# MID-COURSE CORRECTION CONTINGENCY ANALYSIS FOR THE JAMES WEBB SPACE TELESCOPE

# Taabish Rashied,\* Benjamin Stringer, \*Jeremy Petersen,\* and Karen Richon\*

This investigation details two analyses performed as part of an early orbit contingency operations study related to the James Webb Space Telescope's limited ability to maneuver in a sunward direction. First, contingency planning developed by the Flight Dynamics Team and shared with the Science and Operations Center to quickly assess the available timeline in the event of a delayed mid-course correction maneuver is presented. Second, the methods for recovering from a maneuver overburn using observatory geometry to exploit the solar radiation pressure perturbation contributions from the large sunshield as well as adjusting the maneuver campaign to recover the observatory are examined.

# **INTRODUCTION**

The James Webb Space Telescope (JWST) follows in the footsteps of the Hubble, Spitzer, and Herschel space telescopes continuing a legacy of powerful space observatories that help humanity understand its place in the universe. Covering a spectrum that ranges from long-wavelength visible light (0.6  $\mu$ m) through mid-infrared (27  $\mu$ m), it bridges the gap between the Hubble and Herschel telescopes, and it will also specialize in detecting redshifted light from the early universe. With 18 mirror segments that combine to form an aperture that is 6.5 meters wide, it will produce images with much higher resolution than the Spitzer telescope. JWST is the most recent Large Strategic Science Mission for the National Aeronautics and Space Administration's (NASA) astrophysics division. JWST is scheduled for launch in 2021 on an Ariane 5 rocket. After a low-cost direct transfer from Earth, it will enter an orbit in the vicinity of the Sun-Earth/Moon Barycenter (SEMB) L2 libration point where it will remain throughout the 10.5-year mission lifetime.

One of the main challenges for an infrared telescope is that it must be kept at an extremely low temperature. Excess thermal energy—infrared radiation—from the observatory itself could overwhelm or contaminate the instruments. Some previous missions have relied on a coolant such as liquid helium, but coolant is a limited resource and can be depleted in a few years, limiting the mission lifetime. Because of the sensitivity to infrared radiation of JWST's Integrated Science Instrument Module (ISIM) and Optical Telescope Element (OTE)—both located on the "cold" side of the observatory—JWST will fly at an attitude where these elements are always protected from solar and Earth radiation. The other side of the observatory holds the rest of the necessary components such as the antenna, solar panel array, and thrusters. JWST relies on a large sunshield to block

<sup>&</sup>lt;sup>\*</sup> Jr. Systems Engineer, Mission Engineering and Technologies Division, a.i. solutions, Inc., 4500 Forbes Blvd. Suite 300, Lanham, MD 20706.

<sup>&</sup>lt;sup>†</sup> Sr. Systems Engineer, Mission Engineering and Technologies Division, a.i. solutions, Inc., 4500 Forbes Blvd. Suite 300, Lanham, MD 20706.

<sup>&</sup>lt;sup>‡</sup> Flight Dynamics Lead, Navigation and Mission Design Branch, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771.

the solar radiation from the cold side with a supplemental cryocooler for the Mid-Infrared Instrument (MIRI). The sunshield comprises five layers of Kapton and is approximately 21 m by 14 m, or about the size of a tennis court. The sunshield will maintain a temperature difference of over  $300^{\circ}$ C between the two sides, with the hot side expected to be at a temperature of  $83^{\circ}$ C and the cold side at a temperature of  $-223^{\circ}$ C. Using primarily a passive method for temperature regulation greatly extends the possible mission lifetime. However, this unique spacecraft configuration also places significant constraints on observatory attitude and maneuver direction.

Since all the thrusters are on one side of the observatory, the ability to execute maneuvers in the sunward direction is limited. During the initial stages of the transfer orbit before the sunshield is deployed, the maneuver direction is further limited to protect sensitive instruments from stray light. The thrusters are only be able to inject energy into the orbit, not remove energy. Adding too much energy to the orbit could cause the observatory to escape its libration-point orbit (LPO) into a heliocentric orbit beyond the SEMB L2, effectively ending the mission. To prevent an overburn scenario the launch vehicle will intentionally deliver the observatory to a trajectory that falls short of the target destination. A series of three mid-course correction (MCC) maneuvers will be employed to provide the additional energy to deliver the observatory to its science orbit about SEMB L2.

Depicted in Figure 1, three maneuvers designated MCC-1a, MCC-1b, and MCC-2 will be executed at launch plus 12.5 hours (L+12.5 hours), L+2.5 days, and L+30 days, respectively. The sunshield deployment phase for JWST will occur between L+3 and L+14 days. Similar to the injection from the launch vehicle, the first two maneuvers will be biased down to 93% of the ideal maneuver to achieve the LPO to prevent an overburn in the event of overperformance by the thrusters. MCC-1b is intended to nearly complete the maneuver started by MCC-1a while MCC-2 will finally place JWST into its science orbit. MCC-1a is the most critical maneuver of the entire mission as it is largest maneuver and occurs shortly after launch. As such, it is important to consider and prepare for the possible case if this maneuver does not go as planned. This investigation focuses on two potential contingencies: 1) the execution of MCC-1a is delayed because of operational circumstances, or 2) MCC-1a overburns and places the observatory on an escape trajectory from its LPO.



