

Mars Sample Retrieval Lander: Aerothermal feasibility analysis and shape optimization on the use of ADEPT

Andrea Alberti

Analytical Mechanics Associates Summer Intern, NASA Ames Research Center PhD Candidate, University of Illinois at Urbana-Champaign, Aerospace Engineering

> Supervised by Suman Muppidi Special thanks to David Saunders and Dinesh Prabhu

> > August 2019, Final presentation

Mars Sample Retrieval Lander (SRL)

- Mars Sample Return (MSR) is a planned sequence of (3) missions to bring samples from Mars to Earth
- The concept includes a Sample Retrieval Lander (SRL) to land a fetch rover and an ascent vehicle on Mars
- Compared to MSL and M2020, the payload is required to be heavier
- All previous Mars missions used 70° Sphere-Cone sections; SRL will be the first one using Spherical section (for increasing the payload volume)
- Challenge: how do we land an additional 500 kg of mass with only slight changes to entry capsule (compared to M2020)?
- One option being considered is the use of Adaptable, Deployable Entry Placement Technology (ADEPT) to increase drag during entry, and increase the payload capability

Source: overview infographic from www.esa.int

Sample Retrieval Lander (Courtesy of David Saunders)

Adaptable, Deployable Entry Placement Technology (ADEPT)

ADEPT is an innovative, semi-rigid, mechanically deployable drag skirt system conceptualized at NASA Ames

VENKATAPATHY, ARNOLD, FERNANDEZ, ..., PRABHU, ET AL., "Adaptive deployable entry and placement technology (ADEPT): a feasibility study for human missions to Mars", (AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, 2011)

- The added aerosurface is a thin skin draped over high-strength ribs
- Preliminary analysis of SRL with ADEPT shows increased payload capability
- SRL-ADEPT flowfield is characterized by flow separation at the heatshield-ADEPT interface
- Objective: use CFD to optimize the heatshield shape, ADEPT skirt length and SRL-ADEPT interface

Source: Adaptive deployable entry and placement technology (ADEPT): a feasibility study for human missions to Mars

Objective

Physical and Numerical Modeling

- ► Hydrodynamics: chemically reactive Naver-Stokes equations
 - 2T Non-Local Thermodynamic Equilibrium (NLTE)
 - 2D-axisymmetric

Thermodynamics:

- vibrational non-equilibrium (single T_v)
- rotational equilibrium (statistical mechanics)
- electronic energy (statistical mechanics $T_{el} = T$)

► Transport:

- transport coefficients: Yos mixing rule
- diffusion coefficients: self-consistent effective binary diffusion

• Chemistry: $CO_2 - N_2$ mechanism (10 species, 20 reactions)

JOHNSTON AND BRANDIS, "Features of Afterbody Radiative Heating for Earth Entry", (Journal of Spacecraft and Rockets, 2014)

Numerics: DPLR CFD solver

- Fully implicit time integration
- Steger-Warming 3^{rd} order upwind-biased flux extrapolation
- MinMod flux limiter

SRL and SRL-ADEPT: Baselines

SRL fore-body: two circles

► ADEPT: straight rib with curved tip

- Control Variables
 - Nose Radius (R_n)
 - Shoulder Radius (R_s)
 - Base Radius (R_b)

Control Variables

 R_n [...]

- ADEPT angle (θ)
- SRL-ADEPT connection (HS)
- ADEPT length (L)

ADEPT length and shape

- Large flow separation region at SRL-ADEPT interface
 - $L = 180 \, cm$ ensures flow reattachment for ADEPT modeled as straight rib
 - $L = 58 \, cm$ ensures flow reattachment for ADEPT modeled as straight rib with curved tip

SRL and SRL-ADEPT: Converged Solutions

 $V_{\infty} = 5216 \, m/s$

 $\rho_{\infty} = 0.7243 \, g/m^3$

SRL

SRL-ADEPT

 $T_{\infty} = 159.545 \, K$

- ▶ Wall tangential min spacing: 5.0 mm
- Wall normal min spacing: $3.0 \, \mu m$
- Number of grid points: 600×400
- Number of alignments: 4

