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NASA has developed methods and algorithms for autonomous spacecraft operations, 
including automated planning and scheduling, fault diagnostics and impact determination, 
procedure management and display. Making the transition from technology research to 
operational flight software requires overcoming significant technical, programmatic and 
cultural challenges. Technology research is aimed at developing methods that perform 
specific functions correctly, but the resulting software may not be designed for flight 
processors with limited CPU, memory and network resources, and may not be easily 
integrated into spacecraft flight software. Our objective in the Autonomous Systems and 
Operations Project is to make significant strides toward the transformation from technology 
to operational use. Our focus was twofold: maturing research grade autonomy software into 
a flight software environment using broadly accepted languages and tools; and integrating 
autonomy applications with each other and with representative systems and their data and 
command interfaces. For a target flight software environment, we chose Core Flight 
Software, developed by Goddard Space Flight Center as a common operating system 
independent framework. Our hardware integration environment was provided by the 
Integrated Power and Avionics Systems (iPAS) Lab at Johnson Space Center, in which 
various subsystem development has been conducted to address engineering challenges for 
the vehicles and systems required for long-duration missions into the solar system. The iPAS 
and its network of connected facilities provides realistic subsystem hardware or simulations 
of spacecraft power, life support, guidance, navigation and control, and command and data 
handling subsystems. Interfaces between autonomy applications and the subsystems being 
assessed and controlled were developed, assessed and refined. The hardware and software 
environment using CFS and the iPAS facility has proven to be a highly flexible and realistic 
environment in which to rapidly integrate applications in an iterative, low cost setting. Using 
the integration environment we have developed, we will turn our focus to performance and 
sizing analysis to determine the computational requirements for full-scale deployment of 
autonomy technology. Scalability of reasoners and the spacecraft models upon which they 
operate, and robustness across the full range of spacecraft conditions and environments will 
be explored and improved. We are making significant contributions to the future programs 
that will build the spacecraft that will take humans beyond the Earth-Moon system, in which 
program Systems Engineers will be able to accurately and confidently design in accurate, 
robust and mature autonomous operations systems. 

Nomenclature 
ACAWS = Advanced Caution and Warning System 
AMPS = Advanced Modular Power System 
APC = Autonomous Power Controller 
ARC = Ames Research Center 
ASO = Autonomous Systems and Operations 
BSP = Board Support Package 
CDD = Command and Data Dictionary 
cFS = Core Flight Software 
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cFE = Core Flight Executive 
CH4 = Methane Molecule 
CO2 = Carbon Dioxide Molecule 
cRIO = Compact Real-Time Input/Output 
DS = Data Store 
ECLSS = Environmental Control and Life Support System 
EFT-1 = Exploration Flight Test #1 (Orion Spacecraft) 
EPS = Electrical Power System 
GRC = Glenn Research Center 
H2 = Hydrogen Molecule 
HyDE = Hybrid Diagnostic Engine 
IMS = Inductive Monitoring 
iPAS = Integrated Power and Avionics System 
JSC = Johnson Space Center 
ISS = International Space Station 
LADEE = Lunar Atmosphere and Dust Environment Explorer 
LRO = Lunar Reconnaissance Orbiter 
MBSU = Modular Bus Switching Unit 
MCC = Mission Control Center 
MID = Message Identifier 
NASA = National Aeronautics and Space Administration 
O2 = Oxygen Molecule 
OS = Operating System 
OSAL = Operating System Abstraction Layer 
PDU = Power Distribution Unit 
PLB = Programmable Load Bank 
PLEXIL = Plan Execution Interchange Language 
PPA = Plasma Pyrolysis Assembly 
PPC 750 = Power Personal Computer 
PSP = Platform Support Package 
QSI = Qualtech Systems, Inc. 
RBI = Remote Bus Isolator 
RPC = Remote Power Controller 
SB = Software Bus 
SBC = Single Board Computer 
SBN = Software Bus Network 
SCM = Software Configuration Management 
VM = Virtual Machine 
 

I. Motivation and Objectives 
Future human spaceflight exploration missions will require considerably more autonomy than has been used for 

crewed missions in the past. The two-way light time places an absolute constraint on communications, and any 
decisions or reactions that must be completed under the two-way light time must be performed autonomously by the 
in-space segment (the spacecraft itself and the crew). Autonomy is defined as “operating without external support or 
assistance”. Autonomy can be achieved by any combination of crew actions and vehicle system automation. During 
the first global circumnavigation, Ferdinand Magellan’s fleet was completely autonomous in that all navigation and 
operational decisions were made solely by his fleet of ships, although automation was almost non-existent. A Mars 
or long-distance asteroid mission will require total autonomy for short-term decisions that must be made in less than 
the two-way light time between the spacecraft and Earth, as well as during planned and unplanned loss of 
communications. Increased autonomy will also alleviate the degradation of interactive, conversational 
communications as the light-time increases. Apollo, Shuttle and International Space Station (ISS) have relied 
predominantly on Earth-based Mission Control Centers (MCCs) for mission decisions.  
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NASA’s Autonomous Systems and Operations Project (ASO) has developed or extended several technologies to 
automate these higher order decisions or provide the kind of integrated information to flight crews that enable them 
to make complex decisions without reliance on off-board support.  Autonomous operations require both nominal and 
off-nominal decision-making. Nominal decisions and controls are needed to ensure that activities are performed as 
planned, and that operational constraints are enforced. However, as noted by Carl Von Clausewitz, "No battle plan 
ever survives contact with the enemy”; a similar maxim holds for spaceflight. Off-nominal conditions are always 
unexpected and unplanned; even though the probability of failures, and to some extent the timing of failures using 
prognostic technology, can be estimated, system failure and degradation almost certainly requires both human and 
system decision-making, and also induces some perturbation into operational plans and schedules. These can range 
from minor and recoverable perturbations, to whole-scale mission replanning, such as situations that require an early 
return or change in mission objectives. 

NASA’s ASO Project, as well as several other research groups, have been conducting technology research into 
the decision automation methods that will be required for effective autonomy. These include planning and 
scheduling systems, procedure automation and assistance, and fault management detection and isolation, anomaly 
detection, failure prognostics, and failure impact determination. Significant progress has been made over the past 
several years to develop and mature intelligent software capable of making the types of complex decisions required 
of an autonomous spacecraft.  These technologies have been integrated as a decision aid for astronauts to 
demonstrate autonomous mission operations, both in analog environments and onboard the ISS1,2,3,4. Having 
substantially accomplished major proof of concept and feasibility demonstrations, the next steps include proving 
scalability, robustness and performance attributes in realistic flight environments.  However, previous 
demonstrations used automation and, more importantly, flight software technology developed decades ago; while 
these demonstrations show what is possible, novel flight software and decision support technology will form the 
foundation of the next generation of human spaceflight missions4. 

