

American Institute of Aeronautics and Astronautics

1

Transitioning Autonomous Systems Technology Research to
a Flight Software Environment

Jeremy Frank
Gordon B. Aaseng1

NASA Ames Research Center, Moffett Field, CA 94035-1000

NASA has developed methods and algorithms for autonomous spacecraft operations,
including automated planning and scheduling, fault diagnostics and impact determination,
procedure management and display. Making the transition from technology research to
operational flight software requires overcoming significant technical, programmatic and
cultural challenges. Technology research is aimed at developing methods that perform
specific functions correctly, but the resulting software may not be designed for flight
processors with limited CPU, memory and network resources, and may not be easily
integrated into spacecraft flight software. Our objective in the Autonomous Systems and
Operations Project is to make significant strides toward the transformation from technology
to operational use. Our focus was twofold: maturing research grade autonomy software into
a flight software environment using broadly accepted languages and tools; and integrating
autonomy applications with each other and with representative systems and their data and
command interfaces. For a target flight software environment, we chose Core Flight
Software, developed by Goddard Space Flight Center as a common operating system
independent framework. Our hardware integration environment was provided by the
Integrated Power and Avionics Systems (iPAS) Lab at Johnson Space Center, in which
various subsystem development has been conducted to address engineering challenges for
the vehicles and systems required for long-duration missions into the solar system. The iPAS
and its network of connected facilities provides realistic subsystem hardware or simulations
of spacecraft power, life support, guidance, navigation and control, and command and data
handling subsystems. Interfaces between autonomy applications and the subsystems being
assessed and controlled were developed, assessed and refined. The hardware and software
environment using CFS and the iPAS facility has proven to be a highly flexible and realistic
environment in which to rapidly integrate applications in an iterative, low cost setting. Using
the integration environment we have developed, we will turn our focus to performance and
sizing analysis to determine the computational requirements for full-scale deployment of
autonomy technology. Scalability of reasoners and the spacecraft models upon which they
operate, and robustness across the full range of spacecraft conditions and environments will
be explored and improved. We are making significant contributions to the future programs
that will build the spacecraft that will take humans beyond the Earth-Moon system, in which
program Systems Engineers will be able to accurately and confidently design in accurate,
robust and mature autonomous operations systems.

Nomenclature
ACAWS = Advanced Caution and Warning System
AMPS = Advanced Modular Power System
APC = Autonomous Power Controller
ARC = Ames Research Center
ASO = Autonomous Systems and Operations
BSP = Board Support Package
CDD = Command and Data Dictionary
cFS = Core Flight Software

1 Computer Scientist, Intelligent Systems Division, MS 269-1.

American Institute of Aeronautics and Astronautics

2

cFE = Core Flight Executive
CH4 = Methane Molecule
CO2 = Carbon Dioxide Molecule
cRIO = Compact Real-Time Input/Output
DS = Data Store
ECLSS = Environmental Control and Life Support System
EFT-1 = Exploration Flight Test #1 (Orion Spacecraft)
EPS = Electrical Power System
GRC = Glenn Research Center
H2 = Hydrogen Molecule
HyDE = Hybrid Diagnostic Engine
IMS = Inductive Monitoring
iPAS = Integrated Power and Avionics System
JSC = Johnson Space Center
ISS = International Space Station
LADEE = Lunar Atmosphere and Dust Environment Explorer
LRO = Lunar Reconnaissance Orbiter
MBSU = Modular Bus Switching Unit
MCC = Mission Control Center
MID = Message Identifier
NASA = National Aeronautics and Space Administration
O2 = Oxygen Molecule
OS = Operating System
OSAL = Operating System Abstraction Layer
PDU = Power Distribution Unit
PLB = Programmable Load Bank
PLEXIL = Plan Execution Interchange Language
PPA = Plasma Pyrolysis Assembly
PPC 750 = Power Personal Computer
PSP = Platform Support Package
QSI = Qualtech Systems, Inc.
RBI = Remote Bus Isolator
RPC = Remote Power Controller
SB = Software Bus
SBC = Single Board Computer
SBN = Software Bus Network
SCM = Software Configuration Management
VM = Virtual Machine

I. Motivation and Objectives
Future human spaceflight exploration missions will require considerably more autonomy than has been used for

crewed missions in the past. The two-way light time places an absolute constraint on communications, and any
decisions or reactions that must be completed under the two-way light time must be performed autonomously by the
in-space segment (the spacecraft itself and the crew). Autonomy is defined as “operating without external support or
assistance”. Autonomy can be achieved by any combination of crew actions and vehicle system automation. During
the first global circumnavigation, Ferdinand Magellan’s fleet was completely autonomous in that all navigation and
operational decisions were made solely by his fleet of ships, although automation was almost non-existent. A Mars
or long-distance asteroid mission will require total autonomy for short-term decisions that must be made in less than
the two-way light time between the spacecraft and Earth, as well as during planned and unplanned loss of
communications. Increased autonomy will also alleviate the degradation of interactive, conversational
communications as the light-time increases. Apollo, Shuttle and International Space Station (ISS) have relied
predominantly on Earth-based Mission Control Centers (MCCs) for mission decisions.

American Institute of Aeronautics and Astronautics

3

NASA’s Autonomous Systems and Operations Project (ASO) has developed or extended several technologies to
automate these higher order decisions or provide the kind of integrated information to flight crews that enable them
to make complex decisions without reliance on off-board support. Autonomous operations require both nominal and
off-nominal decision-making. Nominal decisions and controls are needed to ensure that activities are performed as
planned, and that operational constraints are enforced. However, as noted by Carl Von Clausewitz, "No battle plan
ever survives contact with the enemy”; a similar maxim holds for spaceflight. Off-nominal conditions are always
unexpected and unplanned; even though the probability of failures, and to some extent the timing of failures using
prognostic technology, can be estimated, system failure and degradation almost certainly requires both human and
system decision-making, and also induces some perturbation into operational plans and schedules. These can range
from minor and recoverable perturbations, to whole-scale mission replanning, such as situations that require an early
return or change in mission objectives.

NASA’s ASO Project, as well as several other research groups, have been conducting technology research into
the decision automation methods that will be required for effective autonomy. These include planning and
scheduling systems, procedure automation and assistance, and fault management detection and isolation, anomaly
detection, failure prognostics, and failure impact determination. Significant progress has been made over the past
several years to develop and mature intelligent software capable of making the types of complex decisions required
of an autonomous spacecraft. These technologies have been integrated as a decision aid for astronauts to
demonstrate autonomous mission operations, both in analog environments and onboard the ISS1,2,3,4. Having
substantially accomplished major proof of concept and feasibility demonstrations, the next steps include proving
scalability, robustness and performance attributes in realistic flight environments. However, previous
demonstrations used automation and, more importantly, flight software technology developed decades ago; while
these demonstrations show what is possible, novel flight software and decision support technology will form the
foundation of the next generation of human spaceflight missions4.

In order to become a part of an on-board critical decision and control system, successful autonomy technology
must be converted to flight quality and standards, must fit within constrained performance allocations, and must
scale up to spacecraft dimensions from the system subsets used by technology projects for concept development.
The infusion into programs must eventually be adopted by a flight program, but programs, with good justification,
have been reluctant to adopt unproven autonomy technology. Among the justifications for the reluctance are:
• Additional autonomy technology is not required to meet the mission requirements.
• Accurate and trustworthy metrics needed to estimate the cost of a full-scale implementation are not available,

resulting in substantial program cost and schedule risk.
• Processor, memory, and bandwidth data for the technology are not available with enough accuracy to make

reliable sizing, power and thermal estimates, resulting in significant technical risk.
Maturing the existing technology base to address these concerns requires a significant development effort.

Typically, software technology is built on common computing resources such as modern Intel processors, with
Linux or Windows Operating Systems, and non-real-time interfaces and networks. Software environments have
been chosen to promote rapid development rather than using commonly accepted flight software; software in
combinations of Java, Python, C++ and web tools are common1,3,4. Furthermore, technology research has not been
conducted with system performance and robustness as a primary goal. Finally, software has been built to technology
research lab standards to prove feasibility rather than developing for execution in flight-like environments on
constrained computing resources. Our current focus is on creating an environment in which to rigorously examine
and analyze performance of autonomy applications, using representative systems and their data to extrapolate
performance of future exploration spacecraft and missions. On completion of performance analysis and the
derivation of usable parametrics to aid in scaling performance to full systems, we will be able to better address
autonomy requirements and their implementation costs.

We have selected a set of autonomy applications and converted them to execute on processors and software that
is either flight qualified or on a viable path to flight certification, integrated with realistic, representative flight-like
subsystems with data, failure spaces and operational decisions similar to current and future human spacecraft
systems. We have chosen the Power PC (PPC 750) processor, the VxWorks Operating System and the Core Flight
Software (cFS) middleware as the flight-like environment for the next phase of technology research and “infusion
research”. VxWorks Operating System has been flown on numerous uncrewed missions; cFS, originally developed
by Goddard Space Flight Center as a common, reusable operating system independent interface layer5, has been
used recently on the Lunar Atmosphere and Dust Environment Explorer (LADEE), the Lunar Reconnaissance
Orbiter (LRO), and other missions. Autonomy applications have been refactored in the C or C++ programming
language to be compatible with cFS and flight software standards, and performance improvements have been made
where feasible. Even though software is not developed to rigorous software processes and standards, the refactored

American Institute of Aeronautics and Astronautics

4

applications can be used to derive parametrics that provide accurate estimations of the processor, memory and
throughput of applications scaled up to full-sized spacecraft systems, and to pinpoint areas where additional
performance optimization is warranted.