- ▶ Wall tangential min spacing: 4.0 mm
- Wall normal min spacing: $1.5 \, \mu m$
- Number of grid points: 800×400
- Number of alignments: 7

Drag increased 30%, but the recirculation region makes C_x drop 14%

August 2019

Fore-Body Shape Optimization

Geometrical control variables:

- ADEPT angle: θ
- ADEPT connection point with the TPS: HS
- Fore-body Nose radius: R_n
- Fore-body Shoulder radius: R_s
- The Qol are:
 - Drag (D) and drag coefficient (C_x)
 - skirt pressure and heat flux peaks (at the reattachment point) (p_w, q_w)
 - length of the recirculation region in ADEPT (L_{rec})
- The Cost Function is:

 $\mathcal{S}(\theta, HS, R_n, R_s) = w_1 f_D + w_2 g_{pw} + w_3 h_{qw} + w_4 l_{rec}$

$$w_1 f_D = \frac{0.6 \times D_{baseline}}{D(\theta, HS, R_n, R_s)}$$

$$w_3h_{q_w} = rac{0.1 imes q_w(heta, HS, R_n, R_s)}{q_{w, baseline}}$$

$$w_2 g_{p_w} = \frac{0.1 \times p_w(0, 113, 1\alpha_n, 1\alpha_s)}{p_{w,baseline}}$$

 $0.1 \times m$ ($A \cup U \subseteq D \cup D$)

$$w_4 l_{rec} = \frac{0.2 \times L_{rec}(\theta, HS, R_n, R_s)}{L_{rec, baseline}}$$

August 2019

Fore-Body Shape Optimization

The functional dependence of f_D, g_{pw}, h_{qw}, l_{rec} on θ, HS, R_n, R_s has been assessed by perturbing the variables ±10% and ±20%

Fore-Body Shape Optimization: Results

- Results are shown for the following set of constraints:
 - $L_{ADEPT} = 57.5 \, cm, \ \theta < 72^{\circ}$
 - $R_b = 4.7/2 m$, $4.77 m < R_n < 6.46 m$, $7.5 cm < R_s < 15 cm$
 - $CM_0 2.5 \, cm < CM < CM_0 + 2.5 \, cm$

Automated optimization (with scripts) from parametric meshing to post-processing

• Given a set of constraints and weights, the optimization takes $\approx 4 hr$ (96 procs) August 2019 11 Andrea Alberti

Fore-Body Shape Optimization: Results

- The recirculation region is still large ($\approx 60\%$ of L)
- Gap at SRL-ADEPT interface might bleed the separation zone [D. Prabhu]

 $V_{\infty} = 5216 \, m/s$ $T_{\infty} = 159.545 \, K$ $\rho_{\infty} = 0.7243 \, g/m^3$

- ADEPT has been observed to generate a high temperature wake
- The gap works as an over-expanded nozzle and provides kinetic cooling to the aft

Conclusion

- \blacktriangleright Drag increased 55% with respect to SRL without ADEPT
- Drag coefficient increased up to 1.65 (1.7 when using the gap)
- ▶ Heat flux peak in ADEPT dropped 20% wrt SRL-ADEPT baseline
- ► ADEPT appears to be a viable solution for delivering larger payload
 - benefit of spherical section: increased payload volume wrt 70° sphere-cone section
 - benefit of ADEPT: C_x comparable with 70° sphere-cone section
- Optimization framework is general and automated

Future Work

- Shape optimization considering the full-body
- Consider other geometrical shapes not limited to spheres
- Include radiative heating for the aft body (expensive)
- Extend the framework to 3D at an Angle-of-Attack (also expensive)

The author gratefully acknowledges:

- NASA Ames for hosting the summer internship program, in particular David Hash, Jeffrey Hill, and Brett Cruden
- ► AMA for funding the summer internship, in particular Dave Cornelius
- Suman Muppidi, David Saunders, and Dinesh Prabhu for the help and the useful scientific discussions
- ▶ the fellow interns for the good times and the inspiring stories

National Aeronautics and Space Administration

Ames Research Center Entry Systems and Technology Division

BACK-UP

August 2019

- ADEPT has been observed to generate a high temperature wake
- The gap works as an over-expanded nozzle and provides kinetic cooling to the aft

August 2019

Andrea Alberti