In order to become a part of an on-board critical decision and control system, successful autonomy technology 
must be converted to flight quality and standards, must fit within constrained performance allocations, and must 
scale up to spacecraft dimensions from the system subsets used by technology projects for concept development. 
The infusion into programs must eventually be adopted by a flight program, but programs, with good justification, 
have been reluctant to adopt unproven autonomy technology. Among the justifications for the reluctance are: 
• Additional autonomy technology is not required to meet the mission requirements.  
• Accurate and trustworthy metrics needed to estimate the cost of a full-scale implementation are not available, 

resulting in substantial program cost and schedule risk. 
• Processor, memory, and bandwidth data for the technology are not available with enough accuracy to make 

reliable sizing, power and thermal estimates, resulting in significant technical risk. 
Maturing the existing technology base to address these concerns requires a significant development effort.  

Typically, software technology is built on common computing resources such as modern Intel processors, with 
Linux or Windows Operating Systems, and non-real-time interfaces and networks. Software environments have 
been chosen to promote rapid development rather than using commonly accepted flight software; software in 
combinations of Java, Python, C++ and web tools are common1,3,4. Furthermore, technology research has not been 
conducted with system performance and robustness as a primary goal. Finally, software has been built to technology 
research lab standards to prove feasibility rather than developing for execution in flight-like environments on 
constrained computing resources.  Our current focus is on creating an environment in which to rigorously examine 
and analyze performance of autonomy applications, using representative systems and their data to extrapolate 
performance of future exploration spacecraft and missions. On completion of performance analysis and the 
derivation of usable parametrics to aid in scaling performance to full systems, we will be able to better address 
autonomy requirements and their implementation costs. 

We have selected a set of autonomy applications and converted them to execute on processors and software that 
is either flight qualified or on a viable path to flight certification, integrated with realistic, representative flight-like 
subsystems with data, failure spaces and operational decisions similar to current and future human spacecraft 
systems. We have chosen the Power PC (PPC 750) processor, the VxWorks Operating System and the Core Flight 
Software  (cFS) middleware as the flight-like environment for the next phase of technology research and “infusion 
research”. VxWorks Operating System has been flown on numerous uncrewed missions; cFS, originally developed 
by Goddard Space Flight Center as a common, reusable operating system independent interface layer5, has been 
used recently on the Lunar Atmosphere and Dust Environment Explorer (LADEE), the Lunar Reconnaissance 
Orbiter (LRO), and other missions. Autonomy applications have been refactored in the C or C++ programming 
language to be compatible with cFS and flight software standards, and performance improvements have been made 
where feasible. Even though software is not developed to rigorous software processes and standards, the refactored 
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applications can be used to derive parametrics that provide accurate estimations of the processor, memory and 
throughput of applications scaled up to full-sized spacecraft systems, and to pinpoint areas where additional 
performance optimization is warranted. 

In the remainder of this paper, we will describe the autonomy technology applications that we have developed 
and are converting from technology research to a path to flight. The processing hardware and software environments 
that we have selected for the next step on the path to flight will be discussed, including the basis for selecting the 
chosen systems and tools and descriptions of some of their key attributes. Next we will describe the subsystems that 
we have used to create realistic operational settings in which to execute the autonomy applications, including the 
types of failure cases and decision reasoning that stress the applications enough to extrapolate from the testbed 
setting to spacecraft scales. The results of the integration and testing that we have completed will be described, with 
our lessons learned, and we will conclude by describing the benefits that are anticipated with the applications, 
environments, and the integration and test environment that has been developed. 

II. Autonomy Technology Applications 
We have selected a group of autonomy applications and test domains to be executed in the flight processing 

environment from technologies that have been developed to varying states of maturity over the past several years. In 
this section we will describe the applications and their purpose, their maturity and heritage, the systems and 
subsystems for which they have been used in the past as well as on this project. Since the applications, the 
associated subsystems, and the software and processing environment are closely associated, we provide a brief 
introduction to the cFS and environment and the subsystems prior to describing the autonomy technology 
applications. 

The cFS software environment provides standard services for control of applications and inter-process 
communications. A key feature is the Software Bus, which is a logical construct by which applications 
communicate.  The Software Bus can extend across multiple processors, whether they are located adjacently or 
distributed at long distances. Several common services, including Time Services, Event Services, Execution 
Services and Table Services provide many of the core functions required of any real-time flight software 
environment. cFS includes a set of standard, reusable applications that perform functions common to multiple 
applications, including a process scheduler, a data Limit Checker, a Data Storage application for logging application 
data, and others. 

The subsystems with which the autonomy applications interface range from technology testbeds under 
development and evaluation by other NASA projects to the Orion spacecraft. The Advanced Modular Power System 
(AMPS) is developed at Glenn Research Center, and is also deployed at Johnson Space Center for integration with 
other technology development projects. The Plasma Pyrolysis Assembly (PPA) is part of a technology suite for 
closed loop Environmental Control and Life Support Systems (ECLSS), that recovers molecular hydrogen (H2) from 
methane (CH4) that is produced as a byproduct of oxygen (O2) recovery from carbon dioxide (CO2)6. The PPA is 
developed at Marshall Space Flight Center. A Lithium Ion battery, similar in design to the Orion spacecraft battery, 
is used in conjunction with fault and anomaly detection applications. Initial testing was done with representative 
data emulating the battery sensors, but recent updates will enable direct connections of the autonomy application 
software to the battery hardware available in our integration lab. We also have the Orion Exploration Flight Test 1 
(EFT-1) data available that will be used for a larger scale performance test in the next year. 

The autonomy applications represent a group of autonomy types that we have defined that constitute a range of 
activities in a decision process, from determining the state of the system to deciding what to do in response to a 
perturbation of the system. The autonomy application classes are: 
• State Estimation – abstract spacecraft data to higher-order descriptions. 
• Fault Diagnosis – identification of the root cause faults. 
• Failure Impacts Determination - consequences of faults on mission capability, for example, a power system 

fault results in loss of rendezvous sensor, therefore ability to complete rendezvous is compromised. 
• Planning – determining what actions to perform. 
• Plan execution – sending commands based on the plan. 