Figure 1. Sample JWST Trajectory Showing the Location of Mid-Course Correction Maneuvers

### **DELAYED MCC-1A CONTINGENCY**

The first contingency analysis assesses the cost of delaying MCC-1a beyond the nominal execution time at L+12.5 hours. A delay could happen because of non-nominal spacecraft performance or trouble establishing contact during the first hours after launch. A delayed MCC-1a maneuver is one of the more likely contingency mitigation scenarios. Steps will be taken to mitigate these risks, but it is important that the operational schedule remain flexible to accommodate unexpected delays while minimizing the impact on the overall mission. Once the decision to delay MCC-1a is made, many factors need to be considered when determining the new execution time. Since early orbit operations is on a compressed schedule, and the longer MCC-1a is delayed the less effective it is to deliver JWST to its target LPO, time is limited. Nominally, a maneuver-plan product with the burn direction, magnitude, and duration would be generated using a high-fidelity propulsion model by the Flight Dynamics Team (FDT) and delivered to the Science and Operations Center (S&OC). However, the process for generating this maneuver plan is lengthy and the product only applies to a specific maneuver execution time. Identifying general trends allows for the aggregation of data from a wide range of cases and empowers the S&OC to quickly evaluate the increasing maneuver cost as a function of time without the needing to generate multiple maneuver plans.

#### **Examining the Delayed Maneuver Scenario**

The nominal MCC-series execution schedule is designed to mitigate risk while maximizing fuel efficiency, and the primary cost of delaying the MCC-1a maneuver is the additional fuel that would be expended to achieve the LPO for the science phase of the mission. Because of the use of passive temperature regulation strategies, the mission lifetime is largely determined by the availability of propellant and oxidizer to perform maneuvers that achieve and maintain the mission orbit. Based on current fuel budget predictions, propellant expended during the transfer from the Earth to L2 impacts available to maintain the LPO at a rate of approximately 1 year for every 2.5 m/s of delta-v (DV) consumed during the transfer; likewise, the mission can be extended by the same rate if DV is conserved during the transfer. For simplification, this analysis assumes that maneuvers use a

proportional amount of fuel to achieve a given DV throughout the mission. However, the efficiency of JWST's bi-propellant propulsion system is expected to vary during the mission, as will mass-flow rate, because the system is not pressure regulated.

Executing the JWST MCC maneuvers at a later point along the trajectory increases the DV cost to achieve the LPO in the vicinity of L2. Consider an elliptical orbit in a two-body system (assuming a nominal MCC-1a and prior to MCC-1b, JWST is in an elliptical orbit with a high apogee). As the spacecraft is on its way to apogee, it can either execute an impulsive maneuver at time  $t_1$  or an impulsive maneuver at time  $t_2$ , where  $t_1 < t_2$ , to achieve the same desired target state further along the trajectory in either scenario. Since the initial trajectory is the same for either maneuver scenario, it can be assumed that the initial specific energy  $\epsilon_{initial}$  before any maneuvers are applied is the same; that is,

$$\epsilon_{initial} = \frac{1}{2}v_1^2 - \frac{\mu}{r_1} = \frac{1}{2}v_2^2 - \frac{\mu}{r_2}$$
(1)

In this equation v is velocity, r is the radius from the central body, and  $\mu$  is the standard gravitational parameter. Equation (1) can also be written as:

$$v_1^2 - v_2^2 = 2\mu \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$
 (2)

Since the spacecraft is traveling away from the central body, at the respective maneuver times,  $r_1 < r_2$  and  $v_1 > v_2$ . Because each maneuver targets the same final trajectory, the same final specific energy  $\epsilon_{target}$ , is the same. After applying a maneuver with magnitude  $\Delta v$  to each scenario, the equation becomes

$$\epsilon_{target} = \frac{1}{2} (v_1 + \Delta v_1)^2 - \frac{\mu}{r_1} = \frac{1}{2} (v_2 + \Delta v_2)^2 - \frac{\mu}{r_2}$$
(3)

After some algebra, Equation (3) becomes

$$\left(v_1^2 - v_2^2\right) + 2\Delta v_1 v_1 - 2\Delta v_2 v_2 + \Delta v_1^2 - \Delta v_2^2 = 2\mu \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \tag{4}$$

Substituting  $(v_1^2 - v_2^2)$  from Equation (2) results in

$$\Delta v_1 (\Delta v_1 + 2v_1) = \Delta v_2 (\Delta v_2 + 2v_2)$$
(5)

Therefore, if  $v_1 > v_2$  because  $t_1$  is closer to periapse than  $t_2$ , then  $\Delta v_1 < \Delta v_2$ , demonstrating that delays in the maneuver execution time for JWST will ultimately increase the maneuver magnitude.

The DV cost of MCC-1a depends primarily on the launch epoch and the launch vehicle performance. Since a launch epoch for the observatory has not been determined and has changed several times in the years prior to this analysis, it is prudent to consider a wide range of launch opportunities. The current JWST launch window analysis spans November 2020 through March 2021. Requirements dictate that the launch must occur between 11:30 and 14:00 UTC on a given day. The nominal launch trajectory corresponds to one of two unique flight programs that optimize valid launch opportunities based on the time of year: to account for seasonal effects cause by the orientation of the Earth's axis with respect to the ecliptic plane, one flight program provides more opportunities for the months surrounding the winter solstice while the other provides more opportunities around the summer solstice.<sup>2</sup> However, a significant overlap of launch epochs from each flight program are valid throughout the year. An epoch is considered not valid if the corresponding trajectory fails to converge on an LPO in the simulation. The main difference between the two is that Flight Program 1 targets a lower apogee height than Flight Program 2. To account for variation in launch vehicle performance, the  $\pm 3\sigma$  trajectories for each flight program are also considered, where  $\pm 3\sigma$  refers to the apogee height at separation based on the launch vehicle manufacturer's assessment of the Ariane V.