In the remainder of this paper, we will describe the autonomy technology applications that we have developed
and are converting from technology research to a path to flight. The processing hardware and software environments
that we have selected for the next step on the path to flight will be discussed, including the basis for selecting the
chosen systems and tools and descriptions of some of their key attributes. Next we will describe the subsystems that
we have used to create realistic operational settings in which to execute the autonomy applications, including the
types of failure cases and decision reasoning that stress the applications enough to extrapolate from the testbed
setting to spacecraft scales. The results of the integration and testing that we have completed will be described, with
our lessons learned, and we will conclude by describing the benefits that are anticipated with the applications,
environments, and the integration and test environment that has been developed.

II. Autonomy Technology Applications
We have selected a group of autonomy applications and test domains to be executed in the flight processing

environment from technologies that have been developed to varying states of maturity over the past several years. In
this section we will describe the applications and their purpose, their maturity and heritage, the systems and
subsystems for which they have been used in the past as well as on this project. Since the applications, the
associated subsystems, and the software and processing environment are closely associated, we provide a brief
introduction to the cFS and environment and the subsystems prior to describing the autonomy technology
applications.

The cFS software environment provides standard services for control of applications and inter-process
communications. A key feature is the Software Bus, which is a logical construct by which applications
communicate. The Software Bus can extend across multiple processors, whether they are located adjacently or
distributed at long distances. Several common services, including Time Services, Event Services, Execution
Services and Table Services provide many of the core functions required of any real-time flight software
environment. cFS includes a set of standard, reusable applications that perform functions common to multiple
applications, including a process scheduler, a data Limit Checker, a Data Storage application for logging application
data, and others.

The subsystems with which the autonomy applications interface range from technology testbeds under
development and evaluation by other NASA projects to the Orion spacecraft. The Advanced Modular Power System
(AMPS) is developed at Glenn Research Center, and is also deployed at Johnson Space Center for integration with
other technology development projects. The Plasma Pyrolysis Assembly (PPA) is part of a technology suite for
closed loop Environmental Control and Life Support Systems (ECLSS), that recovers molecular hydrogen (H2) from
methane (CH4) that is produced as a byproduct of oxygen (O2) recovery from carbon dioxide (CO2)6. The PPA is
developed at Marshall Space Flight Center. A Lithium Ion battery, similar in design to the Orion spacecraft battery,
is used in conjunction with fault and anomaly detection applications. Initial testing was done with representative
data emulating the battery sensors, but recent updates will enable direct connections of the autonomy application
software to the battery hardware available in our integration lab. We also have the Orion Exploration Flight Test 1
(EFT-1) data available that will be used for a larger scale performance test in the next year.

The autonomy applications represent a group of autonomy types that we have defined that constitute a range of
activities in a decision process, from determining the state of the system to deciding what to do in response to a
perturbation of the system. The autonomy application classes are:
• State Estimation – abstract spacecraft data to higher-order descriptions.
• Fault Diagnosis – identification of the root cause faults.
• Failure Impacts Determination - consequences of faults on mission capability, for example, a power system

fault results in loss of rendezvous sensor, therefore ability to complete rendezvous is compromised.
• Planning – determining what actions to perform.
• Plan execution – sending commands based on the plan.

The autonomy applications have been demonstrated in settings ranging from technology testbeds to on-board the
ISS. The applications, their autonomy classes, their purpose and most mature use prior to our current work, are
summarized in Table 1. The Advanced Caution and Warning System (ACAWS)7 consists of three separate
applications to perform different fault management functions, while other applications can operate independently or
integrated with other applications.

American Institute of Aeronautics and Astronautics

5

Table 1 – The autonomy applications, their classes, a brief description and usage prior to the transition to flight environment that
is the focus of our current work are described

Autonomy Application Autonomy Class Purpose Prior Usage
ACAWS Fault
Detector

State Estimation Identifies indications of faults from
system data, e.g. threshold exceedance

Ground demo with Orion
EFT-1

ACAWS Diagnostic
Engine

Fault Diagnosis Combines results of Fault Detector to
identify component faults

Ground demo with Orion
EFT-1

ACAWS Failure
Impacts Reasoner

Failure Impacts
Determination

Identifies the components whose
functions have been impacted by one
or more system faults

Ground demo with Orion
EFT-1

Hybrid Diagnosis
Engine (HyDE)

State Estimation,
Fault Diagnosis

Uses a state-based model with system
data to identify failures in terms of
transitions to off-nominal system
states

On-board ISS
demonstration with life
support autonomy
demonstration

Inductive Monitoring
System (IMS)

State Estimation Anomaly detection system; “trained”
with nominal data to recognize
anomalies as deviations from known
nominal

Ground use for ISS mission
support; Ground demo with
Orion EFT-1; On-board
ISS demonstration with life
support autonomy
demonstration

 Our current work does not include automated planning applications. Planning applications tend to be more

complex and their transition to flight environments warrant more dedicated and focused work than our current
project is able to perform. Other projects have begun to implement planning functions using the Plan Execution
Interchange Language (PLEXIL) in other flight-like environments that can be integrated with our autonomy
development at a later time. The plan execution function in the APC is developed independently at Glenn Research
Center as part of the AMPS system described in detail in later sections. It executes on a separate processor that is not
executing the cFS environment, but is integrated to the extent that data is exchanged with our applications to
demonstrate the use of failure information applications with plan execution systems.

The system and software architecture including the cFS software environment, our autonomy applications, and
the subsystems used to exercise and test the autonomy, are shown in Figure 1. The autonomy applications, shown in
magenta circles, communicate with each other and with the external subsystems via cFS Software Bus messages and
use cFS services for execution. Reusable cFS applications support our applications, including the Limit Checker that
is used to identify faulted conditions, and Data Storage that provides run-time logging of data. AMPS, PPA and
Orion data is connected to the autonomy applications via the Software Bus.

We can now describe the autonomy applications in more detail, with the maturation toward flight-readiness that
has been achieved and discuss remaining challenges. Each of the applications in Figure 1 are described in the
following sections.

ACAWS Fault Detector. The Fault Detector is the State Estimation element of ACAWS. It obtains data from the
target system, performs filtering, cleaning and framing, then conducts tests on the data, and sends the results to the
ACAWS Diagnostic Engine as a vector of PASS, FAIL or UNKNOWN test results. Since telemetry data is often
imperfect, the Fault Detector first checks the data for any status information available from the target system and
conducts additional quality testing as needed. Off-scale or otherwise physically improbable data (30 °K, for
example), or data that has uncharacteristically stopped updating for an extended time, is excluded from testing. Once
the data has been filtered to exclude as much of the noisy data as possible, tests can be conducted on the data. Tests
can be as simple as a red-line or threshold test, or arbitrarily complex algorithms. The Fault Detector can be
configured with a persistence setting on each test result to further filter transient results, such as needing three failure
results in a row before asserting a FAIL result to the Diagnostic Engine. The Fault Detector also includes a Test
Suppression feature that can suppress any test result under certain conditions. For example, if a switch is turned off
by the operators, any tests on the load that is turned off can be set to UNKNOWN in order to prevent a misdiagnosis
of a failure when it is not in use. The Fault Detector uses the cFS Limit Checker application for testing the AMPS
data for conditions symptomatic of system faults. The Limit Checker uses a table to describe the data value to be
tested, and a threshold value or condition that indicates a FAIL condition.

ACAWS Diagnostic Engine. The test results and system configuration data from the Fault Detector are sent to a
Diagnostic Engine application that includes a commercially available diagnostic reasoner, TEAMS-RT®, to perform

American Institute of Aeronautics and Astronautics

6

the Fault Diagnosis autonomy function. TEAMS-RT8 is a library module developed by Qualtech Systems, Inc.
(QSI) that contains the run-time artifacts derived from a system fault model built with the companion tool from QSI,
TEAMS Designer. The model operates on a matrix that associates the tests with failure modes for a given system
configuration to determine the root cause failure that best explains the vector of PASS, FAIL and UNKNOWN
results. The diagnostic results are returned from TEAMS-RT API calls and are packaged into a cFS Diagnostic
Results message that is transmitted to other applications.