The autonomy applications have been demonstrated in settings ranging from technology testbeds to on-board the 
ISS. The applications, their autonomy classes, their purpose and most mature use prior to our current work, are 
summarized in Table 1. The Advanced Caution and Warning System (ACAWS)7 consists of three separate 
applications to perform different fault management functions, while other applications can operate independently or 
integrated with other applications. 
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Table 1 – The autonomy applications, their classes, a brief description and usage prior to the transition to flight environment that 
is the focus of our current work are described 

Autonomy Application Autonomy Class Purpose Prior Usage 
ACAWS Fault 
Detector 

State Estimation Identifies indications of faults from 
system data, e.g. threshold exceedance 

Ground demo with Orion 
EFT-1 

ACAWS Diagnostic 
Engine 

Fault Diagnosis Combines results of Fault Detector to 
identify component faults 

Ground demo with Orion 
EFT-1 

ACAWS Failure 
Impacts Reasoner 

Failure Impacts 
Determination 

Identifies the components whose 
functions have been impacted by one 
or more system faults 

Ground demo with Orion 
EFT-1 

Hybrid Diagnosis 
Engine (HyDE) 

State Estimation, 
Fault Diagnosis 

Uses a state-based model with system 
data to identify failures in terms of 
transitions to off-nominal system 
states 

On-board ISS 
demonstration with life 
support autonomy 
demonstration 

Inductive Monitoring 
System (IMS) 

State Estimation Anomaly detection system; “trained” 
with nominal data to recognize 
anomalies as deviations from known 
nominal 

Ground use for ISS mission 
support; Ground demo with 
Orion EFT-1; On-board 
ISS demonstration with life 
support autonomy 
demonstration 

 
 Our current work does not include automated planning applications. Planning applications tend to be more 

complex and their transition to flight environments warrant more dedicated and focused work than our current 
project is able to perform. Other projects have begun to implement planning functions using the Plan Execution 
Interchange Language (PLEXIL) in other flight-like environments that can be integrated with our autonomy 
development at a later time.  The plan execution function in the APC is developed independently at Glenn Research 
Center as part of the AMPS system described in detail in later sections. It executes on a separate processor that is not 
executing the cFS environment, but is integrated to the extent that data is exchanged with our applications to 
demonstrate the use of failure information applications with plan execution systems. 

The system and software architecture including the cFS software environment, our autonomy applications, and 
the subsystems used to exercise and test the autonomy, are shown in Figure 1.  The autonomy applications, shown in 
magenta circles, communicate with each other and with the external subsystems via cFS Software Bus messages and 
use cFS services for execution. Reusable cFS applications support our applications, including the Limit Checker that 
is used to identify faulted conditions, and Data Storage that provides run-time logging of data. AMPS, PPA and 
Orion data is connected to the autonomy applications via the Software Bus. 

We can now describe the autonomy applications in more detail, with the maturation toward flight-readiness that 
has been achieved and discuss remaining challenges. Each of the applications in Figure 1 are described in the 
following sections. 

ACAWS Fault Detector. The Fault Detector is the State Estimation element of ACAWS. It obtains data from the 
target system, performs filtering, cleaning and framing, then conducts tests on the data, and sends the results to the 
ACAWS Diagnostic Engine as a vector of PASS, FAIL or UNKNOWN test results. Since telemetry data is often 
imperfect, the Fault Detector first checks the data for any status information available from the target system and 
conducts additional quality testing as needed. Off-scale or otherwise physically improbable data (30 °K, for 
example), or data that has uncharacteristically stopped updating for an extended time, is excluded from testing. Once 
the data has been filtered to exclude as much of the noisy data as possible, tests can be conducted on the data. Tests 
can be as simple as a red-line or threshold test, or arbitrarily complex algorithms. The Fault Detector can be 
configured with a persistence setting on each test result to further filter transient results, such as needing three failure 
results in a row before asserting a FAIL result to the Diagnostic Engine. The Fault Detector also includes a Test 
Suppression feature that can suppress any test result under certain conditions. For example, if a switch is turned off 
by the operators, any tests on the load that is turned off can be set to UNKNOWN in order to prevent a misdiagnosis 
of a failure when it is not in use. The Fault Detector uses the cFS Limit Checker application for testing the AMPS 
data for conditions symptomatic of system faults. The Limit Checker uses a table to describe the data value to be 
tested, and a threshold value or condition that indicates a FAIL condition. 

ACAWS Diagnostic Engine. The test results and system configuration data from the Fault Detector are sent to a 
Diagnostic Engine application that includes a commercially available diagnostic reasoner, TEAMS-RT®, to perform 
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the Fault Diagnosis autonomy function. TEAMS-RT8 is a library module developed by Qualtech Systems, Inc. 
(QSI) that contains the run-time artifacts derived from a system fault model built with the companion tool from QSI, 
TEAMS Designer. The model operates on a matrix that associates the tests with failure modes for a given system 
configuration to determine the root cause failure that best explains the vector of PASS, FAIL and UNKNOWN 
results. The diagnostic results are returned from TEAMS-RT API calls and are packaged into a cFS Diagnostic 
Results message that is transmitted to other applications. 

ACAWS Failure Impacts Reasoner. The ACAWS Failure Impacts Reasoner receives diagnostic results from the 
Diagnostic Engine to perform the Failure Impact Determination autonomy function. The Diagnostic Engine sends a 
request to the Failure Impacts Reasoner which initiates a query of the system model to determine the components 
and functions affected by a failure. Failure impacts include both loss of function of a component and loss of 
redundancy of a required resource to a component. The results can be displayed to notify operators of a 
comprehensive view of the state of the system following failures – the root cause failure, the components 
unavailable for use, and components that would be lost by one more failure. The loss of redundancy information is 
the key to determining next worst failures that help make important decisions about the mission and to prepare for 
potential additional loss of critical functions.9 

HyDE. The Hybrid Diagnostic Engine (HyDE) is a model-based fault diagnosis engine that diagnoses discrete 
faults.  HyDE takes as input a model that describes the combined discrete and continuous behavior of the 
components of the system10. The model consists of discrete modes of operations, relevant variables and parameters 
of the modes, and how these variables relate to each other in different modes of operations. HyDE uses sensor data 
from the system and the model of the system behavior to deduce the evolution of the state of the system over time, 
including changes in state indicative of faults. Transitions between modes are based on either commands or 
conditions on the internal variables. Faults are represented as special unknown event transitions. HyDE supports 

 

Figure 1 – The autonomy applications, the primary services provided by cFS, a set of common reusable 
cFS applications, and the representative spacecraft subsystems perform integrated spacecraft functions 
in a flight-like software environment 
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modeling of variables and relations in different domains like Boolean, enumeration, real-valued and interval-valued. 
HyDE's reasoning algorithm tries to determine the modes of all components, values of all variables, and the 
occurrence of one or more unknown events in the system. The reasoning starts with the assumption that no unknown 
events have occurred, and all modes and variables have their initial values. Any available sensor observations are 
compared against predictions from the model. Inconsistencies between predicted and observed states generates 
conflicts; each conflict is a set of unknown event transitions that contribute to each inconsistency. A search over the 
space of unknown events driven by these conflicts results in the generation of one or more fault states that would 
resolve the inconsistencies. The number of possible faults is configurable, which limits the possible explanations. 
Further simulation with these potential candidates would determine which potential candidates become actual 
diagnoses. This process continues over time as more and more observations become available. 

