• **Introduction**
 – Motivation and Prior Work
 – Objectives
 • Validation of Mass Estimation Methodology
 • Assessment of Catastrophic Event Frequency

• **Methodology**
 – Debris Generation Prediction
 – Mass Estimation Procedure
 – Cross Sectional Area Estimation Procedure
 – Satellite Size Estimation Validation

• **Analysis**
 – NaK Coolant Sphere Mass Estimation Validation
 – NanoSat Size Estimation Validation
 – Historic Catastrophic Collision Rate
 – Primary Object Mass Trade Space

• **Conclusions and Recommendations**
 – Conclusions and Recommendations
 – Future Work
INTRODUCTION
• Collision risk assessment approaches are largely based on the Kaplan construct
• Collision risk is a combination of event likelihood and event consequence
• Conjunction Assessment has only partially followed this approach
 – Large bodies of work exist on methods to establish event likelihood
 – Most operators treat collision consequence as static—all potential conjunctions are regarded as lethal to the operational satellite
• In earlier assessments, with relatively few conjunctions, static concept of collision consequence was acceptable
• In the current operational environment, this approach needs re-examination
 – Conjunction frequency is increasing
 – Deployment of USAF Space Fence radar could drastically increase space object catalog
 – Consideration of the consequences of a prospective conjunction could reduce the scope of conjunction remediation actions
• Protection of primary asset
 – Some potential collisions could conceivably leave a primary asset crippled, but still functional
 • “Glancing blow” or injury/degradation to part of solar array
 – However, current capabilities preclude determination of a collision of this type
 – Hence, all conjunctions should be presumed as at a minimum, “lethal”

• Protection of orbital corridors and space environment
 – Many orbital types significantly enable particular mission types
 • e.g., geosynchronous, sun-synchronous, Molniya
 – Debris fields from satellite collisions could permanently ruin these corridors
 – Satellite conjunctions have significant variability in debris-production potential dependent on event geometry and the relative masses of the objects
 – A construct that can categorize conjunctions by potential debris production can thus be of considerable benefit
Previous/Present Work

• Previous effort* assembled basics of debris production calculation as research article
• Present effort provided several enhancements
 – Improved algorithm (indicated in subsequent slides)
 – Performed expanded testing against additional test sets
 – Assembled parameter recommendations for operational use

METHODOLOGY
Two Collision Types: Catastrophic and Non-Catastrophic Collisions

• In catastrophic collisions, both satellites are completely fragmented
• In non-catastrophic collisions, the smaller object is fragmented but the larger one merely cratered
• Catastrophic events produce significantly more debris
• There are likely intermediate cases, but this is the accepted ODPO distinction
• ODPO prescribed methodology for distinguishing between cases: ratio of relative kinetic energy of smaller object to mass of larger object

\[
\frac{M_s V_{rel}^2}{2 M_p} > 40,000 \frac{J}{kg}
\]

– If ratio exceeds 40,000 Joules / kg, then collision is catastrophic
NASA ODPO EVOLVE 4.0 model contains a relationship for the number of pieces greater than a certain size generated by a collision dependent on collision type

\[
N(L_c) = \begin{cases}
0.1(V_{rel}M_s)^{0.75}L_c^{-1.71}, & \frac{M_sV_{rel}^2}{2M_p} \leq 40,000 \\
0.1(M_s + M_p)^{0.75}L_c^{-1.71}, & \frac{M_sV_{rel}^2}{2M_p} > 40,000
\end{cases}
\]

- \(L_c\) is the characteristic length (in meters) above which one is interested in the number of pieces;
 - a reasonable assumption of the threshold at which to this would be is 0.05m, which is near the smallest characteristic length capable of being tracked

To assess this, the following are needed
- Conjunction velocity – easily obtained from orbital states
- Primary object mass – known from mission parameters
- Secondary object mass – requires estimation method as most conjunctions involve debris objects
Mass Estimation Procedure: Estimating Needed Parameters

• **Secondary object mass is required for catastrophic/non-catastrophic assessment**
 – As well as predicted debris generation from prospective collisions
 – For most conjunctions, mass values will have to be estimated

• **Masses may be estimated from the ballistic coefficient solution**
 – The ballistic coefficient (B) is given by:
 \[
 B = C_D \frac{A}{M}
 \]
 – If ballistic coefficient, drag coefficient, and frontal area can be reasonably estimated, then satellite mass (M) can be predicted from above relation
 – Given imprecisions for many of these parameters, it is best to define a PDF for each and thus generate an estimated mass PDF using a sampling strategy
Mass Estimation Procedure: Estimating Ballistic Coefficient (B)

• Conjunction Data Message (CDM) for particular events give information about the BC for primary and secondary objects
 – Estimate of mean value (B_μ)
 – Estimation variance (B_σ) from covariance matrix

• A set of random BC values is easily generated by $N(B_\mu, B_\sigma)$

$$B = C_D \frac{A}{M}$$
Mass Estimation Procedure: Estimating Drag Coefficient (C_D) (New Work)

- Because ballistic coefficient is usually solved for as a single value, relatively less research work directed to C_D
 - Sustained interest is from atmospheric community, due to attempts to back out atmospheric density values from satellite drag solutions