ACAWS Failure Impacts Reasoner. The ACAWS Failure Impacts Reasoner receives diagnostic results from the
Diagnostic Engine to perform the Failure Impact Determination autonomy function. The Diagnostic Engine sends a
request to the Failure Impacts Reasoner which initiates a query of the system model to determine the components
and functions affected by a failure. Failure impacts include both loss of function of a component and loss of
redundancy of a required resource to a component. The results can be displayed to notify operators of a
comprehensive view of the state of the system following failures – the root cause failure, the components
unavailable for use, and components that would be lost by one more failure. The loss of redundancy information is
the key to determining next worst failures that help make important decisions about the mission and to prepare for
potential additional loss of critical functions.9

HyDE. The Hybrid Diagnostic Engine (HyDE) is a model-based fault diagnosis engine that diagnoses discrete
faults. HyDE takes as input a model that describes the combined discrete and continuous behavior of the
components of the system10. The model consists of discrete modes of operations, relevant variables and parameters
of the modes, and how these variables relate to each other in different modes of operations. HyDE uses sensor data
from the system and the model of the system behavior to deduce the evolution of the state of the system over time,
including changes in state indicative of faults. Transitions between modes are based on either commands or
conditions on the internal variables. Faults are represented as special unknown event transitions. HyDE supports

Figure 1 – The autonomy applications, the primary services provided by cFS, a set of common reusable
cFS applications, and the representative spacecraft subsystems perform integrated spacecraft functions
in a flight-like software environment

American Institute of Aeronautics and Astronautics

7

modeling of variables and relations in different domains like Boolean, enumeration, real-valued and interval-valued.
HyDE's reasoning algorithm tries to determine the modes of all components, values of all variables, and the
occurrence of one or more unknown events in the system. The reasoning starts with the assumption that no unknown
events have occurred, and all modes and variables have their initial values. Any available sensor observations are
compared against predictions from the model. Inconsistencies between predicted and observed states generates
conflicts; each conflict is a set of unknown event transitions that contribute to each inconsistency. A search over the
space of unknown events driven by these conflicts results in the generation of one or more fault states that would
resolve the inconsistencies. The number of possible faults is configurable, which limits the possible explanations.
Further simulation with these potential candidates would determine which potential candidates become actual
diagnoses. This process continues over time as more and more observations become available.

IMS. The Inductive Monitoring System (IMS) application is an empirical anomaly detection system to perform a
State Estimation function11. Instead of seeking a diagnosis of a well-characterized potential failure, the IMS looks
for unusual, unexpected system behavior. Using data from various configurations and environments, the IMS is
“trained” with known nominal behavior. During operations, IMS detects anomalies as deviations from the normal
data. This is usually performed by measuring the ‘distance’ between the system’s current behavior and the
characterization of ‘nominal’ behavior; if this distance exceeds a tunable threshold, it is considered ‘off-nominal’.
An anomaly may be an unusual but acceptable condition, in which case the training can be updated to include the
unusual condition, or it may indicate a malfunctioning or degrading system. The output is a scored value that can
alert an operator of unusual conditions that warrant further investigation. Since IMS has been exercised and
validated with several systems, the primary objective was to execute it in the cFS environment in order to prepare
for performance analysis, rather than to emphasize detection of anomalies.

Autonomous Power Controller. An Autonomous Power Controller (APC) developed at Glenn Research Center
(GRC) demonstrates a power system specific Planning and Execution function12. It receives diagnostic messages
from the ACAWS Diagnostic Engine that is used to initiate automated failure responses, but it also modifies the
system state model that the APC uses for any other automated decisions, such as future environmental and system
configuration changes. The APC is an early capability autonomous controller, demonstrating the concept of
integrating multiple types of reasoners to achieve automated, autonomous controls of a spacecraft subsystem. The
APC developers plan to transition the controller to a cFS flight environment as the system matures; our current work
with the APC conceptually demonstrates the Plan Execution function that will be matured with more capable
planners and execution functions.

III. Subsystem Domains
The autonomy applications described in the previous section are generic and reconfigurable; they are designed to

support multiple spacecraft subsystems and interact across subsystem boundaries to properly respond to failures and
events that affect multiple subsystems. To effectively test and evaluate the autonomy applications, we selected
several spacecraft subsystems that provide realistic problem sets with flight-like sensor and processor data as inputs
to the autonomy applications. None of the applications were designed to work specifically with these subsystems; to
the contrary, they are all designed to operate with any system. All of the applications require configuration;
ACAWS and HyDE require a set of failures and a set of well-defined conditions that map system behavior to a (set
of) failures that my have occurred. IMS requires a characterization of the normal performance of a system, which is
used to identify off-nominal behavior. We selected a group of subsystems that are themselves in a technology
research and maturation stage with engineering testbeds capable of exhibiting realistic nominal and faulted behavior,
capable of generating data compatible with cFS software environments, but that are small and agile enough to adapt
to the autonomy application test and evaluation needs. The subsystems include Electrical Power Systems (EPS) and
Environmental Control and Life Support Systems (ECLSS) components. The subsystems are either physically
located in, or have data connectivity to, the Integrated Power and Avionics System (iPAS) testbed at Johnson Space
Center. The subsystems and the autonomy applications are shown in Table 2. The subsystem domains provided a
good range of problem types that effectively exercised several key attributes of the autonomy applications. Power
systems tend to exhibit rapid failure propagation, while ECLSS is frequently characterized by gradual onset such as
fluid leaks, and failures of either subsystem can impact the other. Nominal and faulted behavior were simulated
where necessary, and actual fault data from testbed execution, when it occurred, was recorded to be played back to
the autonomy applications.

American Institute of Aeronautics and Astronautics

8

Table 2 – The subsystems used for test and evaluation of the autonomy technology applications, with the classes of autonomy
functions of each application

Subsystem Autonomy Application Reasoning Types
AMPS ACAWS State Estimation, Fault Diagnosis, Failure Impacts
Battery Power IMS State Estimation
Plasma Pyrolysis Assembly (PPA) HyDE State Estimation, Fault Detection
AMPS APC Plan Execution

A. Electrical Power Subsystems

The AES Modular Power System (AMPS)13 was the primary spacecraft system for exercising the ACAWS

applications. AMPS, shown in Figure 2, includes several power distribution and power management components
with numerous system sensors including current, voltage, switch positions, commanded positions and error
conditions. The data is initially processed and converted to engineering units on a Compact Real-time Input Output
(cRIO) device, timestamped and transmitted in a CCSDS message format. The sensor data is transmitted via
Ethernet to a cFS application that receives the incoming messages and republishes the data in a cFS message format.
The combination of the cRIO with a message format converter is an analog of a typical spacecraft’s subsystem level
processor that performs data collection, packaging and engineering unit conversion, and transmits the data for
processing by a supervisory level flight computer.

The AMPS contains power management and distribution hardware, sensors and software representative of space-
capable power systems, with redundant components and power channels. Battery power is available from Lithium
Ion batteries and emulated solar array power. Modular Bus Switching Units (MBSUs) control which power source is
used, and provide power to Power Distribution Units (PDUs). Power redundancy is provided at the bus level with
each MBSU sending power to both PDUs, and the PDUs select which MBSU power is used. Sensors include
numerous current and voltages, switch positions and error data, such as a mismatch between a commanded state and
actual state of switches.

Each MBSU and PDU contains a compact Remote Input Output (cRIO) device that processes data and
commands. The cRIO reads sensors, converts signals to engineering units, timestamps the data and transmits it to a
central processor. It also receives commands and converts them to electrical signals to control switches. The cRIO
uses LabVIEW software package that constructs data messages in a CCSDS format compatible with the cFS
messages described in the following sections. The cRIO performs limited error checking, such as comparisons of
commanded states and actual measured states of switches, and can report errors such as mismatches. The cRIO is
powered by redundant power supplies on each of the inputs to assure power to the cRIO as long as power is
available on any of the inputs.

The AMPS system provided a good range of electrical system faults, requiring use of sensor data as well as the
loss of data or data validity to identify failures. Electrical faults are characterized by rapid onset and discrete state
changes, such as from on to off, or voltage at either 120 volts or 0 volts, whereas faults in the powered equipment
are often more continuous with gradual change in temperature, pressure and electrical current consumption. AMPS
failures are simulated in hardware with use of commands that are not visible to control and fault management
software. Simulated failures include:
• Switch failures.
• Shorts on power cables/connectors.
• MBSU and PDU component-level failures (“dead box”).
• Load overcurrent.

American Institute of Aeronautics and Astronautics

9

Switches are software-commanded Remote Bus Isolators (RBI) in the MBSU, or Remote Power Controllers
(RPC) in the PDU. The MBSU RBIs use a switch on both the positive (hot) line and negative (return) line, both
commanded to the same position by the cRIO command logic. A fail open condition could occur if either switch
opens without command, and sensors report the state of both switches as well as a mismatch between the hot and
return line, and mismatches between commanded state and actual state. Likewise, a failed closed condition could
occur in which the switch fails to turn off when commanded, or changes from open to closed without command. The

dual switch design makes a failed
closed fault less likely than a
failed open, since two switches
would have to inadvertently close,
but conditions other than electro-
mechanical failure could occur
that would close the switch
without command.