The maximum allowable burn duration for MCC-1a is 12,000 seconds, which corresponds to a maximum DV of approximately 56 m/s. This requirement is enforced for test cases in this analysis, and maneuvers that exceed this requirement are cut off at 12,000 seconds. Since MCC-1a is the largest of the three MCC maneuvers, cases where the total MCC cost exceeds 56 m/s likely include an MCC-1a maneuver that is cut short, requiring MCC-1b to make up for the remaining DV.

Launch cases comprising all valid combinations of launch epoch and flight program for a sample month in the window are evaluated to assess the impact of delaying MCC-1a. This assessment includes the nominal and  $\pm 3\sigma$  trajectories for each flight program. November 2020 is a suitable month for assessment because it is within the proposed launch window and contains many valid launch cases. Figure 2 depicts a comparison of the total MCC costs for the case where MCC-1a is executed at L+12.5 hours or at L+14.5 hours (both with MCC-1b and MCC-2 are modeled to execute at their nominal times), regardless of launch validity for illustration purposes. The six distinct curve parings on a given launch day correspond to the six unique trajectories that are considered. The top two comprise the  $-3\sigma$  trajectories for each of the flight programs. These cases represent a launch vehicle underperformance, causing the total MCC cost to be higher to achieve the necessary orbital energy. The two curves in the middle are the nominal trajectories, and the bottom two curves are the  $+3\sigma$  trajectories, where launch vehicle overperformance necessitates smaller MCC-1a and total maneuver DV to achieve the target science orbit. Similarly, the data points representing Flight Program 1 (green) are consistently higher than those representing Flight Program 2 (purple) because Flight Program 2 inherently supplies more energy from the launch vehicle because it targets a greater apogee height. Note that as the total MCC cost increases, the difference between the MCC-1a cost at the two execution times also increases.



Figure 2. Total MCC Series Cost for All Possible Launch Cases in November 2020

The percent by which the MCC-1a and total MCC DV increases when the maneuver is delayed for each of the launch cases appears in Figure 3. While Figure 3 is based on the same set of trajectory data as Figure 2, the distinct flight program groupings are not visible; the percent increase of DV for a delayed maneuver has a negligible dependence on a non-nominal injection from the launch vehicle. However, two sets of outliers are apparent in Figure 3 and correspond to results from Figure 2. The collection of samples in Figure 3 between November 5 and 15 with an cost

increase of 0% (orange dots) correspond to the samples in Figure 2 that have a total DV cost of 0 m/s, because the launch vehicle provides too much energy in a  $+3\sigma$  hot separation state scenario and the observatory's trajectory exceeds the LPO. Consequently, these cases do not represent valid launch epochs (but are presented to illustrate pre-filtered results). The second group of outliers in Figure 3 between November 19 and 29 are samples where the MCC-1a burn duration limit is reached (orange dots in the lower right) and subsequent MCC maneuvers must compensate for the duration-limited MCC-1a burns, resulting in increased total MCC costs (blue dots in upper right). The trajectories from these launch cases are significantly impacted by gravitational effects from the Moon. Starting on November 25, the observatory can leverage the gravitational pull of the Moon through a swing by which significantly reduces the total MCC DV cost. However, in most cases the gravitational pull of the Moon negatively impacts the trajectory and the observatory is forced to increase maneuver size to reach the LPO. For each of the samples in this second outlier set, if the burn duration limit is reached by an MCC-1a maneuver at L+14.5 hours, the percent increase of the MCC-1a DV cost (orange) will be less than the average of 5.88% while the total MCC DV (blue) cost will be greater than the average of 4.96%. If the duration limit is achieved for MCC-1a at either L+12.5 and L+14.5, the percent increase for MCC-1a costs is zero. Most of the test cases fall into the two nearly horizontal lines in the middle of Figure 3 and are grouped by MCC-1a cost and total MCC cost. This trend indicates that, over a wide range of maneuver magnitudes, the cost of MCC-1a and the cost of the total MCC series each increase by a consistent percentage if MCC-1a is delayed by 2 hours.



Figure 3. Increase in Maneuver Cost for a Delayed MCC-1a from L+12.5 to L+14.5 Hours for All Possible Launch Cases in November 2020

The average percent increases in maneuver cost over a range of delay times (excluding the special cases mentioned previously) appear in Figure 4. As expected, the maneuvers become more costly the longer the execution time is delayed. The trends of increasing cost are sufficient to fit a curve to extrapolate maneuver impacts of longer delays; nonetheless, a thorough analysis, such as what appears in in Figure 2 and Figure 3 is recommended prior to generating specific maneuver plans. However, this trend is convenient in an environment where speed is more important than accuracy, such as assessing an operational delay contingency when the new maneuver time must be determined quickly before the official maneuver plan can be generated.



