016-10-01 to 2019-01-22)

		2D-Pc Underestimation Factor							
		2.0	2.5	3.0	5.0	10.0			
action Calculated with BFMC (%)	0.0	34	22	14	11	6			
	1.0	30	18	10	8	3			
	2.0	26	14	8	6	1			
	3.0	22	10	5	3	0			
	5.0	16	5	1	0	0			
	10.0	7	0	0	0	0			
	15.0	2	0	0	0	0			
	20.0	1	0	0	0	0			
	30.0	1	0	0	0	0			
	40.0	0	0	0	0	0			
Ë	50.0	0	0	0	0	0			
		No missed detections in this data set							
		Missed detection fraction <= 1e-4							
		Missed detection fraction > 1e-4							

Includes only BFMC-Pc $\geq 10^{-5}$

Number of 2D-Pc Underestimate Missed Detections (among 43,595 conjunctions with 2D-Pc >= 1e-7 occuring 2016-10-01 to 2019-01-22)

		2D-Pc Underestimation Factor							
		2.0	2.5	3.0	5.0	10.0			
Fraction Calculated with BFMC (%)	0.0	16	10	8	6	3			
	1.0	14	8	6	4	1			
	2.0	13	7	5	3	0			
	3.0	12	6	4	2	0			
	5.0	10	4	2	0	0			
	10.0	6	0	0	0	0			
	15.0	1	0	0	0	0			
	20.0	0	0	0	0	0			
	30.0	0	0	0	0	0			
	40.0	0	0	0	0	0			
	50.0	0	0	0	0	0			
		No missed detections in this data set Missed detection fraction <= 1e-4							
		Missed detection fraction > 1e-4							

Agenda and Overview

- Introduction
 - -Motivation and objectives
 - Review latest 2D-Pc vs Brute Force Monte Carlo comparison for archived conjunctions
 - -Review previous discussions of 2D-Pc validity criteria

Analysis

- Investigate "offset-from-TCA" variations as an indicator of 2D-Pc inaccuracy
- Develop a diagnostic boundary test to indicate potential large-amplitude 2D-Pc method underestimations
- Conclusions and Recommendations

- A diagnostic boundary test can be used to identify potential 2D-Pc method underestimation failures
 - Analysis based on a set of ~44,000 CARA conjunctions analyzed using Brute Force Monte Carlo simulations to establish truth Pc values
 - Boundary test uses the amplitude of "offset-from-TCA" variations as an indicator of accuracy in the 2D-Pc approximation
 - The test identifies all large-amplitude 2D-Pc underestimations detected to date, with a high false-alarm rate
- RECOMMENDATIONS: For future conjunctions with 2D-Pc $\geq 10^{-7}$
 - HIGH PRIORITY: Estimate BFMC-fidelity Pc values for the 10% of events with the largest offset-from-TCA variation metrics
 - MEDIUM PRIORITY: Estimate BFMC-fidelity Pc values for the 20% of events with the largest offset-from-TCA variation metrics
 - LOW PRIORITY: Estimate BFMC-fidelity Pc values for all events

Using Offset-from-TCA Variations as an Indicator of 2D-Pc Underestimation

VAN ALLEN conjunction¹ with The variation metric introduced previously $BFMC-Pc = 320 \times 2D-Pc$ $V = \log_{10} \left[P_c^{max} / P_c^{min} \right]$ 2D-Pc calculated at nominal TCA was developed to indicate any 2D-Pc 2D-Pc calculated offset from nominal TCA 2D-Pc assumption validity interval inaccuracies, both underestimates and overestimates 10⁻⁴ Very large A slightly different metric works somewhat variations better for indicating underestimates alone over $-\Delta t < t < \Delta t$ $V = \log_{10} \left[P_c^{max} / P_c^{mid} \right]$ Offset 2D-Pc with $P_c^{mid} = (P_{c.0} + P_c^{min})/2$ 10⁻⁶ This analysis focuses on using this metric to establish a "2D-Pc validity boundary" within which no large-10-7 amplitude 2D-Pc underestimates exist -5 5 Offset Time from TCA (s)

Omitron

¹D.Hall *et al* (2018) "High-Fidelity Collision Probabilities Estimated Using Brute Force Monte Carlo Simulations" AAS 18-244

Offset Variations for Other Likely 2D-Pc Failures (from SSPAT Low Relative Velocity Project Data Set)

Long Duration Conjunction: $N_{min} = 2 \quad \Delta t / T_{orb} = 0.94$

2D-Pc calculated at nominal TCA
 2D-Pc calculated offset from nominal TCA
 2D-Pc assumption validity interval

---- Minimum primary or secondary orbital period

Offset-from-TCA Variations 39208_conj_39357_20170407_172814_20170407_000821 TCA 2D-Pc = 0.176986 $0.0293214 \le$ Offset 2D-Pc ≤ 0.186428

Repeating Conjunction

 $N_{min} = 4$ $\Delta t/T_{orb} = 2.4$

2D-Pc calculated at nominal TCA
 2D-Pc calculated offset from nominal TCA
 2D-Pc assumption validity interval
 Minimum primary or secondary orbital period
 Offset-from-TCA Variations
 39208_conj_39357_20170408_014633_20170406_155951
 TCA 2D-Pc = 0.0909318

0.0477594 ≤ Offset 2D-Pc ≤ 0.127747