Power short conditions result
in a trip of the RBI or RPC, and
are characterized by a trip without
a prior overcurrent condition. The
current sensors are processed at 1
Hz so it is quite unlikely that a
current spike will be detected to
confirm the trip, so it is possible
for a “false trip” to occur that
would be indistinguishable from a
true short circuit. Shorts in the
MBSU are simulated by setting a
trip limit below the actual current
draw. If the current is observed
rising toward the trip threshold
prior to a trip over at least a few
seconds, a short circuit on the
power cable would not be
diagnosed. A slow increase in
current draw is indicative of
malfunction of a load, rather than
a fault in the wiring.

Component failures of the
MBSU or PDU are characterized

by a complete loss of both data and power output. Both the MBSU and PDU contain a Compact Real-time
Input/Output (cRIO) processor, powered by internal power supplies. The MBSU has a power supply on each of the
input power channels, and any of them can power the cRIO, while the PDU has a single power supply. Either a
cRIO fault or loss of power to the cRIO would result in identical conditions – a loss of all power and data output -
and because all the data from the component requires an operable cRIO, it is not possible to determine if the failure
is due to the cRIO or loss of power to the cRIO.

Load faults are simulated by Programmable Load Banks (PLB) that can be programmed to emulate the power
profile of typical spacecraft components. The PLB does not simulate the sensors that would be associated with
typical equipment, such as temperatures, pressures, or RPMs, so diagnosis of faults is made on the basis of current
draw only. Current is monitored, and if it rises above a threshold for at least several seconds, a load overcurrent fault
is diagnosed. It would be very likely that current will drop to 0 after an overcurrent fault, either because the current
continues to rise and exceeds the trip threshold of the RPC, or because an operator or automated controller responds
to the fault (using the diagnostic system’s outputs, perhaps) and commands the overloaded equipment off. Since the
fault still exists, the diagnostic system needs to continue to report the overcurrent fault, using a ‘latching’
mechanism that reports the failure until there is positive evidence that the fault was cleared.

The iPAS contains Lithium-Ion batteries that provide power to AMPS system that was used with an anomaly
detection system that is trained with nominal data, and uses deviations from nominal to identify anomalies. The
Inductive Monitoring System (IMS) was used in the iPAS to identify such battery anomalies. An anomaly is simply

Figure 2 – The AMPS architecture and a sample of representative loads
powered by AMPS shows multiple redundant power channels from dual
batteries and solar arrays simulated in the AMPS testbed. The power
input sources are shown in green, and are not part of the diagnostics and
control testing. The primary AMPS components are in light brown in the
center, and generate all data used for diagnoses. Loads, in light blue, are
mostly simulated by Programmable Load Banks, but some, including the
Flight Computer, are actual lab equipment.

American Institute of Aeronautics and Astronautics

10

an unusual or unexpected condition; it may turn out to be the result of an atypical but valid environment or
configuration, or it could be due to a system malfunction or degradation. Used in combination with other diagnostic
systems, it can help identify incipient conditions, or can identify signs of faults that were not known or anticipated.
Because the battery system data has only recently been collected, processed and published to cFS, our IMS work has
had to rely on simulated, recorded data that contains representative anomalies. Because IMS is relatively mature in
its original Linux version and is used in the MCC for ISS anomaly detection, it was not a priority to show that it can
detect the battery anomalies; the emphasis was in executing it in cFS and preparing it for performance analysis in a
flight environment.

B. ECLSS Subsystems
Failures in Environmental Control and Life Support Systems (ECLSS) are often characterized by more gradual

onset and uncertainty. Failures such as fluid leaks tend to occur slowly, with effects that propagate even slower. A
gradual pressure drop, perhaps followed in time by temperature increases, could result from loss of coolant fluid; but
if operating in an already cold environment, or not too much heat was being generated because systems happened to
be operating in quiescent modes, the temperature rise expected of a coolant leak might not occur. Diagnostic
systems for these types of failures require different techniques for detecting thresholds, rates of change or more
complex determinants of off-nominal system performance.

Our project had access to ECLSS equipment that could be used to exercise diagnostic applications geared to
more continuous and uncertain failure behavior. The Plasma Pyrolysis Assembly (PPA) is a component of a system
for oxygen (O2) recovery from carbon dioxide (CO2). Current oxygen recovery results in methane as a byproduct
that is vented overboard, requiring a continuing supply of hydrogen (H2) as a reactant. The H2 is obtained from
breaking water down into H2 and O2, so recovering the H2 is a major improvement over current CO2 recovery
processes. The PPA recovers the hydrogen from methane and improves the oxygen recovery significantly.

The PPA system controls chemical and physical processes and is sensitive to deviations and tuning. Off-nominal
conditions could result from component failures, but can also indicate tuning or balancing of power, temperature
control, reagent levels and other parameters required for a well-controlled chemical reactions that convert methane
to molecular hydrogen (H2) and solid carbon. Off-nominal conditions can be detected by conditions such as gradual
changes in the reflected microwave power or changes in pressure. These changes may indicate a system failure, may
indicate a tuning problem, or may be a normal part of the chemical process, so considering all the data as a state
change is ideal for the PPA problem set.

The PPA team provided sample representative data containing several conditions of interest, obtained when the
PPA exhibited faults during testing. The PPA faults are detectable primarily with the microwave reflected power and
pressure changes. High reflected power indicates that the microwaves are not being absorbed properly in the system,
which could be a result of a few possible failures or degradation conditions. The faults present in our PPA datasets
included:

• Carbon buildup – a buildup of carbon clogs the system, slowing down or stopping the ability to strip
molecular hydrogen from methane.

• High reflected power.
• Sabatier over-pressure, similar to a PPA over-pressure.

A HyDE model was developed for the PPA system to identify several types of failures or off-nominal
conditions. The HyDE reasoner uses a system model that correlates state changes with failures by determining if the
state change is commanded or a natural result such as changing environmental conditions, and if not, it determines
the most likely fault that would cause the observed state change. Like IMS, HyDE is a mature technology, so the
primary motivation of our work was to integrate HyDE with cFS and prepare it for performance analysis in a flight
like environment. The HyDE reasoner has successfully detected and diagnosed the conditions using the recorded
data. The work to date has shown that the diagnostic concept and interfaces to PPA data are correct, clearing the
path to a more full-scale integrated capability to detect and diagnose failures and degradation over complex
continuous data.

IV. Processor and Software Architectures
The conversion of technology research applications to flight-like applications involved several significant

activities that will be described in detail below, including
• Conversion to flight-supported software languages. Applications originally written in Java, Python or other

languages were ported to C or C++.

American Institute of Aeronautics and Astronautics

11

• Implementation in the CFS framework. Applications written for Linux, Windows or other environments were
refactored to use cFS services for initialization, events, time management and data handling.

• Standardization of inter-process communications. Technology research interfaces included various
combinations of open source, commercial or custom interfaces. These were converted to CFE Software Bus
messages in most cases.

• Software optimization. Technology research applications were frequently not built with performance as a
primary goal, so as they were ported to C, some applications were significantly refactored to improve processor
and memory utilization, particularly in cases of known performance issues from prior technology research.

Software Conversion. For our project, this was primarily porting applications from Java to C, or scripting
languages such as Python to C. Such changes can be a large effort that doesn’t show substantial differences to
outside observers and program managers, but it proved well worth the effort to convert to languages typically used
in flight software rather than work with adapters and interfaces that might have allowed use of the original software
code. We explored options for retaining legacy software, such as using C to Java interfacing methods such as JNI,
but ultimately we determined that continuing to use legacy Java or other software would just delay a necessary
transition, and decided to “bite the bullet” and convert the software at the outset. Some software transitioned
relatively easily to C, while other applications needed features of C++ to avoid substantial rework. We determined
that using C++ libraries invoked by C applications was a viable trade-off. Initial testing using Linux in the CFE
framework was very successful with the approach. Subsequent transitions to VxWorks required building C++
support into the VxWorks kernel but otherwise proceeded smoothly.

Implementation in the cFS framework. The cFS environment provides standardized application initialization,
registration, execution loops, and shutdown. A small set of cFS services provide time and event management,
command and telemetry routing via a Software Bus, and error messaging and handling. Coupled with CFS is an
Operating System Abstraction Layer (OSAL) that is intended to achieve application portability between operating
systems and processors, and “promote the creation of portable and reusable real time embedded system software.
Given the necessary OS abstraction layer implementations, the same embedded software should compile and run on
a number of platforms ranging from spacecraft computer systems to desktop PCs.”14 Common functions for queues,
semaphores, tasks, timers, file I/O, file system management and interrupts are used by software applications rather
than the native operating system functions. Using the OSAL eliminates the need for changing API calls when
software moves from Windows to Linux to VxWorks or other operating systems. This also was somewhat tedious
work with little initial outward benefit, but clearly pays off when moving an application from early development and
test on Linux to executing on embedded processors. Converting applications developed as technology
demonstrations to operating system independent applications using the OSAL was a manual process requiring
developers to identify the native functions that were included in the OSAL and convert from operating system native
functions to the OSAL function. The OSAL is not strictly necessary in order to function or to be flight certified. The
recently completed AMO TOCA SSC experiment4 was flown on the ISS without platform independence provided
by the OSAL, but it was executed only on a commodity PC in a virtualization environment, and did not need
platform independence.