Figure 4. Increase in Maneuver Cost as a Function of MCC-1a of Delay

#### **Operational Application**

The trends presented in the previous section are directly beneficial to mission operators supporting the launch. Scaling a set of MCC-1a maneuver DVs. by the representative percentage increases (from Figure 4) results in generalized trends for a delayed MCC-1a of any reasonable magnitude. Curves for thirteen DVs. associated with an MCC-1a delayed by up to 12 hours after L+12.5 hours appear in Figure 5. The three rectangular regions represent critical considerations in how the cost of a given maneuver will impact the overall mission. Maneuvers in the green region satisfy all mission requirements. The yellow region represents MCC-1a maneuvers that will exceed the maximum burn duration and must be cut off prematurely. These cases are still acceptable but increase the cost of MCC-1b. The red region represents maneuvers that will expend more fuel than is reserved for the station-keeping (SK) maneuvers that maintain the science orbit for 10.5 years. MCC-1a maneuvers that would occur in the triangles in Figure 5 associated Madrid or Goldstone viewperiod termination violate a mission desire that at least one DSN ground station must observe the complete maneuver.



Figure 5. The Cost for a Range of MCC-1a Cases as a Function of Delaying MCC-1a

Considering that maneuver magnitude is assumed proportional to maneuver duration, it is possible to calculate the maneuver end epoch based on the nominal DV cost and start epoch. This information is useful in considering which ground station will be in contact with the observatory during the maneuver. A sample contact schedule for the available ground stations based on a trajectory assuming a nominal launch on November 1, 2020, appears in **Error! Reference source not found.** 



Figure 6. DSN Contact Periods for Nominal Launch Trajectory

This schedule is useful for identifying and select a single ground station to monitor the observatory throughout the entire maneuver. However, if the maneuver is delayed, the view period for the original ground station may end during the maneuver or before the maneuver starts. While it is possible to switch to a different ground station midway through a maneuver, doing so introduces additional complexity in trying to reestablish contact during a critical part of the mission and could lead to complications performing the initial maneuver performance assessment. Most likely, mission operators would select a ground station that provides coverage throughout the entire maneuver if the maneuver is delayed. By calculating the epoch associated with the maneuver's completion and comparing that value to the contact schedule, it is possible to determine which maneuvers will continue past the end of the view period for the original ground station. In these cases, a new ground

station can be selected to view the maneuver before it starts to avoid having to transfer communication and control between ground stations partway through the maneuver event.

The same process to assess the cost of a delayed MCC-1a is applicable to determine the total MCC cost in the event of a delayed MCC-1a. The cumulative costs of MCC-1a, MCC-1b, and MCC-2 appear in Error! Reference source not found.. For many of the cases with smaller nominal DV costs of MCC-1a, the curves possess the same slope and appear simply shifted slightly upward, because MCC-1b and MCC-2 are executed at their expected times and their magnitudes are unchanged even if MCC-1a is delayed. However, starting with a nominal MCC-1a cost of 45 m/s, the slope of the curve changes suddenly if MCC-1a is delayed by approximately 21.5 hours (note the elbow in the curve corresponding to an MCC-1a cost of 45 m/s; total maneuver costs for an MCC-1a of 45 m/s start at 54 m/s if MCC-1a is not delayed). Based on the corresponding curve in Figure 5, a planned MCC-1a exceeds the maximum burn duration if the start of MCC-1a is delayed until L+21.5 hours and is prematurely cut off. Since the full orbital energy is not achieved, the remainder must be offset by MCC-1b, causing the MCC-1b and the total maneuver cost to increase. As this case is essentially the same as delaying a portion of the maneuver, the remaining DV is not simply added to MCC-1b. Instead the increased cost of MCC-1b is greater than the remainder and the slope of the curve increases at this inflection point. For a nominal MCC-1a cost of 60 m/s, all cases exceed the burn duration requirement, so the full curve for a 60 m/s MCC-1a possesses a different slope compared to the MCC-1a costs in Error! Reference source not found.5.



Figure 7. The Total MCC Cost for a Range of MCC-1a Cases as a Function of Delay

The charts in Figure 5 and **Error! Reference source not found.** are useful approximate solutions for a wide range of MCC-1a cases. To further simplify the chart visually, as well as improve accuracy in reporting results, an interactive tool to generate these types of plots was developed for JWST mission operations. A mission operator inputs the nominal MCC-1a maneuver cost at L+12.5 hours and the expected maneuver start time. The tool displays a single curve corresponding

to the specific operational case, as illustrated in Figure 8. The same process is applied to the plot of total MCC cost as well. Additionally, if the expected maneuver time is known, the maneuver can also be added to the DSN contact schedule (see an example in Figure 9). These tools will assist JWST mission operators determine if a maneuver must be split between two contacts and allow operators to make decisions more quickly if the execution of MCC-1a must be delayed.



Figure 8. MCC-1a Cost as a Function of Start Time for a Custom Case



Figure 9. Maneuver Span in Relation to Ground Station Contact Schedule

# MCC-1A OVERBURN RECOVERY CONTINGENCY

The second contingency scenario of this investigation details the recovery of the observatory in the event an MCC-1a overburn results in a trajectory that would escape into a heliocentric orbit. Unlike the previous contingency case, the consequences of over burning the SEMB L2 region are

severe: an overburn results in the end of the mission. In the event of an overburn, MCC-2 will act as the recovery maneuver while continuing its original purpose of placing JWST into a stationkeeping orbit. Two methods for an attempted overburn recovery are considered. The first is to take advantage of the solar radiation pressure (SRP) through attitude adjustments of the observatory and the second is to perform a recovery maneuver prior to or as part of the nominal MCC-2 execution time at L+30 days while adjusting the maneuver direction. In either case, options for trajectory analysts are limited by observatory attitude constraints. Combining the two methods further enhances the chances for the mission to be saved.