IMS. The Inductive Monitoring System (IMS) application is an empirical anomaly detection system to perform a 
State Estimation function11. Instead of seeking a diagnosis of a well-characterized potential failure, the IMS looks 
for unusual, unexpected system behavior. Using data from various configurations and environments, the IMS is 
“trained” with known nominal behavior.  During operations, IMS detects anomalies as deviations from the normal 
data.  This is usually performed by measuring the ‘distance’ between the system’s current behavior and the 
characterization of ‘nominal’ behavior; if this distance exceeds a tunable threshold, it is considered ‘off-nominal’.  
An anomaly may be an unusual but acceptable condition, in which case the training can be updated to include the 
unusual condition, or it may indicate a malfunctioning or degrading system. The output is a scored value that can 
alert an operator of unusual conditions that warrant further investigation. Since IMS has been exercised and 
validated with several systems, the primary objective was to execute it in the cFS environment in order to prepare 
for performance analysis, rather than to emphasize detection of anomalies. 

Autonomous Power Controller. An Autonomous Power Controller (APC) developed at Glenn Research Center 
(GRC) demonstrates a power system specific Planning and Execution function12. It receives diagnostic messages 
from the ACAWS Diagnostic Engine that is used to initiate automated failure responses, but it also modifies the 
system state model that the APC uses for any other automated decisions, such as future environmental and system 
configuration changes. The APC is an early capability autonomous controller, demonstrating the concept of 
integrating multiple types of reasoners to achieve automated, autonomous controls of a spacecraft subsystem. The 
APC developers plan to transition the controller to a cFS flight environment as the system matures; our current work 
with the APC conceptually demonstrates the Plan Execution function that will be matured with more capable 
planners and execution functions. 

III. Subsystem Domains 
The autonomy applications described in the previous section are generic and reconfigurable; they are designed to 

support multiple spacecraft subsystems and interact across subsystem boundaries to properly respond to failures and 
events that affect multiple subsystems. To effectively test and evaluate the autonomy applications, we selected 
several spacecraft subsystems that provide realistic problem sets with flight-like sensor and processor data as inputs 
to the autonomy applications. None of the applications were designed to work specifically with these subsystems; to 
the contrary, they are all designed to operate with any system.  All of the applications require configuration; 
ACAWS and HyDE require a set of failures and a set of well-defined conditions that map system behavior to a (set 
of) failures that my have occurred.  IMS requires a characterization of the normal performance of a system, which is 
used to identify off-nominal behavior. We selected a group of subsystems that are themselves in a technology 
research and maturation stage with engineering testbeds capable of exhibiting realistic nominal and faulted behavior, 
capable of generating data compatible with cFS software environments, but that are small and agile enough to adapt 
to the autonomy application test and evaluation needs. The subsystems include Electrical Power Systems (EPS) and 
Environmental Control and Life Support Systems (ECLSS) components. The subsystems are either physically 
located in, or have data connectivity to, the Integrated Power and Avionics System (iPAS) testbed at Johnson Space 
Center. The subsystems and the autonomy applications are shown in Table 2. The subsystem domains provided a 
good range of problem types that effectively exercised several key attributes of the autonomy applications. Power 
systems tend to exhibit rapid failure propagation, while ECLSS is frequently characterized by gradual onset such as 
fluid leaks, and failures of either subsystem can impact the other. Nominal and faulted behavior were simulated 
where necessary, and actual fault data from testbed execution, when it occurred, was recorded to be played back to 
the autonomy applications. 
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Table 2 – The subsystems used for test and evaluation of the autonomy technology applications, with the classes of autonomy 
functions of each application 

Subsystem Autonomy Application Reasoning Types 
AMPS ACAWS State Estimation, Fault Diagnosis, Failure Impacts 
Battery Power IMS State Estimation 
Plasma Pyrolysis Assembly (PPA) HyDE State Estimation, Fault Detection 
AMPS APC Plan Execution 
 

A. Electrical Power Subsystems 
 
The AES Modular Power System (AMPS)13 was the primary spacecraft system for exercising the ACAWS 

applications. AMPS, shown in Figure 2, includes several power distribution and power management components 
with numerous system sensors including current, voltage, switch positions, commanded positions and error 
conditions. The data is initially processed and converted to engineering units on a Compact Real-time Input Output 
(cRIO) device, timestamped and transmitted in a CCSDS message format. The sensor data is transmitted via 
Ethernet to a cFS application that receives the incoming messages and republishes the data in a cFS message format. 
The combination of the cRIO with a message format converter is an analog of a typical spacecraft’s subsystem level 
processor that performs data collection, packaging and engineering unit conversion, and transmits the data for 
processing by a supervisory level flight computer. 

The AMPS contains power management and distribution hardware, sensors and software representative of space-
capable power systems, with redundant components and power channels. Battery power is available from Lithium 
Ion batteries and emulated solar array power. Modular Bus Switching Units (MBSUs) control which power source is 
used, and provide power to Power Distribution Units (PDUs). Power redundancy is provided at the bus level with 
each MBSU sending power to both PDUs, and the PDUs select which MBSU power is used. Sensors include 
numerous current and voltages, switch positions and error data, such as a mismatch between a commanded state and 
actual state of switches. 

Each MBSU and PDU contains a compact Remote Input Output (cRIO) device that processes data and 
commands. The cRIO reads sensors, converts signals to engineering units, timestamps the data and transmits it to a 
central processor. It also receives commands and converts them to electrical signals to control switches. The cRIO 
uses LabVIEW software package that constructs data messages in a CCSDS format compatible with the cFS 
messages described in the following sections. The cRIO performs limited error checking, such as comparisons of 
commanded states and actual measured states of switches, and can report errors such as mismatches. The cRIO is 
powered by redundant power supplies on each of the inputs to assure power to the cRIO as long as power is 
available on any of the inputs. 

The AMPS system provided a good range of electrical system faults, requiring use of sensor data as well as the 
loss of data or data validity to identify failures. Electrical faults are characterized by rapid onset and discrete state 
changes, such as from on to off, or voltage at either 120 volts or 0 volts, whereas faults in the powered equipment 
are often more continuous with gradual change in temperature, pressure and electrical current consumption.  AMPS 
failures are simulated in hardware with use of commands that are not visible to control and fault management 
software. Simulated failures include: 
• Switch failures. 
• Shorts on power cables/connectors. 
• MBSU and PDU component-level failures (“dead box”). 
• Load overcurrent. 
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Switches are software-commanded Remote Bus Isolators (RBI) in the MBSU, or Remote Power Controllers 
(RPC) in the PDU. The MBSU RBIs use a switch on both the positive (hot) line and negative (return) line, both 
commanded to the same position by the cRIO command logic. A fail open condition could occur if either switch 
opens without command, and sensors report the state of both switches as well as a mismatch between the hot and 
return line, and mismatches between commanded state and actual state. Likewise, a failed closed condition could 
occur in which the switch fails to turn off when commanded, or changes from open to closed without command. The 

dual switch design makes a failed 
closed fault less likely than a 
failed open, since two switches 
would have to inadvertently close, 
but conditions other than electro-
mechanical failure could occur 
that would close the switch 
without command. 