- Recently work has been performed using CFD analyses to analyze drag coefficients for several baseline object configurations at different operational altitudes
 - For cuboid satellites, Walker et. al.ii demonstrated several dependencies for C_d estimation, but this research aimed to utilize the relation between exospheric temperature and C_d (figure 8)

- For current approach, mean C_D values were generated based on the exospheric temperature relation
- Then a relative uncertainty of 5% was applied
- At this point, a set of random C_D values are generated by $N(C_{D\mu}, C_{D\sigma})$

\[B = \frac{C_D}{M} \]

Cross Sectional Area (A) Estimation Procedure [1 of 2]

• Satellite areas may be estimated from sensor signature data
 – This approach focuses on radar cross-section (RCS) as opposed to satellite visual magnitude, since emphasis in this analysis is LEO debris

• RCS has units of area, but only under special circumstances can this be roughly equated to satellite physical area

• NASA’s ODPO developed the Size Estimation Model (SEM) to facilitate mapping between RCS and satellite characteristic length
 – This model is based on an exploded satellite in vacuum chamber
 – Researchers then determined the characteristic dimension of each piece, took RCS measurements on each piece, and effected theory-enabled fit of data

\[B = C_D \frac{A}{M} \]
Cross Sectional Area (A) Estimation Procedure [2 of 2]

• To match the number of samples generated using the B and C_d methodology, samples of RCS are generated using a Swerling Type III distribution with median RCS values as reported from a CDM.

• The ODPO SEM is then used to determined the characteristic length of each RCS sample, L_c.

• From this characteristic length, a cross sectional area is approximated assuming a circular cross section:

$$A = \frac{\pi L_c^2}{4}$$

• Using the above samples of B, C_d, and A, a set of samples and the accompanying PDF for the object mass are generated.
Satellite Size Estimation Validation
(New Work)

• Initial validation was performed using a set of 24 NaK spheres
 – This set is re-examined here
• To additionally validate this approach, a large set of NanoSats for a range of operational altitudes were examined
• Initial data set comprised of 1000 NanoSats
• Pared down to 371 based on specification availability, launch successes, and CDM availability in operational database
• Satellite specifications give concrete dimensions of satellites as well as their accompanying, true masses (M)
• The frontal areas for cuboid satellites were approximated using the satellite dimensions as follows:

\[A_{total} = \frac{(A_{xy} + A_{yz} + A_{xz})}{3} \]

• The ratio between estimated values and truth values is then examined to assess the validity of this mass estimation approach
• The percentile (quantile) level at which this ratio is conservative is of import
 – It is desired to overestimate mass in order to yield a conservative (high) debris count
ANALYSIS
• It is desired that all results to have $M_{\text{est}} / M > 1$
• For spherical objects, a mass estimation quantile of 75% would be sufficient
• This would maintain a conservative mass estimation for collision nature
• Satellite operators can rarely be so assured of the satellite shape
• Hence analysis for more irregular objects is required
• An estimation quantile is desired such that an operator would be reasonably sure of the object mass being overestimated

• A few outliers drive this quantile far above the 75th percentile observed in the NaK spheres

• It is recommended to use the 99.9th percentile of mass estimation for collision consequence assessment using the prescribed methodology
This mass quantile approach was then applied to a series of historical conjunctions:
- 3 A-Train Satellites
- ~700 km in altitude
- 5 Years of conjunctions
- 9652 discrete events
- 2000 kg primary mass

Amount of non-catastrophic events may be assessed on a mass estimation quantile basis.

Using recommended quantile of 99.9%, 69.03% of all events were non-catastrophic in nature.
Debris production potential was examined using varying primary object masses.

- Debris production was limited to objects larger than 5 cm.

There is a marked, order of magnitude increase in debris potential as the “Catastrophic” threshold is passed.

For a primary object mass of 2000 kg, 60% of all conjunctions would produce 100 debris pieces or fewer larger than 5 cm.
CONCLUSIONS AND RECOMMENDATIONS
Conclusions and Recommendations

• Conjunctions likely to be catastrophic in nature should be given higher priority in maneuver planning activities than those that are non-catastrophic

• Non-catastrophic conjunctions may be allowed further leniency in the CA process and perhaps less stringent RMM thresholds

• To determine the catastrophic/non-catastrophic nature of collisions, use of a mass estimation quantile is recommended
 – This quantile should be conservative in that it should overestimate the object mass in most cases
 – Recommended quantile: 99.9%

• Should operators elect to triage non-catastrophic conjunctions to a lower priority, maneuver planning activities may be significantly reduced due to a large percentage of historical events being considered non-catastrophic
 – ~69% of events encountered by A-Train satellites fall into this category using the given quantile recommendation

• More robust methods of evaluating collision consequence may be implemented by examining debris production potential
 – ~60% of events encountered by A-Train satellites would produce 100 debris objects or fewer using this criteria
Future Work

• Re-examine and further refine drag coefficient estimation methodologies
• Examine and recommend debris production potential thresholds based on operational considerations and orbit regime protection
• Examine orbital lifetime distributions and decay rates of potential debris fields
QUESTIONS