# **Contingency Scenario Overview**

The first mid-course correction, MCC-1a, will be biased to 93% of the desired DV to ensure an overburn is unlikely while balancing the desire to perform as much of the maneuver as possible closer to perigee and preserving fuel. If the propulsion system significantly overperforms and produces more than 100% of the desired DV at MCC-1a, an overburn occurs, and a recovery maneuver is required. For other SEMB L2 missions, an overburn can be corrected by maneuvering in a sunward direction, typically parallel to the anti-velocity vector. Because of the attitude limitations for JWST, it is not possible to maneuver directly along the anti-velocity vector in the sunward direction. However, as this investigation shows, some "sunward" maneuver options are available, albeit not parallel to the anti-velocity vector. Further, while the sunshield is in the stowed configuration, no available maneuver direction can remove energy from the transfer orbit. The aforementioned recovery scenarios become available as the range of available observatory orientations increases after sunshield deployment.

Making use of SRP and the recovery maneuver direction relies on manipulation of the observatory attitude. The three Sun-angle definitions that define the observatory's attitude (Sun pitch, Sun roll, and Sun yaw) appear in Figure 10. The Sun pitch and Sun roll of  $0^{\circ}$  is defined when the +J3 is aligned with the Sun to spacecraft vector.\* Sun pitch is limited between  $-53^{\circ}$  and  $0^{\circ}$ , and Sun roll is restricted between  $\pm 5^{\circ}$ ; Sun yaw is free.



Figure 10. Definition of Yaw, Pitch, and Roll Angles<sup>†</sup>

<sup>&</sup>lt;sup>\*</sup> The J frame is a body-fixed reference frame.

<sup>&</sup>lt;sup>†</sup>Image Credit: https://jwst-docs.stsci.edu/observatory-hardware/jwst-observatory-coordinate-system-and-field-of-regard, accessed 27 June 2019.

# **Recovery from an MCC-1a Overburn Using Attitude Variation and SRP**

To model the SRP for JWST, the FDT uses a polynomial curve fit provided by sunshield analysts. The polynomials are a function of Sun pitch and Sun roll that calculate the SRP force magnitude and direction in the observatory body frame. All three Sun angles are required to orient the SRP force vector from the body frame into the Earth centered inertial mean of J2000 frame for numerical integration. Unlike a cannonball model, the SRP force vector for JWST is not aligned along the Sun-to-Observatory vector. The off alignment can be exploited during flight after sunshield deployment (which occurs after the time MCC-1b would have been performed) through the execution of the recovery maneuver to help reduce the DV cost for the recovery maneuver. Example concentric cones of potential SRP force vectors relative to the Sun-to-Observatory vector appear in Figure 11. Each cone is made at a Sun-pitch value starting at 0° and incremented by  $-13.25^\circ$ , for illustration purposes, until the  $-53^\circ$  minimum limit is reached. The cones all have a Sun roll of 0° and vary the Sun yaw from  $-180^\circ$  to  $180^\circ$ . The cone comprising a Sun pitch of  $-53^\circ$  contains all SRP force vector directions that are possible within JWST's attitude constraints.



Figure 11. SRP Force Vectors for All Allowable Orientations of JWST.

Figure 12 through Figure 14 illustrate how changing each of the Sun-angle components separately over the timespan between sunshield deployment and the recovery maneuver affect how much DV is required in the event MCC-2, scheduled for L+30 days, acts as the recovery maneuver for a 1% overburn of MCC-1a (the limits of a recoverable overburn are discussed in a subsequent section). Sun-angle plots in the figures assume a default Sun-roll value of  $0^{\circ}$ , Sun-pitch value of  $-53^{\circ}$ , and a Sun yaw value of  $-130^{\circ}$ ; two of the Sun-angle components are fixed at these default values in each of the figures, while the third Sun-angle component is varied, resulting in the necessary recovery maneuver DV cost at L+30 days.

Sun pitch has the largest impact on DV reduction, with a range of DV cost of approximately 1.6 m/s, as apparent in Figure 12. Sun yaw has the second largest impact, as seen in Figure 13, with the difference in range of 0.35 m/s. Finally, Figure 14 illustrates that Sun roll produces the smallest contributions to DV reduction with the difference in range of DV of 0.02 m/s, which is expected as the allowable Sun-roll range is only  $\pm 5^{\circ}$ ; therefore, Sun roll is not a focus of this investigation. Selecting an advantageous Sun-pitch and Sun-yaw combination helps reduce the DV necessary for the recovery maneuver.



Figure 12. Sun Pitch vs. MCC-2 DV for a 1% MCC-1a Overburn Associated with a 11/09/2020 Launch Date.