An example of the benefits of the OSAL can be seen in the file open function. In Linux, the file open API is:

int open(const char *path, int oflag, ...);

with an optional ‘int mode’ parameter; in VxWorks, the file open function is defined as:

int open(const char *path, int oflag, int mode);

with a required mode flag. The OSAL defines a function

OS_open (const char *path, int32 access, uint32 mode)

that is used instead of the native operating system’s ‘open’ function that will work correctly on any operating
system. Applications that are fully “OSAL-compliant” can be readily moved from one operating system to another
without code modification because the OSAL handles all the variability between operating systems and their various
versions. However, it proved somewhat difficult to be sure that all application developers had truly converted all
commonly used functions to the OSAL equivalent. More than once, an application that was considered to be OSAL

American Institute of Aeronautics and Astronautics

12

compliant failed to execute when moved to another operating system, and software integrators found native
operating system function calls still in use were not available or were in a different form on the targeted platform.
While not a major problem for the moderate scale of the applications used in the infusion research, this will be an
ongoing concern as larger projects make similar transitions. Code reviews and automated tools to check for OSAL
compliance could alleviate the concern.

Standardization of Interprocess Communications. Interprocess communications included both communication
between independent tasks running on a single processor and between applications running on different processors.
The cFS framework includes a Software Bus that transports data between applications on a processor, and an
application called Software Bus Network (SBN) facilitates interprocessor communications by extending the
Software Bus between processors. All interprocessor communications using SBN relied on Ethernet with standard
IP protocols, although conceivably the SBN functionality could be implemented for some other transport protocol.
The Software Bus uses a publish and subscribe protocol. The publishing application does not require awareness of
what applications may receive the data, and the subscriber does not need to know where the application generating
the data is located. The SBN application creates data channels, or ‘pipes’, between all processors that register and
transmits messages destined for a subscriber on another processor from the local Software Bus to another SBN node
which receives the incoming message and places it on its local Software Bus. Each application uses a set of unique
message IDs to correctly identify the data message by the Software Bus routing mechanisms. The Software Bus with
the SBN applications effectively extend the Software Bus across all processors in the spacecraft architecture so that
applications maintain processor independence with respect to interprocess communication.

While flight programs, such as ISS and the Orion spacecraft have dealt with managing large-scale data
communications between processors and various elements of a ground infrastructure, the management of the data
has not always been efficient. The cFS framework and the incipient tools we developed to help manage interprocess
communications provide opportunity for significant improvements in interprocess data management. Managing the
message IDs required careful attention and tools. The architecture allows for multiple copies of an application to
execute, but each one needs unique message IDs or its data could be misinterpreted by receiving applications.
Indeed, during development and testing, we occasionally encountered conflicts because messages were not properly
deconflicted. For smaller scale projects, developers could assign message ID ranges for each application, but as the
number of applications, and the number of messages used by the applications, grows, it became clear that message
ID automation would be required. A tool called the Collaborative Data Dictionary was developed to help manage
the message IDs. The complete specification of the applications, the messages they could generate, and the
commands to which they respond remained a complex process.

V. Integration and Testing
The Integrated Power and Avionics System (iPAS) was established at Johnson Space Center as a collaborative

environment that has proven to be well-suited for technology infusion activity. The iPAS hosts several subsystem
technology testbeds, and also provides secure data communications between NASA centers, providing a range of
subsystems with which to interact. Our autonomy applications require realistic nominal and faulted behavior to
exercise diagnostics, impact determination and automated plan execution functionality. The iPAS offers both a rich
set of subsystems as well as the computational and communications resources in a well-controlled environment in
which to test and evaluate the autonomy applications.

We developed a flexible processor architecture to run several applications distributed between processors, and to
move applications between processors easily. One of our objectives was to assure that software loads can be
balanced between processors either in design, development, or in operations such as a response to loss of computing
assets or changing operational needs.

The cFS environment is designed to make the transition between processors seamless. During development and
test it is advantageous to begin development and test in an environment such as Linux, move to the target operating
system, such as VxWorks, as the design matures, and later transition to the flight hardware when it becomes
available. cFS has successfully facilitated these kinds of transitions and we have used its transportability features to
address both software distribution and flexibility in our autonomy architecture. Distribution between multiple
processors requires establishing data and command interfaces across a network. Flexibility in addition requires that
the distribution scheme can be changed with minimal change to software. We successfully showed that flexibility
can be achieved with a very small set of configuration data and with no change whatsoever to application software
and data.

American Institute of Aeronautics and Astronautics

13

We executed the set of applications described above in several processor configurations, starting with all
applications executing on a single Linux Virtual Machine, migrating to two, then three Linux machines, and finally

to a mix of Linux and
Power PC processors. Our
primary test configuration
consisted of the AMPS
hardware and APC
application, both of which
execute outside of the cFS
framework, but connected
to a Linux cFS node, and
ASO applications
distributed between a Linux
node and PPC with
VxWorks, as shown in
Figure 3. The dissimilar
architecture assures that the
architecture and
applications properly handle
data byte ordering, timing
and message integrity.

The following sections
will describe the some of
the integration and test
activities and issues
encountered. We will
provide details on the
message traffic generated
by our applications as
currently implemented, the
work and challenges
involved in transitioning
cFS applications on Linux
to PPC and VxWorks, and
several issues that arose
during development and
integration.

A. Message Traffic
The messages between applications all use a fixed size synchronous cyclic data packet. cFS can use

asynchronous messaging, but since one of our objectives is to establish a system on which good quality performance
metrics can be collected, we determined that cyclic messaging would stress the messaging architecture more, and
would be easier to analyze steady state performance without having to determine worst case data bandwidth and the
probability of reaching worst case. Our initial data bandwidth has been fairly low, but serves to establish a
performance baseline when scaled up applications are exercised later. The message rates and sizes are described in
Table 3.
Table 3 – Message descriptions for the inter-process data used in the initial test and evaluation

Message Rate
(Hz)

Size
(Bytes)

Generating Application Receiving Application

ACAWS Test
Results

1 73 ACAWS Fault Detector ACAWS Diagnostic Engine

ACAWS Diagnostic
Results

1 140 ACAWS Diagnostic Engine Autonomous Power Controller, Displays,
Data Logs

ACAWS Impact
Request

1 38 ACAWS Diagnostic Engine ACAWS Failure Impact Reasoner

Figure 3 – The application architecture used for test and evaluation of
autonomy applications in a distributed cFS software environment and
multiple processors with both simulated and hardware subsystems, with
three cFS nodes connected to the AMPS hardware and its processors, and an
external AMPS Power Controller executing remotely. A failure is injected
into the AMPS hardware (1) that is detected in the AMPS telemetry by the
ACAWS Fault Detector (2). Messages are sent to ACAWS Diagnostic Engine
(3) to diagnose the AMPS failure mode. Diagnostic results are sent to the
Failure Impacts Reasoner to determine the effects of the failure (4) and to
the AMPS Power Controller (5). Diagnostic results and failure impacts are
received by the AMPS displays to show along with telemetry data from the
AMPS testbed (6).

American Institute of Aeronautics and Astronautics

14

ACAWS Impact
Results

1 500 ACAWS Failure Impact
Reasoner

Displays, Data Logs

PPA Diagnostic
Results

1 133 PPA HyDE Reasoner Displays

PPA Data 1 264 PPA Data Playback PPA HyDE Reasoner
IMS Anomaly
Scores

1 14 IMS Displays

AMPS MBSU Data
(2 instances)

1 166 AMPS Test Rig ACAWS Fault Detector

AMPS PDU (2
instances)

1 130 AMPS Test Rig ACAWS Fault Detector

Total 1,458

B. Transition to VxWorks
The transition from autonomy technology research to a realistic flight software environment involved at least

three major phases. First was the re-development of applications, where needed, in the C or C++ programming
language. The second phase was transition to the cFS environment under Linux, either in a Virtual Machine (VM)
on a readily available office computing environment, either Microsoft ® Windows or Apple Mac ®, or on native
Linux on Intel desktop or laptop computers. The transition to C/C++ and to cFS on Linux were generally conducted
concurrently, rather than building applications as stand-alone command line executable applications before running
within the cFS environment.

Once the applications were integrated and tested successfully in a Linux environment, the transition to VxWorks
on an embedded Single Board Computer (SBC) was completed. The cFS environment was designed so that a
properly built application that runs correctly on Linux will transition easily to a cFS environment on another
operating system. The Operating System Abstraction Layer (OSAL) is a key to a smooth transition from Linux to
VxWorks or other operating systems. Our experience generally validated the cFS design approach. Some of the
applications executed correctly on VxWorks the very first time they were loaded.