Power short conditions result 
in a trip of the RBI or RPC, and 
are characterized by a trip without 
a prior overcurrent condition. The 
current sensors are processed at 1 
Hz so it is quite unlikely that a 
current spike will be detected to 
confirm the trip, so it is possible 
for a “false trip” to occur that 
would be indistinguishable from a 
true short circuit. Shorts in the 
MBSU are simulated by setting a 
trip limit below the actual current 
draw. If the current is observed 
rising toward the trip threshold 
prior to a trip over at least a few 
seconds, a short circuit on the 
power cable would not be 
diagnosed. A slow increase in 
current draw is indicative of 
malfunction of a load, rather than 
a fault in the wiring. 

Component failures of the 
MBSU or PDU are characterized 

by a complete loss of both data and power output. Both the MBSU and PDU contain a Compact Real-time 
Input/Output (cRIO) processor, powered by internal power supplies. The MBSU has a power supply on each of the 
input power channels, and any of them can power the cRIO, while the PDU has a single power supply. Either a 
cRIO fault or loss of power to the cRIO would result in identical conditions – a loss of all power and data output - 
and because all the data from the component requires an operable cRIO, it is not possible to determine if the failure 
is due to the cRIO or loss of power to the cRIO. 

Load faults are simulated by Programmable Load Banks (PLB) that can be programmed to emulate the power 
profile of typical spacecraft components. The PLB does not simulate the sensors that would be associated with 
typical equipment, such as temperatures, pressures, or RPMs, so diagnosis of faults is made on the basis of current 
draw only. Current is monitored, and if it rises above a threshold for at least several seconds, a load overcurrent fault 
is diagnosed. It would be very likely that current will drop to 0 after an overcurrent fault, either because the current 
continues to rise and exceeds the trip threshold of the RPC, or because an operator or automated controller responds 
to the fault (using the diagnostic system’s outputs, perhaps) and commands the overloaded equipment off. Since the 
fault still exists, the diagnostic system needs to continue to report the overcurrent fault, using a ‘latching’ 
mechanism that reports the failure until there is positive evidence that the fault was cleared. 

The iPAS contains Lithium-Ion batteries that provide power to AMPS system that was used with an anomaly 
detection system that is trained with nominal data, and uses deviations from nominal to identify anomalies. The 
Inductive Monitoring System (IMS) was used in the iPAS to identify such battery anomalies. An anomaly is simply 

 

Figure 2 – The AMPS architecture and a sample of representative loads 
powered by AMPS shows multiple redundant power channels from dual 
batteries and solar arrays simulated in the AMPS testbed. The power 
input sources are shown in green, and are not part of the diagnostics and 
control testing. The primary AMPS components are in light brown in the 
center, and generate all data used for diagnoses. Loads, in light blue, are 
mostly simulated by Programmable Load Banks, but some, including the 
Flight Computer, are actual lab equipment. 
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an unusual or unexpected condition; it may turn out to be the result of an atypical but valid environment or 
configuration, or it could be due to a system malfunction or degradation. Used in combination with other diagnostic 
systems, it can help identify incipient conditions, or can identify signs of faults that were not known or anticipated. 
Because the battery system data has only recently been collected, processed and published to cFS, our IMS work has 
had to rely on simulated, recorded data that contains representative anomalies. Because IMS is relatively mature in 
its original Linux version and is used in the MCC for ISS anomaly detection, it was not a priority to show that it can 
detect the battery anomalies; the emphasis was in executing it in cFS and preparing it for performance analysis in a 
flight environment. 

B. ECLSS Subsystems 
Failures in Environmental Control and Life Support Systems (ECLSS) are often characterized by more gradual 

onset and uncertainty. Failures such as fluid leaks tend to occur slowly, with effects that propagate even slower. A 
gradual pressure drop, perhaps followed in time by temperature increases, could result from loss of coolant fluid; but 
if operating in an already cold environment, or not too much heat was being generated because systems happened to 
be operating in quiescent modes, the temperature rise expected of a coolant leak might not occur. Diagnostic 
systems for these types of failures require different techniques for detecting thresholds, rates of change or more 
complex determinants of off-nominal system performance.  

Our project had access to ECLSS equipment that could be used to exercise diagnostic applications geared to 
more continuous and uncertain failure behavior. The Plasma Pyrolysis Assembly (PPA) is a component of a system 
for oxygen (O2) recovery from carbon dioxide (CO2). Current oxygen recovery results in methane as a byproduct 
that is vented overboard, requiring a continuing supply of hydrogen (H2) as a reactant. The H2 is obtained from 
breaking water down into H2 and O2, so recovering the H2 is a major improvement over current CO2 recovery 
processes. The PPA recovers the hydrogen from methane and improves the oxygen recovery significantly.  

The PPA system controls chemical and physical processes and is sensitive to deviations and tuning. Off-nominal 
conditions could result from component failures, but can also indicate tuning or balancing of power, temperature 
control, reagent levels and other parameters required for a well-controlled chemical reactions that convert methane 
to molecular hydrogen (H2) and solid carbon. Off-nominal conditions can be detected by conditions such as gradual 
changes in the reflected microwave power or changes in pressure. These changes may indicate a system failure, may 
indicate a tuning problem, or may be a normal part of the chemical process, so considering all the data as a state 
change is ideal for the PPA problem set. 

The PPA team provided sample representative data containing several conditions of interest, obtained when the 
PPA exhibited faults during testing. The PPA faults are detectable primarily with the microwave reflected power and 
pressure changes. High reflected power indicates that the microwaves are not being absorbed properly in the system, 
which could be a result of a few possible failures or degradation conditions. The faults present in our PPA datasets 
included: 

• Carbon buildup – a buildup of carbon clogs the system, slowing down or stopping the ability to strip 
molecular hydrogen from methane. 

• High reflected power. 
• Sabatier over-pressure, similar to a PPA over-pressure. 

A HyDE model was developed for the PPA system to identify several types of failures or off-nominal 
conditions.  The HyDE reasoner uses a system model that correlates state changes with failures by determining if the 
state change is commanded or a natural result such as changing environmental conditions, and if not, it determines 
the most likely fault that would cause the observed state change. Like IMS, HyDE is a mature technology, so the 
primary motivation of our work was to integrate HyDE with cFS and prepare it for performance analysis in a flight 
like environment.  The HyDE reasoner has successfully detected and diagnosed the conditions using the recorded 
data. The work to date has shown that the diagnostic concept and interfaces to PPA data are correct, clearing the 
path to a more full-scale integrated capability to detect and diagnose failures and degradation over complex 
continuous data. 

IV. Processor and Software Architectures 
The conversion of technology research applications to flight-like applications involved several significant 

activities that will be described in detail below, including 
• Conversion to flight-supported software languages. Applications originally written in Java, Python or other 

languages were ported to C or C++. 
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• Implementation in the CFS framework. Applications written for Linux, Windows or other environments were 
refactored to use cFS services for initialization, events, time management and data handling. 