Figure 13. Sun Yaw vs. MCC-2 DV for a 1% MCC-1a Overburn Associated with a 11/09/2020 Launch Date



Figure 14. Sun Roll vs. MCC-2 DV for a 1% MCC-1a Overburn Associated with a 11/09/2020 Launch Date

The results presented in Figures 12 through 14 show that fixing the Sun pitch and Sun yaw at  $-53^{\circ}$  and  $-130^{\circ}$ , respectively, during the period between sunshield deployment and maneuver execution for this launch epoch reduces the recovery maneuver size to a minimum value. This ballistic transfer period is the opportune time to reorient the attitude of JWST to reduce the recovery DV due to no major flight dynamics processes being scheduled during this time.

The next step in the investigation is to determine if these Sun-angle values remain consistent across multiple launch dates, in particular Sun yaw as it is expected that a Sun pitch of  $-53^{\circ}$  will always produce the minimum DV solution. Table 1 lists different options considered in this study. Six epochs are selected for their associated nominal MCC-1a DV costs.

| Launch Epoch                | Nominal MCC-1a DV (m/s) |
|-----------------------------|-------------------------|
| November 9, 2020, 13:00 UTC | 15.07                   |
| January 15, 2021, 12:30 UTC | 27.71                   |
| February 7, 2021, 12:00 UTC | 10.15                   |
| April 11, 2021, 13:45 UTC   | 35.27                   |
| June 14, 2021, 13:00 UTC    | 30.54                   |
| July 8, 2021, 12:35 UTC     | 20.19                   |

Table 1. Launch Epochs and their Associated Nominal MCC-1a DV

**Error! Reference source not found.** and **Error! Reference source not found.** illustrate the Sun-pitch and Sun yaw variation for three of the six different launch epochs in Table 1. A Sun pitch of  $-53^{\circ}$  always results in the minimum recovery maneuver DV at L+30 days, apparent in Figure 15. For a ballistic transfer period of 20 days, the DV cost reduction is approximately 1.5 m/s between the minimum and maximum Sun pitches across various launch epochs. The Sun-yaw relationship produces a consistent range between minimum and maximum DV cost of approximately 0.4 m/s, but the Sun-yaw value corresponding to the minimum solution is not constant and depends on the launch epoch. The January example requires a Sun yaw of  $-120^{\circ}$  to produce a minimum DV to recover from an overburn, while the April example requires a Sun yaw of  $-60^{\circ}$  and the June



example requires a Sun yaw of  $-50^{\circ}$ . Sun-yaw variational changes are the result of seasonal effects that changes the transfer trajectory for JWST and therefore the Sun-to-Observatory vector.

Figure 15. Sun Pitch vs. MCC-2 DV for a 1% Overburn



#### Overburn Recovery by Adjusting the Timing and Direction of the Recovery Maneuver

For the recovery maneuver itself (in lieu of or part of the nominally scheduled MCC-2), the FDT can adjust two parameters to help reduce the DV cost: execution time and maneuver direction (i.e., for fixed thrusters, the observatory orientation during the maneuver). Beginning with the parameter of execution time, the impact of performing the recovery maneuver between L+10 days and L+30 days is examined. A lower bound of L+10 days is predicated on the notional completion of the sunshield deployment, while an upper bound of L+30 days aligns with the notional latest MCC-2 execution time. Impacts of performing the recovery maneuver at a variety of observatory attitudes are also examined. The minimum DV cost for station-keeping maneuvers is achieved when the DV is applied along or as close as possible to the stable eigenvector.<sup>1,3</sup> To maneuver "sunward," a Sun pitch of  $-53^{\circ}$  is required as that orientation places the observatory's station-keeping thruster as close as possible to the stable eigenvector. This configuration leaves Sun yaw as a free parameter to further reduce the DV cost of the recovery maneuver as much as possible (effects from Sun roll are negligible).

In the nominal operations timeline, MCC-2 is planned to occur at approximately L+29 to L+30 days. In the event of an MCC-1a overburn, MCC-1b is cancelled as the observatory is still in the stowed configuration and corresponding attitude, and a maneuver in this attitude only increases the velocity of JWST, adding more energy to already mission-ending trajectory. When the observatory sunshield is fully deployed (after the planned time of MCC-1b), a wider range of allowable maneuver orientations become available. MCC-2 can become the recovery maneuver to reduce the energy of JWST, recover from the overburn, and still maintain the maneuver's primary purpose of placing JWST in orbit around SEMB L2. However, performing the recovery maneuver (a.k.a., MCC-2) earlier than the nominal L+30 days reduces the DV costs to mitigate the effects of the overburn. An example of this relationship for the November 9, 2020, launch case and 1% MCC-1a overburn appears in Figure 17.



Figure 17. MCC-2 Epoch vs. DV for a 1% MCC-1a Overburn Associated with a 11/09/2020 Launch Date

A recovery maneuver performed at L+10 days results in a 2 m/s DV while one on L+30 days requires approximately 7.4 m/s DV, nearly 3.7 times higher. Each recovery maneuver option employs a specific attitude, in terms of Sun pitch and Sun yaw, that minimizes the DV for that option. Sun pitch remains at  $-53^{\circ}$  for all dates while the Sun yaw varies from  $-140^{\circ}$  at L+10 days to  $-110^{\circ}$  at L+30 days.

Operationally, the Sun-pitch and Sun-yaw combination that results in the minimum DV for the recovery maneuver should be performed. Sun-yaw variation with regards to an MCC-2 performed at L+29 days for a variety of Sun pitches appears in Figure 18 and demonstrates the importance of selecting the proper maneuver attitude for the recovery maneuver.