With cFS, the details of the hardware and Operating System are abstracted in a Platform Support Package (PSP).
So that cFS applications do not need to reference hardware-specific information. Memory interfaces, exception
handling, timers, and file system information are encapsulated in the PSP to provide standard interfaces to other
elements of the cFS. Prior development groups had built a PSP for the Power PC 750 board from Maxwell
Technologies that we used as our primary VxWorks target. The PSP required very little customization, such as
modifying tables that defined file system data locations to match the file system organization expected of the cFS
software. VxWorks similarly uses a Board Support Package (BSP) that provides the detailed memory maps, drivers,
interrupt handlers and other low level interfaces to the hardware. The BSP was provided by the vendor and was
customized and tested by other development groups. With a completed BSP and PSP, we were able to build and load
several of our applications easily.

Part way into loading and testing the application set, we found that the original VxWorks kernel that we obtained
from the JSC development group was built without support for C++ libraries, and since several of our applications
use libraries developed in C++, we needed to rebuild the VxWorks kernel with the needed features. The kernel build
was reasonably straightforward, performed by developers with little prior VxWorks experience. Once completed,
the remaining applications loaded and executed as well.

C. Integration Issues
Some of the issues that we encountered in transitioning to a flight-like architecture were:

• Command and telemetry message identification.
• Data byte order when using dissimilar processing architectures.
• Managing build configurations.
• Managing application data and models.

Command and Telemetry Definition Issues. Command and telemetry interfaces in cFS use a Software Bus with
each interface specified as a message containing either a single command or a group of telemetry data values.
Messages can be sent synchronously or asynchronously. Applications generate messages that are available for
ingestion by any other application. The Message ID (MID) is the unique key for data access. The Software Bus uses
‘pipes’ to describe the destinations to which messages are sent. A pipe can be read by only one application, but each

American Institute of Aeronautics and Astronautics

15

application can read multiple pipes. Any message can be sent to multiple pipes, dependent on the number of
applications that subscribe to a message. The Software Bus creates a routing table that contains information on what
messages are to be sent to which pipes. Messages can be sent to processes on the same processor or on different
processors, and applications do not need to maintain awareness of the destinations that will receive its messages –
the routing table manages all the details based on applications creating messages and subscribing to them.

To assure uniqueness across multiple applications required central coordination between all applications and the
messages to be generated. cFS message IDs are defined in software header (.h) files. Using common header files
that are used by all applications assures uniqueness of the message IDs, but because applications can be added and
moved readily, the header files must be updated to accommodate the changes. In a mature flight software
environment the set of applications and messages passed between them is stable and rigorously defined by interface
control documentation, data bases or other methods. In our transition environment we needed significantly more
flexibility to change messages, move applications from one processor to another, remove and add applications, and
modify the content of messages as needed. Managing the flexibility proved to be somewhat of a challenge,
especially when executing multiple instances of an application on multiple processors. We resolved the issues using
a set of rules for generating message IDs that used pre-defined ranges of allowable IDs for each application, coupled
with a processor ID that was used by macros to generate guaranteed unique Message IDs regardless of
configuration.

In addition to the messages generated and consumed by the applications development by our project, the Core
Flight Executive (cFE) itself generates and consumes messages and commands. There are also a group of cFS
“product line” applications that need unique message IDs. There can be multiple copies of these applications
running on different processors or a single processor. Since these were built by other development organizations,
their message IDs were already assigned, but were not assured of being compatible with the MID assignment
decisions made by other users. There are three different sources of command and data messages:
• Core Flight Executive (cFE) messages.
• Core Flight System (cFS) Product Line Application messages. The cFS product line applications are developed

for reuse by the cFS community. Commonly used functionality such as data logging, limit checking, application
scheduling, and command generation.

• Project Application messages.
While a simple approach was appealing to a technology research and development group, it became difficult to

manage without a coordinated and automated approach. The Command and Data Dictionary (CDD), mentioned
above, was used to manage the application to application messages for the new applications being developed under
the project. The application to application messages, however, were only part of the complete set of MID
management. A system of software macros was eventually used that combined a processor ID, instance ID and
message type that assured every message a unique value without conflict with any other message. While the
approach successfully eliminated message conflicts, the value of the message ID was not readily apparent. Ongoing
work will be needed to guarantee uniqueness of message IDs while making it easy for developers and systems
engineers to readily interpret the message IDs used by each application in order to develop, integrate and test the
integrated application.

Data Byte Order Issues. While cFS is designed to make the hardware architecture as transparent as possible to
the applications that execute on them, the native architecture byte order is an attribute that is not fully handled by the
cFS environment.

The interfaces between dissimilar processor architectures require proper handling of data byte order. cFS
standardized messages using a CCSDS data format, with a primary header, secondary header and the message data,
often referred to as the “payload”. The primary header consists of the Message ID, a sequence number and the
message size, and was by design always specified in big endian format. The secondary header includes a timestamp,
and can accommodate additional customization by a project team. The secondary header byte order is left to the
discretion of the project team and is generally specified in the processor architecture byte order. The message data is
also at the discretion of the project, and also typically uses the architecture byte order. When cFS is used on a single
processor, such as for a typical uncrewed satellite or planetary exploration spacecraft, the byte order decisions work
well. In our distributed architecture with a mix of big endian and little endian processors, and with a goal of flexible,
processor-neutral architecture, the byte order required close coordination, and changing the byte order at some
points was required when exchanging data between processors.

The message data byte order was always left to the discretion of the application developers. Some applications
generated messages in the generating processor byte order, requiring that a receiving application be aware of the
byte order of the generating application. Including a byte order indicator as part of the data was one method that
could be used to properly interpret the data. Some applications selected a byte order that would always be used,

American Institute of Aeronautics and Astronautics

16

defining a “wire byte order” of either big or little endian. When executing on a processor different from the specified
byte order, the application would byte swap the data prior to use. The applications were assumed to have correct
information about the data types in the message, since they intended to use the data for some purpose and would
need to know how to interpret.

The final byte order element that needed byte order management is the secondary header. Our group chose to
handle the secondary header in the SBN application, and selected a wire byte order for all inter-processor secondary
headers. No action was needed for secondary headers between applications on the same processor, since the
convention was to use processor byte order for the secondary header. Having SBN convert the headers to the wire
byte order, and the SBN node on the receiving end convert from wire byte order to processor architecture byte order,
we were able to achieve the goal of flexible and architecture-neutral applications.

The cFS provides a Data Store (DS) application that logs the messages to a data file for analysis or for data
playback. The secondary header containing the timestamps depended on the byte order of the processor that
recorded the data. To properly interpret the data required knowing what processor recorded the data, and if an
application were moved from a big endian to a little endian machine, the data logs would have to be interpreted
differently. A data delogger was used to convert the binary data logs to readable data formats, and the user needed to
specify the byte order of the data logs. We added a byte order descriptor to the log file header to alleviate the
problem of needing to know the timestamp byte order, particularly useful when reading a data file that may have
been recorded months ago.

While byte ordering issues have been encountered, and solved, many times,3 it continues to be an issue for cFS
as well as for other mixed processor architectures. Either well-defined and specified protocols for handling byte
order are needed, or a specification within the message is needed. Since bandwidth is precious, especially in space to
Earth communications, the better approach is probably to specify a byte ordering policy rather than adding to the
message size when the value will be unchanged once built and launched. For integration and testing it may be more
convenient to transmit the byte order with the message, but the convenience could result in deferring decisions about
byte ordering policy until the decision becomes more expensive.

 SBN was designed to be unaware of message content, which requires that applications handle the byte order
of their data. We have built architecture neutral applications so that an application can be seamlessly moved from
one architecture to another without modification. The goal has been to simply recompile for a different target
architecture and obtain the same behavior. We have freely moved applications from an i686 Linux, to PPC with
VxWorks, in various combinations with excellent success. Architecture neutrality required that each application
specify a “network byte order” for its data, so that regardless of the machine on which it is running, the transmitted
messages are always in the same byte order. The transmitting application is responsible for converting to the
network byte order, and receiving applications are responsible for converting from network byte order.

Managing Build Configurations. Using cFS and working with several applications integrated by different
development groups posed several organizational and configuration management problems. The cFS source code is
provided as open source software that enables customization by various development groups. Core cFS functions as
well as a standardized reusable application set are deployed and controlled by a cFS community of users, and our
development group is represented on the various cFS Control Boards that decide on the official software versions.
Software is stored in repositories using the Software Configuration Management (SCM) tool known as git. git
allows for individual developers or development groups to establish branches starting from known baselines to make
changes for the specific needs, and our project made extensive use of branches to customize cFS applications to our
needs. The applications that our group developed comprised a new git repository. We initially obtained the SCM
controlled cFS git repositories and created project branches in which we could make modifications to customize to
our needs. cFS uses a Platform Specific Package (PSP) in which the hardware and operating system customizations
are contained, and while PSPs existed for Linux and VxWorks, we occasionally found that we needed to customize
to the specific versions or configurations that we used. A Core Flight Executive (cFE) package contains the basic
cFS functionality, including the Software Bus, Time Services, Executive Services, Event Services and Table
Services. The core cFE software generally did not require customization of functionality, but some basic
configuration settings are contained in the cFE Core software, such as Processor IDs, Processor Names, and settings
for items such as clock controls, time stamp size and other global configurations. Some of these customizations
applied to all cFS use across the project, but others, such as Processor ID settings, were based on a particular
configuration needed by an individual developer for test and debug, or for various project configurations.