• Standardization of inter-process communications. Technology research interfaces included various 
combinations of open source, commercial or custom interfaces. These were converted to CFE Software Bus 
messages in most cases. 

• Software optimization. Technology research applications were frequently not built with performance as a 
primary goal, so as they were ported to C, some applications were significantly refactored to improve processor 
and memory utilization, particularly in cases of known performance issues from prior technology research. 
 

Software Conversion. For our project, this was primarily porting applications from Java to C, or scripting 
languages such as Python to C. Such changes can be a large effort that doesn’t show substantial differences to 
outside observers and program managers, but it proved well worth the effort to convert to languages typically used 
in flight software rather than work with adapters and interfaces that might have allowed use of the original software 
code. We explored options for retaining legacy software, such as using C to Java interfacing methods such as JNI, 
but ultimately we determined that continuing to use legacy Java or other software would just delay a necessary 
transition, and decided to “bite the bullet” and convert the software at the outset. Some software transitioned 
relatively easily to C, while other applications needed features of C++ to avoid substantial rework. We determined 
that using C++ libraries invoked by C applications was a viable trade-off. Initial testing using Linux in the CFE 
framework was very successful with the approach. Subsequent transitions to VxWorks required building C++ 
support into the VxWorks kernel but otherwise proceeded smoothly. 

Implementation in the cFS framework.  The cFS environment provides standardized application initialization, 
registration, execution loops, and shutdown. A small set of cFS services provide time and event management, 
command and telemetry routing via a Software Bus, and error messaging and handling. Coupled with CFS is an 
Operating System Abstraction Layer (OSAL) that is intended to achieve application portability between operating 
systems and processors, and “promote the creation of portable and reusable real time embedded system software. 
Given the necessary OS abstraction layer implementations, the same embedded software should compile and run on 
a number of platforms ranging from spacecraft computer systems to desktop PCs.”14 Common functions for queues, 
semaphores, tasks, timers, file I/O, file system management and interrupts are used by software applications rather 
than the native operating system functions. Using the OSAL eliminates the need for changing API calls when 
software moves from Windows to Linux to VxWorks or other operating systems. This also was somewhat tedious 
work with little initial outward benefit, but clearly pays off when moving an application from early development and 
test on Linux to executing on embedded processors. Converting applications developed as technology 
demonstrations to operating system independent applications using the OSAL was a manual process requiring 
developers to identify the native functions that were included in the OSAL and convert from operating system native 
functions to the OSAL function. The OSAL is not strictly necessary in order to function or to be flight certified. The 
recently completed AMO TOCA SSC experiment4 was flown on the ISS without platform independence provided 
by the OSAL, but it was executed only on a commodity PC in a virtualization environment, and did not need 
platform independence. 

An example of the benefits of the OSAL can be seen in the file open function. In Linux, the file open API is: 

int open(const char *path, int oflag, ... ); 

with an optional ‘int mode’ parameter; in VxWorks, the file open function is defined as: 

int open( const char *path, int oflag, int mode ); 

with a required mode flag. The OSAL defines a function 

OS_open (const char *path, int32 access, uint32 mode) 

that is used instead of the native operating system’s ‘open’ function that will work correctly on any operating 
system. Applications that are fully “OSAL-compliant” can be readily moved from one operating system to another 
without code modification because the OSAL handles all the variability between operating systems and their various 
versions. However, it proved somewhat difficult to be sure that all application developers had truly converted all 
commonly used functions to the OSAL equivalent. More than once, an application that was considered to be OSAL 
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compliant failed to execute when moved to another operating system, and software integrators found native 
operating system function calls still in use were not available or were in a different form on the targeted platform. 
While not a major problem for the moderate scale of the applications used in the infusion research, this will be an 
ongoing concern as larger projects make similar transitions. Code reviews and automated tools to check for OSAL 
compliance could alleviate the concern. 

Standardization of Interprocess Communications. Interprocess communications included both communication 
between independent tasks running on a single processor and between applications running on different processors. 
The cFS framework includes a Software Bus that transports data between applications on a processor, and an 
application called Software Bus Network (SBN) facilitates interprocessor communications by extending the 
Software Bus between processors. All interprocessor communications using SBN relied on Ethernet with standard 
IP protocols, although conceivably the SBN functionality could be implemented for some other transport protocol. 
The Software Bus uses a publish and subscribe protocol. The publishing application does not require awareness of 
what applications may receive the data, and the subscriber does not need to know where the application generating 
the data is located. The SBN application creates data channels, or ‘pipes’, between all processors that register and 
transmits messages destined for a subscriber on another processor from the local Software Bus to another SBN node 
which receives the incoming message and places it on its local Software Bus. Each application uses a set of unique 
message IDs to correctly identify the data message by the Software Bus routing mechanisms. The Software Bus with 
the SBN applications effectively extend the Software Bus across all processors in the spacecraft architecture so that 
applications maintain processor independence with respect to interprocess communication. 

While flight programs, such as ISS and the Orion spacecraft have dealt with managing large-scale data 
communications between processors and various elements of a ground infrastructure, the management of the data 
has not always been efficient. The cFS framework and the incipient tools we developed to help manage interprocess 
communications provide opportunity for significant improvements in interprocess data management.  Managing the 
message IDs required careful attention and tools. The architecture allows for multiple copies of an application to 
execute, but each one needs unique message IDs or its data could be misinterpreted by receiving applications. 
Indeed, during development and testing, we occasionally encountered conflicts because messages were not properly 
deconflicted. For smaller scale projects, developers could assign message ID ranges for each application, but as the 
number of applications, and the number of messages used by the applications, grows, it became clear that message 
ID automation would be required. A tool called the Collaborative Data Dictionary was developed to help manage 
the message IDs. The complete specification of the applications, the messages they could generate, and the 
commands to which they respond remained a complex process.  

V. Integration and Testing 
The Integrated Power and Avionics System (iPAS) was established at Johnson Space Center as a collaborative 

environment that has proven to be well-suited for technology infusion activity. The iPAS hosts several subsystem 
technology testbeds, and also provides secure data communications between NASA centers, providing a range of 
subsystems with which to interact. Our autonomy applications require realistic nominal and faulted behavior to 
exercise diagnostics, impact determination and automated plan execution functionality. The iPAS offers both a rich 
set of subsystems as well as the computational and communications resources in a well-controlled environment in 
which to test and evaluate the autonomy applications. 

We developed a flexible processor architecture to run several applications distributed between processors, and to 
move applications between processors easily. One of our objectives was to assure that software loads can be 
balanced between processors either in design, development, or in operations such as a response to loss of computing 
assets or changing operational needs. 