Figure 18. Sun Yaw vs. DV for Sun-pitch Variation for a 1% MCC-1a Overburn Associated with a 01/15/2021 Launch Date

The minimum DV magnitude of approximately 18 m/s occurs at a maneuver Sun yaw of  $-100^{\circ}$  and a Sun pitch of  $-53^{\circ}$  (indicated by the red circle in Figure 18). For a given Sun yaw of  $-100^{\circ}$ , the range of DV costs between a Sun-pitch range of  $-53^{\circ}$  and  $-48^{\circ}$  is 18 to 38 m/s. Similarly, looking at the  $-53^{\circ}$  pitch curve show a range of DV between 18 and 43 m/s. A variation of at least 20 m/s in DV cost from varying the maneuver Sun pitch and Sun yaw demonstrates the importance of the maneuver direction in recovering the observatory from an overburn scenario. While this minimum DV found for a maneuver direction variation is for a launch epoch on January 15, 2021, similar minimums exist for different launch epochs and MCC-1a cases.

Another important result from Figure 18 is the available attitude range for the recovery maneuver. As Sun pitch increases and the Sun yaw varies away from  $-100^{\circ}$ , the recovery DV increases until the calculated recovery maneuver DV becomes negative. A negative DV indicates the station-keeping thrust vector points away from the Sun, and to perform a maneuver in the sunward direction with this attitude orientation, a negative impulsive DV is required. Sun pitch and Sun yaw values that provide a negative impulsive DV violate JWST attitude constraints and cannot be performed. The range of positive impulsive DV solutions is small and only exists between a Sun pitch of  $-53^{\circ}$  to  $-48^{\circ}$  and a Sun yaw range between  $-160^{\circ}$  and  $-40^{\circ}$ .

Analysis for station-keeping maneuvers<sup>3</sup> shows that a maneuver with a Sun pitch of  $-53^{\circ}$  provides the minimum DV in the sunward direction. This property is also true for the recovery maneuver. A Sun pitch of  $-53^{\circ}$  places the maneuvering thruster roughly in the RLP-XZ plane, which is as close as possible to sunward stable eigenvector direction. Variation in the Sun yaw produces the minimum recovery maneuver solution. Figure 18 shows the relationship between Sun pitch and Sun yaw in the recovery process for a single launch epoch. Looking at multiple launch epochs (Figure 19) provides a greater understanding of the variation of Sun yaw with respect to the recovery burn.



Figure 19. Sun Yaw vs. DV for Selected Launch Epochs based on a 0.2 m/s overburn of MCC-1a

Figure 19 shows the variation in Sun yaw for multiple launch epochs with a constant burn magnitude instead of an overburn percentage employed for previous plots. Using a constant magnitude of 0.2 m/s of DV across multiple launch epochs provides similar DV ranges for comparison of the recovery maneuver options as opposed to an overburn percentage. Recovery maneuvers are performed at L+30 days for Sun pitches at  $-53^{\circ}$ . The November 9 example requires a maneuver at a Sun yaw of  $-110^{\circ}$  to provide a minimum DV to recover from a maneuver. Similarly, the July 8 example requires a Sun yaw of  $-80^{\circ}$  to produce a minimum DV to recover from the overburn. Sun yaws that produce the minimum DV for recovery maneuvers change with each launch epoch. Seasonal variational changes affecting the ballistic transfer period Sun yaw also appear to have similar effects on the Sun yaw for a recovery maneuver. Savings in DV cost range from 19 m/s to 38 m/s for the selected cases. Knowing how the launch date affects the Sun yaw for the ballistic transfer period and the maneuver direction can prove to be invaluable in reducing overall DV for a recovery maneuver to reach the station-keeping orbit in the event of an overburn.

#### **Combined Effect**

The timeframe between the end of the sunshield deployment and the nominal MCC-2 epoch is the most crucial in which to decide how to recover the spacecraft in the event of an MCC-1a overburn. The techniques delineated above are considered independently to showcase their respective capabilities to mitigate an overburn scenario. Orienting JWST at a specific attitude for the ballistic transfer period and performing the recovery maneuver at an epoch earlier than the nominal MCC-2 epoch while manipulating the recovery maneuver direction results in providing DV minimization. Combining these mitigation techniques further reduces the cost of the recovery maneuver more than any one technique alone. While combining the techniques reduces recovery maneuver DV, there is a limit to how much of an overburn that JWST can theoretically recover from. Examples and cases presented so far were for an overburn case of either 1% or 0.2 m/s above the nominal MCC-1a maneuver. Overburn capabilities are determined by how much DV the observatory has available. A  $+3\sigma$  injection necessitates a small MCC-1a, which, if overburns, leaves plenty DV for recovery; however, a  $-3\sigma$  injection requires a large MCC-1a, leaving little DV for recovery if MCC-1a overburns. Propellant and oxidizer are budgeted for this mission at a maximum of 93 m/s of DV for the MCC maneuvers. Approximately 26.5 m/s of DV is held in reserve to satisfy the stationkeeping budget for the 10.5-year mission lifetime. To ensure mission success, the recovery maneuver can use the station-keeping DV held in reserve, but for the analysis in this investigation, a limit of 93 m/s is set as the maximum DV available for MCC-1a and the recovery maneuver.