Unlike a typical flight program in which a specific architecture is selected early in design and all further
development works toward that architecture, our work required flexible configurations. In development and test of
an application, a developer can select the subset of interfacing applications, and execute them on a single processor
to verify or debug an application’s functionality. Later on the develop will add additional applications, and distribute

American Institute of Aeronautics and Astronautics

17

them among different processors. For example, a developer might test the ACAWS Fault Detector application with
AMPS playback data running on a single Linux Virtual Machine. When successful, the developer could run the
ACAWS Fault Detector on one Linux VM and play back data from a different Linux VM. Then the ACAWS Fault
Detector could be moved to a Power PC running VxWorks while the AMPS playback is run from a Linux machine.
Once ACAWS FD was successfully executed, the ACAWS Diagnostic Engine is added to the test configuration, and
other applications as well. Each of these configurations is built from the same source repositories but requires build
customizations.

Our solution was to use a set of build scripts that customizes the cFE core headers with the processor IDs and
configurations, selected the applications needed for the build, managed the message and command IDs to assure that
every application used unique IDs, and set definitions for byte order. Most of the configurations were customized
with C source code header files. A configuration file, in a JSON format, specified the set of applications, processor
IDs, processor type and other configuration information. The build scripts customized the message and processor
IDs based on the build configuration to assure unique IDs.

When using multiple processors, the Software Bus is logically extended between processors with the SBN
application, configured with a data table that defined the processor IP address and data ports to be used. Each
execution using SBN required that each processor have the same SBN configuration, which required that the
configuration be modified for the set of processors used for the run. Configurations ranged from single node runs,
that did not require SBN, up to four processors, and several processors were available from which to select a
configuration. We also had multiple networks that could be used. When using playback data, we could use a normal
NASA site network, but when using the AMPS hardware rig, an isolated lab network was required. Because of the
rather wide range of possible configurations, it was necessary to manually customize the SBN configuration to the
specific configuration in use. The process was somewhat sub-optimal and potentially error-prone, but was workable
for our integration setting. Scaling up to more processors will require improved management, but with maturity a
program could be expected to lock down a set of test configurations that could simplify management of test
configurations.

Managing Data and Models. Several data and model elements required configuration control and customization.
The ACAWS application set is model-based using multiple data sets for each of the applications. Several data files
were needed that were read at initialization. Using the same approach for a flight software environment as has been
used on engineering workstations results in some difficulties. A flight system often does not contain a file system or
disk drive, or provides a limited capability file system. When executing on a PPC with VxWorks, we used a RAM
disk, which is an allocated block of memory with a file system implemented in memory. At bootup, the data files
must be copied into the RAM disk which is completely erased when the processor is powered down. While we could
generally manage to work with the limited file system, it was clear that scaling up to large-scale systems will require
different approaches. For example, when completing the EFT-1 work in the coming months, there is a text file that
is parsed at initialization time and loaded into data structures. An improved method may be to convert the data to its
binary form off-line, and load the data directly into memory at initialization time. This is not presently a problem
with the small size of the AMPS system model, but will be needed to scale to larger spacecraft system applications
in the future.

Some of the applications use a set of data tables, using a Table Services feature provided by cFS. The cFS Limit
Checker, Data Store and Application Scheduler all use Table Services for initialization and configuration data. As
long as there is a single instance of the application, the approach works well. However, there were cases in which we
needed to configure an application with different tables for different instances, such as the Application Scheduler. In
these cases, the software CM system that we developed could be problematic because it was set up to host a single
table in the repository. Modifications to allow per-instance data tables would improve the configurability and ease of
use for these cases.

VI. Current Status
Several notable milestones were achieved by the project. The first major milestone was a demonstration of

integrated applications running in the cFS environment under Linux. The degree of integration varied from data
exchange between applications, to simply running in the same environment, on the same networks, without data
collisions, corruption or system overflow. The ACAWS application with AMPS data was among the most tightly
integrated group of applications. The AMPS system generated power system sensor data that was put onto the cFS
Software Bus and transported via SBN and Ethernet to a second platform running the ACAWS Fault Detector
application. The test results were put into another cFS message to transmit to the Diagnostic Engine, running either
on the same platform or another machine. Several configurations were executed to confirm the flexibility and

American Institute of Aeronautics and Astronautics

18

architecture neutrality that was one of the objectives. The FD application was executed on the same platform as the
Diagnostic Engine, exchanging messages on the Software Bus on a single processor, and was also executed on a
separate Linux platform from the Diagnostic Engine, exchanging messages between processors of the same byte
order, using SBN.

The second major milestone was the porting of applications from Linux to VxWorks, on an embedded platform.
All applications have been executed on a Power PC 750 (PPC 750) processor with VxWorks. Both single-platform
tests, with a set of applications on the PPC, and inter-processor configurations, with some applications on PPC and
others on i686 with Linux, have been executed. The inter-processor tests confirm that the applications could
communicate across different byte order. The ACAWS Diagnostic Engine application uses a commercial software
library, TEAMS-RT, that required porting to VxWorks and PPC by the vendor, QSI. The initial port was a moderate
complexity task that proceeded without major difficulty. The most complex aspect was in setting up a suitable
environment that could support QSI as well as our application team and assure that QSI’s development and testing
results would transition to our project’s use upon completion. We are continuing to integrate and test the integrated
Diagnostic Engine in the PPC environment. Initial testing revealed some differences in outputs between correctly
functioning applications on Linux and i686, and the VxWorks and PPC platform.

The HyDE and IMS applications executed successfully in the cFS environment on both Linux and VxWorks.
Both applications ran with sample data provided by a recorded data playback application that was transmitted over
the Software Bus to the diagnostic application. Results on both Linux and VxWorks were compatible indicating a
successful transition.

The ACAWS applications were exercised with the AMPS system to confirm the correctness of the diagnostics
and failure impact determination and interfaces to another automation application, the AMPS Power Controller
(APC) developed at NASA Glenn Research Center. Faults are injected into the AMPS testbed at JSC, and the
ACAWS application receives the sensor data. The Fault Detector application produces a set of Pass, Fail or
Unknown test results and sends them to the Diagnostic Engine. The Diagnostic Engine makes a diagnosis of the
failure modes or faulted components indicated by the test results vector from FD, and sends the results to the APC.
The APC then uses the diagnoses to make decisions about reconfiguration to assure power to critical components,
sending commands back to the AMPS testbed to turn off lower criticality equipment. An environment simulation
controls a solar array simulator that requires the APC to account for the environment and configuration of the
available power when determining the appropriate action when system faults occur. We demonstrate a scenario in
which the spacecraft is in eclipse (no sunlight on the solar arrays) and a failure of the switch controlling battery
inputs fails open. The only power remaining is one battery, so to assure power to the most critical loads until the
spacecraft is in sunlight, the APC turns off lower criticality loads. The scenario demonstrates a fully integrated
closed loop system in which the subsystems and their processors, a control system and a system-level diagnostic
system collaborate to make critical autonomous decisions that would normally require crew and flight control teams.

While the effort to convert applications to cFS from applications in Java, Python and other languages was
considerable, the transition from technology research to executing in a flight-like environment proceeded smoothly.
Most of the development team had little or no experience with the cFS environment or embedded real-time software
systems, and several had not programmed in C or C++ recently, so considerable work went into learning the
environment while porting the software. Fortunately the team had several experienced cFS developers available for
periodic consultation that eased the effort. The cFS API is not overly complex, and working with several good
examples or templates made the effort of converting to cFS fairly straightforward.

Integrating applications developed by different groups, using different Software Configuration Management
repositories, proved to be somewhat of a challenge. Each application group needed to use the same version of the
cFS software and the applications that needed to interface together, particularly applications such as the SBN that
was needed for inter-processor communications. Development groups at different NASA centers, while all using the
git software CM system, had different legacy repository and build systems, and frequently it was difficult to assure
or even determine if the software versions were compatible. Even though there was extensive planning, discussion
and collaboration between groups about CM repositories, the desire to continue use of legacy systems continues to
cause occasional issues. In retrospect, it probably would have been more efficient to decide on a common CM and
software build system across all participants.

VII. Conclusions, Benefits and Future Use
The conversion of autonomy applications to cFS, VxWorks and PPC has clearly shown the feasibility of

executing intelligent autonomy software in flight environments. We have shown that the software transitions to
routinely used programming languages, C or C++, with relative ease and without any major dependence on features

American Institute of Aeronautics and Astronautics

19

not available in standard C language constructs. The ability to develop in Linux, and conduct initial testing, and then
move to the target environment, was largely validated; as one of the primary benefits of cFS, we expected to validate
the ease of transition between operating systems, and were not disappointed. But perhaps the most important
accomplishment that we have achieved is the creation of a test and evaluation environment in which to examine in
depth some important questions about spacecraft autonomy applications.