The cFS environment is designed to make the transition between processors seamless. During development and 
test it is advantageous to begin development and test in an environment such as Linux, move to the target operating 
system, such as VxWorks, as the design matures, and later transition to the flight hardware when it becomes 
available. cFS has successfully facilitated these kinds of transitions and we have used its transportability features to 
address both software distribution and flexibility in our autonomy architecture. Distribution between multiple 
processors requires establishing data and command interfaces across a network. Flexibility in addition requires that 
the distribution scheme can be changed with minimal change to software. We successfully showed that flexibility 
can be achieved with a very small set of configuration data and with no change whatsoever to application software 
and data. 
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We executed the set of applications described above in several processor configurations, starting with all 
applications executing on a single Linux Virtual Machine, migrating to two, then three Linux machines, and finally 

to a mix of Linux and 
Power PC processors. Our 
primary test configuration 
consisted of the AMPS 
hardware and APC 
application, both of which 
execute outside of the cFS 
framework, but connected 
to a Linux cFS node, and 
ASO applications 
distributed between a Linux 
node and PPC with 
VxWorks, as shown in 
Figure 3. The dissimilar 
architecture assures that the 
architecture and 
applications properly handle 
data byte ordering, timing 
and message integrity. 

The following sections 
will describe the some of 
the integration and test 
activities and issues 
encountered. We will 
provide details on the 
message traffic generated 
by our applications as 
currently implemented, the 
work and challenges 
involved in transitioning 
cFS applications on Linux 
to PPC and VxWorks, and 
several issues that arose 
during development and 
integration. 

A. Message Traffic 
The messages between applications all use a fixed size synchronous cyclic data packet. cFS can use 

asynchronous messaging, but since one of our objectives is to establish a system on which good quality performance 
metrics can be collected, we determined that cyclic messaging would stress the messaging architecture more, and 
would be easier to analyze steady state performance without having to determine worst case data bandwidth and the 
probability of reaching worst case. Our initial data bandwidth has been fairly low, but serves to establish a 
performance baseline when scaled up applications are exercised later.  The message rates and sizes are described in 
Table 3. 
Table 3 – Message descriptions for the inter-process data used in the initial test and evaluation 

Message Rate 
(Hz) 

Size 
(Bytes) 

Generating Application Receiving Application 

ACAWS Test 
Results 

1 73 ACAWS Fault Detector ACAWS Diagnostic Engine 

ACAWS Diagnostic 
Results 

1 140 ACAWS Diagnostic Engine Autonomous Power Controller, Displays, 
Data Logs 

ACAWS Impact 
Request 

1 38 ACAWS Diagnostic Engine ACAWS Failure Impact Reasoner 

 

Figure 3 – The application architecture used for test and evaluation of 
autonomy applications in a distributed cFS software environment and 
multiple processors with both simulated and hardware subsystems, with 
three cFS nodes connected to the AMPS hardware and its processors, and an 
external AMPS Power Controller executing remotely. A failure is injected 
into the AMPS hardware (1) that is detected in the AMPS telemetry by the 
ACAWS Fault Detector (2). Messages are sent to ACAWS Diagnostic Engine 
(3) to diagnose the AMPS failure mode. Diagnostic results are sent to the 
Failure Impacts Reasoner to determine the effects of the failure (4) and to 
the AMPS Power Controller (5). Diagnostic results and failure impacts are 
received by the AMPS displays to show along with telemetry data from the 
AMPS testbed (6). 
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ACAWS Impact 
Results 

1 500 ACAWS Failure Impact 
Reasoner 

Displays, Data Logs 

PPA Diagnostic 
Results 

1 133 PPA HyDE Reasoner Displays 

PPA Data 1 264 PPA Data Playback PPA HyDE Reasoner 
IMS Anomaly 
Scores 

1 14 IMS Displays 

AMPS MBSU Data 
(2 instances) 

1 166 AMPS Test Rig ACAWS Fault Detector 

AMPS PDU (2 
instances) 

1 130 AMPS Test Rig ACAWS Fault Detector 

Total   1,458   
 

B. Transition to VxWorks 
The transition from autonomy technology research to a realistic flight software environment involved at least 

three major phases. First was the re-development of applications, where needed, in the C or C++ programming 
language. The second phase was transition to the cFS environment under Linux, either in a Virtual Machine (VM) 
on a readily available office computing environment, either Microsoft ® Windows or Apple Mac ®, or on native 
Linux on Intel desktop or laptop computers. The transition to C/C++ and to cFS on Linux were generally conducted 
concurrently, rather than building applications as stand-alone command line executable applications before running 
within the cFS environment. 

Once the applications were integrated and tested successfully in a Linux environment, the transition to VxWorks 
on an embedded Single Board Computer (SBC) was completed. The cFS environment was designed so that a 
properly built application that runs correctly on Linux will transition easily to a cFS environment on another 
operating system. The Operating System Abstraction Layer (OSAL) is a key to a smooth transition from Linux to 
VxWorks or other operating systems. Our experience generally validated the cFS design approach. Some of the 
applications executed correctly on VxWorks the very first time they were loaded. 

With cFS, the details of the hardware and Operating System are abstracted in a Platform Support Package (PSP). 
So that cFS applications do not need to reference hardware-specific information. Memory interfaces, exception 
handling, timers, and file system information are encapsulated in the PSP to provide standard interfaces to other 
elements of the cFS. Prior development groups had built a PSP for the Power PC 750 board from Maxwell 
Technologies that we used as our primary VxWorks target. The PSP required very little customization, such as 
modifying tables that defined file system data locations to match the file system organization expected of the cFS 
software. VxWorks similarly uses a Board Support Package (BSP) that provides the detailed memory maps, drivers, 
interrupt handlers and other low level interfaces to the hardware. The BSP was provided by the vendor and was 
customized and tested by other development groups. With a completed BSP and PSP, we were able to build and load 
several of our applications easily. 

Part way into loading and testing the application set, we found that the original VxWorks kernel that we obtained 
from the JSC development group was built without support for C++ libraries, and since several of our applications 
use libraries developed in C++, we needed to rebuild the VxWorks kernel with the needed features. The kernel build 
was reasonably straightforward, performed by developers with little prior VxWorks experience. Once completed, 
the remaining applications loaded and executed as well. 

C. Integration Issues 
Some of the issues that we encountered in transitioning to a flight-like architecture were: 

• Command and telemetry message identification. 
• Data byte order when using dissimilar processing architectures. 
• Managing build configurations. 
• Managing application data and models. 

Command and Telemetry Definition Issues. Command and telemetry interfaces in cFS use a Software Bus with 
each interface specified as a message containing either a single command or a group of telemetry data values. 
Messages can be sent synchronously or asynchronously. Applications generate messages that are available for 
ingestion by any other application. The Message ID (MID) is the unique key for data access. The Software Bus uses 
‘pipes’ to describe the destinations to which messages are sent. A pipe can be read by only one application, but each 
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application can read multiple pipes. Any message can be sent to multiple pipes, dependent on the number of 
applications that subscribe to a message. The Software Bus creates a routing table that contains information on what 
messages are to be sent to which pipes. Messages can be sent to processes on the same processor or on different 
processors, and applications do not need to maintain awareness of the destinations that will receive its messages – 
the routing table manages all the details based on applications creating messages and subscribing to them. 