The DV required for an MCC-2 recovery maneuver based on the combined techniques is unique to each launch date. Results in terms of percentages and absolute DV for a launch case of February 7, 2021, which has a nominal MCC-1a of 10.15 m/s (from

Table 1), appear in Figure 20 and Figure 21, respectively. These results arise from a Sun pitch of  $-53^{\circ}$ , Sun yaws that produce the minimum DV for each specific day, and the epoch at which MCC-2 can be performed (between L+10 days and L+30 days). The Sun pitch and Sun yaws that produced the minimum recovery DV are applied to both the ballistic transfer period and the maneuver direction. The total MCC DV for this launch case is below the 93 m/s threshold. Increase in recovery DV due to delaying the recovery maneuver are again seen in Figure 20 and Figure 21. A maximum MCC-1a overburn of 1.8 m/s (17.73%) is recoverable for this epoch if it is performed with L+12 days; otherwise, the observatory does not possess enough propellant to recover into a safe trajectory. Delaying the recovery to the nominal MCC-2 time of L+30 days allows for a maximum MCC-1a maneuver overburn of 0.8 m/s that can be recovered for this launch case.





#### Figure 21. Overburn DVs based on a Launch Date of 02/07/2021

While Figure 20 and Figure 21 illustrate the combined effect of the techniques to reduce the DV required to recover from an MCC-1a overburn, they present only one launch case. Percentages of MCC-1a overburn in Figure 20 apply only to February 7, 2021, and cannot be applied to other dates; nominal MCC-1a magnitude varies as a function of launch date. Thus, examining multiple launch dates across the launch window provides a reasonable expectation of the range of possible scenarios. Figure 22 and Figure 23 present a representative subset launch cases and associated recoveries of an MCC-1a overburn. MCC-1a overburn percentages in Figure 22 map directly to the excess DV values appearing in Figure 23. For the July 8 launch case, the 18% overburn recovery at L+10 days in Figure 22 translates to a 3.8 m/s excess in Figure 23. Similarly, for the February 7 launch case, the 19.7% overburn recovery at L+10 days in Figure 22 corresponds to a 2 m/s excess in Figure 23. For a recovery maneuver performed at L+10 days, the July 8 launch case tolerates a higher MCC-1a overburn in terms of DV but a lower DV in terms of percentage compared to the February 7 case. Consequently, caution must be exercised in representing allowable overburn in terms of percentage. For different launch cases, the nominal MCC-1a maneuver is a function of the energy that is put into JWST by the launch vehicle. The preferred terminology to describe recovery from an MCC-1a overburn is in terms of DV, not percentage.



#### Figure 22. MCC-2 Epoch vs. MCC-1a Overburn Percentage

#### Figure 23. MCC-2 Epoch vs. MCC-1a Overburn DV

Data for the dates represented in Figure 22 and Figure 23 follow the trend that performing the recovery maneuver as soon as possible is the best means for recovering the observatory. Each data point represents a recoverable observatory based on the magnitude of the MCC-1a overburn. At L+10 days, overburns that are possible to be recovered from range from 2 m/s for the February 7 launch case to 4.2 m/s for a launch on June 14. At L+30 days, the ranges are lowered to be 0.6 m/s for the February 7 launch to 1 m/s for a launch case of April 11. Advancing MCC-2 earlier than its schedule L+30-day epoch will reduce the DV required to recover JWST and increase the likelihood

that JWST can be recovered in the event of an MCC-1a overburn. Similarly, if an overburn occurs after an MCC-1a delay, the combined techniques discussed for the recovery maneuver can also accommodate this double contingency scenario.

# CONCLUSION

The analysis in this paper examines two contingency scenarios involving the first and most important maneuver of the JWST mission. Delaying the maneuver execution is a likely contingency case that will have an impact on the overall mission duration and operations. Simulating a range of execution times reveals that the percentage increase in DV of the MCC-1a maneuver is a function of the amount of time by which the execution was delayed. A useful tool is now available to quickly evaluate cost and mitigate the impact that this contingency case has on operations. The second contingency scenario examines recovering from an MCC-1a maneuver overperformance. Propagating and maneuvering in specific attitude orientations can relieve some of the pressure on the MCC-2 maneuver in terms of excess energy. Sun pitch provides the most capability to reduce the DV necessary to recover from an MCC-1a overburn, followed by the Sun yaw, and then the Sun roll. Using these Sun angles in combination with moving the MCC-2 maneuver up from the nominal L+30-day schedule, and selecting an advantageous maneuver attitude, accommodates recovery of higher levels of MCC-1a overburn.

# ACKNOWLEDGMENTS

a.i. solutions' contribution to this work was performed under NASA contract #NNG14VC09C.

# REFERENCES

<sup>1</sup> J. Brown and J. Petersen, "Applying Dynamical Systems Theory to Optimize Libration Point Orbit Stationkeeping Maneuvers for WIND," *AIAA/AAS Astrodynamics Specialist Conference*, San Diego, California, August 2014.

<sup>2</sup> J. Brown, J. Petersen, B. Villac, and W. Yu, "Seasonal Variation of the James Webb Space Telescope Orbital Dynamics," 2015 AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado, August 2015.

<sup>3</sup> J. Petersen, K. Richon, "L2 Station-keeping Maneuver Strategy for the James Webb Space Telescope," 2019 AAS/AIAA Astrodynamics Specialist Conference, Portland, Maine, August 2019.