With the set of applications, processor and software environments, and the system testbeds available to us, we
are fully configured to conduct extensive performance testing and analysis. The performance analysis of autonomy
applications is needed before flight programs can be expected to build autonomy into future spacecraft. First, they
need clear autonomy requirements for the classes of missions to be flown. Second, flight programs must be able to
accurately estimate the processor performance required of a full-scale autonomy system in order to correctly
establish the number of processors, their memory and data storage needs, network bandwidth and the resultant mass,
power and thermal impacts of the processors required for the autonomy applications. And third, information about
the development effort required for new classes of autonomy applications is needed to mitigate the cost and schedule
risk of including autonomy applications that have not been previously built and flown at scale.

The initial focus will be on determining the processor, memory and communications bandwidth of the
applications. The data models exercised to date are relatively small compared to the expected needs of a Mars or
Lunar environment spacecraft, but serve as a good starting point that will help establish a minimal baseline. There is
always some “idling” resource consumption that must be characterized, which will be among the first performance
measure taken.

The ACAWS application has previously been executed with the Orion spacecraft, most notably conducting a
flight following exercise during the EFT-1 flight test in December 201415. The model is substantially scaled up from
the AMPS model; AMPS contains about 70 failure modes, while the EFT-1 model contains nearly 3500 failure
modes and 2400 tests. We are working to execute the EFT-1 model in the cFS system on a PPC 750 that will
provide the ability to measure performance in a scaled up execution environment. We will be able to compare the
idle performance, the AMPS model and the EFT-1 model to gather substantial information about the resource needs
of each model, which will enable an extrapolation of the scaling factors. Using the number of failure modes as a size
determinant, we want to be able to accurately estimate the performance requirements of larger models so that a
future program can estimate the number of failure modes that a spacecraft will have and know how much resources
must be allocated in order to support the diagnostic system. The ACAWS application will be the first application for
which scaling metrics will be determined. Other applications for state estimation, planning, procedure automation
and other autonomy applications will follow, based on procedure counts, the number of decisions to be automated or
other suitable measures. The objective will be to determine a set of parametric values from which the autonomous
application sizing estimates can be made, and the program will have a good estimate of the processor performance
requirements for the system.

Future work will also expand the HyDE model and use the MSFC capabilities to connect to live data from the
PPA test rig, monitor system performance and fine tune the PPA fault models. We will extend monitoring and fault
diagnosis to the Sabatier reactor, which produces CH4 as input to the PPA. Finally, we will integrate fault
management across the power and air-side ECLSS system. This final task poses a variety of challenges; not only
will the complete spacecraft system model be significantly larger than any individual model, but the interaction of
faults across disparate subsystems will push both the processor load and also the knowledge and modeling effort
needed to ensure that all fault conditions are correctly identified.

Once the performance parametrics are determined, our work will help to guide programs in the determination of
autonomy requirements. Autonomy requirements will need to specify an autonomy duration, that is, how long the
spacecraft and crew must operate entirely without ground assistance. When light-time constraints come into play for
long-distance solar system missions, an absolute minimum will be the round trip light time. Of course, a reaction
time will also be needed, so for a Mars mission, with one way light times over 20 minutes when Mars is at
opposition, the spacecraft can’t possibly get support from Earth in less than 40 minutes. Conceivably, a program
could identify all faults that require decisions in less than 40 minutes and build autonomy for just those failure cases,
and in all other cases put the spacecraft into some type of “safe mode” and use a large ground support workforce to
determine actions for other failures. However, if autonomy requirements are that the spacecraft must be able to
return from any point in the mission entirely without support from Earth, the autonomy system will need to look
substantially different. The autonomy performance measures that will be taken with the systems we have developed
should be able to provide valuable information about both the need for and the achievability of a range of possible
autonomy requirements.

In addition to system performance and requirements, programs will need information about the development
effort and cost of building unfamiliar new technology and the data models that execute on the applications. This is a

American Institute of Aeronautics and Astronautics

20

more difficult estimation activity, but one in which at least some preliminary information is available. Since our
project has not had to follow rigorous design, development and test processes, we are not able to provide accurate
data about the complete effort involved in building a model-based decision-making system. We do have at least
general information about how much effort has been expended on the models that we have built, and with the
framework that we have put in place, future maturation projects can use the system to better refine development cost
estimation methods.

While the path from developing intelligent automation technology to deployment in spacecraft is a long one, our
work has made significant strides toward adapting technology concepts to execute in full scale flight avionics
environments and the creation of an environment in which to continue to develop, analyze and evaluate both the
technology needs and performance environments for full scale autonomy needed as human operations into the solar
system are planned and developed.

American Institute of Aeronautics and Astronautics

21

Acknowledgements
The authors thank the project team that achieved so many successes working in new environments with

unfamiliar tools. Specifically, Chris Knight, Mike Scott and Keith Swanson led the way in transitioning to cFS and
VxWorks; John Ossenfort, Adam Sweet and Vijay Baskaran built ACAWS in the cFS environment. Numerous
people from other NASA centers provided critical help at important times. Pat Castle and Scott Christa at ARC, and
Steve Duran at JSC, were critical to getting started with VxWorks. Jim Ratliffe, Danny Carrejo and their team at
JSC made sure that we had the integration environment in the iPAS that we needed. Pat George, Anne McNelis,
Billy Hau at GRCC helped us understand and integrate with the AMPS system and gave us challenging diagnostic
scenarios. Morgan Abney and Zach Greenwood at MSFC provided assistance with PPA datasets and fault
identification expertise. Richard McGinnis at NASA HQ was our advocate and guide in developing the project’s
goals and kept us on track. This project was funded by the NASA Advanced Exploration Systems Program.

References

1 J. Frank, L. Spirkovska, R. McCann, L. Wang, K. Pohlkamp, L. Morin. Autonomous Mission Operations. Proceedings of
the IEEE Aerospace Conference, March 2-9, 2013.

2 H. Stetson, J. Frank, A. Haddock, R. Cornelius; L. Wang; L. Garner. AMO EXPRESS: A Command and Control
Experiment for Crew Autonomy. Proceedings of the AIAA Conference on Space Operations, September 2015.

3 R. Cornelius and J. Frank. International Space Station (ISS) Payload Autonomous Operations Past, Present and Future.
Proceedings of the AIAA Conference on Space Operations, Aug. 31 – Sept. 2, 2016.

4 J. Frank, D. Iverson, C. Knight, S. Narasimhan, K. Swanson, M. Scott, M. Windrem, K. Pohlkamp, J. Mauldin, K.
McGuire, H. Moses. Demonstrating Autonomous Mission Operations Onboard the International Space Station. Proceedings of
the AIAA Conference on Space Operations, Aug. 31 – Sept. 2, 2015.

5 D. McComas, J. Wilmot, A. Cudmore. The Core Flight System (cFS) Community: Providing Low Cost Solutions for Small
Spacecraft. 30th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, August 6-11, 2016.

6 Z. Greenwood, M. Abney, J. Perry, L. Miller, R. Dahl, N. Hadley, S. Wambolt, and R. Wheeler. Increased Oxygen
Recovery from Sabatier Systems Using Plasma Pyrolysis Technology and Metal Hydride Separation. 45th International
Conference on Environmental Systems, Bellevue, Washington, July 12-16, 2015.

7 R. McCann, L, Spirkovska, and I. Smith. Putting ISHM Capabilities to Work: Development of an Advanced Caution and
Warning System for Crewed Spacecraft. AIAA Modeling and Simulation Technologies (MCT) Conference, August 19-22, 2013.

8 A. Mathur, S. Deb, and K. Pattipati, “Modeling and Real-Time Diagnostics in TEAMS-RT,” Proc. American Control Conf.,
IEEE Press, 1998, pp. 1610–1614.

9 P. Morris, M. Do, R. McCann, L. Spirkovska, M. Schwabacher, J. Frank. Determining Mission Effects of Equipment
Failures. Proceedings of AIAA Space, Aug. 4-7, 2014.

10 S. Narasimham and L. Brownstone. HyDE - A General Framework for Stochastic and Hybrid Model - Based Diagnosis.
Proceedings of the 18th International Workshop on the Principles and Practices of Diagnosis, 2007, pp. 162 - 169.

11 D. Iverson. Inductive System Health Monitoring. Proceedings of the International Conference on Artificial Intelligence,
2004.

12 R. May, J. F. Soeder, R. F. Beach, P. J. George, J. Frank, M. A. Schwabacher, L. Wang and D. Lawler. An Architecture to
Enable Autonomous Control of Spacecraft. AIAA Propulsion and Energy Conference, July 28 – 30, 2014.

13 J. Soeder, T. Dever, A. McNelis, R. Beach, L. Trase, R. May. Overview of Intelligent Power Controller Development for
Human Deep Space Exploration. 12th International Energy Conversion Engineering Conference (IECEC), Cleveland, Ohio, July
28–30, 2014.

14 OSAL Library API.doc, https://github.com/nasa/osal/blob/master/doc/OSAL%20Library%20API.doc
15 G. Aaseng, E. Barszcz, H. Valdez, H. Moses. Scaling Up Model-Based Diagnostic and Fault Effects Reasoning for

Spacecraft. Proceedings of the AIAA Conference on Space Operations, Aug. 31 – Sept. 2, 2015.