To assure uniqueness across multiple applications required central coordination between all applications and the 
messages to be generated.  cFS message IDs are defined in software header (.h) files. Using common header files 
that are used by all applications assures uniqueness of the message IDs, but because applications can be added and 
moved readily, the header files must be updated to accommodate the changes. In a mature flight software 
environment the set of applications and messages passed between them is stable and rigorously defined by interface 
control documentation, data bases or other methods. In our transition environment we needed significantly more 
flexibility to change messages, move applications from one processor to another, remove and add applications, and 
modify the content of messages as needed. Managing the flexibility proved to be somewhat of a challenge, 
especially when executing multiple instances of an application on multiple processors. We resolved the issues using 
a set of rules for generating message IDs that used pre-defined ranges of allowable IDs for each application, coupled 
with a processor ID that was used by macros to generate guaranteed unique Message IDs regardless of 
configuration. 

In addition to the messages generated and consumed by the applications development by our project, the Core 
Flight Executive (cFE) itself generates and consumes messages and commands. There are also a group of cFS 
“product line” applications that need unique message IDs. There can be multiple copies of these applications 
running on different processors or a single processor. Since these were built by other development organizations, 
their message IDs were already assigned, but were not assured of being compatible with the MID assignment 
decisions made by other users. There are three different sources of command and data messages: 
• Core Flight Executive (cFE) messages. 
• Core Flight System (cFS) Product Line Application messages. The cFS product line applications are developed 

for reuse by the cFS community. Commonly used functionality such as data logging, limit checking, application 
scheduling, and command generation.  

• Project Application messages. 
While a simple approach was appealing to a technology research and development group, it became difficult to 

manage without a coordinated and automated approach. The Command and Data Dictionary (CDD), mentioned 
above, was used to manage the application to application messages for the new applications being developed under 
the project. The application to application messages, however, were only part of the complete set of MID 
management. A system of software macros was eventually used that combined a processor ID, instance ID and 
message type that assured every message a unique value without conflict with any other message. While the 
approach successfully eliminated message conflicts, the value of the message ID was not readily apparent. Ongoing 
work will be needed to guarantee uniqueness of message IDs while making it easy for developers and systems 
engineers to readily interpret the message IDs used by each application in order to develop, integrate and test the 
integrated application. 

Data Byte Order Issues. While cFS is designed to make the hardware architecture as transparent as possible to 
the applications that execute on them, the native architecture byte order is an attribute that is not fully handled by the 
cFS environment. 

The interfaces between dissimilar processor architectures require proper handling of data byte order. cFS 
standardized messages using a CCSDS data format, with a primary header, secondary header and the message data, 
often referred to as the “payload”. The primary header consists of the Message ID, a sequence number and the 
message size, and was by design always specified in big endian format. The secondary header includes a timestamp, 
and can accommodate additional customization by a project team. The secondary header byte order is left to the 
discretion of the project team and is generally specified in the processor architecture byte order. The message data is 
also at the discretion of the project, and also typically uses the architecture byte order. When cFS is used on a single 
processor, such as for a typical uncrewed satellite or planetary exploration spacecraft, the byte order decisions work 
well. In our distributed architecture with a mix of big endian and little endian processors, and with a goal of flexible, 
processor-neutral architecture, the byte order required close coordination, and changing the byte order at some 
points was required when exchanging data between processors. 

The message data byte order was always left to the discretion of the application developers. Some applications 
generated messages in the generating processor byte order, requiring that a receiving application be aware of the 
byte order of the generating application. Including a byte order indicator as part of the data was one method that 
could be used to properly interpret the data. Some applications selected a byte order that would always be used, 
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defining a “wire byte order” of either big or little endian. When executing on a processor different from the specified 
byte order, the application would byte swap the data prior to use. The applications were assumed to have correct 
information about the data types in the message, since they intended to use the data for some purpose and would 
need to know how to interpret. 

The final byte order element that needed byte order management is the secondary header. Our group chose to 
handle the secondary header in the SBN application, and selected a wire byte order for all inter-processor secondary 
headers. No action was needed for secondary headers between applications on the same processor, since the 
convention was to use processor byte order for the secondary header. Having SBN convert the headers to the wire 
byte order, and the SBN node on the receiving end convert from wire byte order to processor architecture byte order, 
we were able to achieve the goal of flexible and architecture-neutral applications. 

The cFS provides a Data Store (DS) application that logs the messages to a data file for analysis or for data 
playback. The secondary header containing the timestamps depended on the byte order of the processor that 
recorded the data. To properly interpret the data required knowing what processor recorded the data, and if an 
application were moved from a big endian to a little endian machine, the data logs would have to be interpreted 
differently. A data delogger was used to convert the binary data logs to readable data formats, and the user needed to 
specify the byte order of the data logs. We added a byte order descriptor to the log file header to alleviate the 
problem of needing to know the timestamp byte order, particularly useful when reading a data file that may have 
been recorded months ago. 

While byte ordering issues have been encountered, and solved, many times,3 it continues to be an issue for cFS 
as well as for other mixed processor architectures. Either well-defined and specified protocols for handling byte 
order are needed, or a specification within the message is needed. Since bandwidth is precious, especially in space to 
Earth communications, the better approach is probably to specify a byte ordering policy rather than adding to the 
message size when the value will be unchanged once built and launched. For integration and testing it may be more 
convenient to transmit the byte order with the message, but the convenience could result in deferring decisions about 
byte ordering policy until the decision becomes more expensive. 

    SBN was designed to be unaware of message content, which requires that applications handle the byte order 
of their data. We have built architecture neutral applications so that an application can be seamlessly moved from 
one architecture to another without modification. The goal has been to simply recompile for a different target 
architecture and obtain the same behavior. We have freely moved applications from an i686 Linux, to PPC with 
VxWorks, in various combinations with excellent success. Architecture neutrality required that each application 
specify a “network byte order” for its data, so that regardless of the machine on which it is running, the transmitted 
messages are always in the same byte order. The transmitting application is responsible for converting to the 
network byte order, and receiving applications are responsible for converting from network byte order. 

Managing Build Configurations. Using cFS and working with several applications integrated by different 
development groups posed several organizational and configuration management problems. The cFS source code is 
provided as open source software that enables customization by various development groups. Core cFS functions as 
well as a standardized reusable application set are deployed and controlled by a cFS community of users, and our 
development group is represented on the various cFS Control Boards that decide on the official software versions. 
Software is stored in repositories using the Software Configuration Management (SCM) tool known as git. git 
allows for individual developers or development groups to establish branches starting from known baselines to make 
changes for the specific needs, and our project made extensive use of branches to customize cFS applications to our 
needs. The applications that our group developed comprised a new git repository. We initially obtained the SCM 
controlled cFS git repositories and created project branches in which we could make modifications to customize to 
our needs. cFS uses a Platform Specific Package (PSP) in which the hardware and operating system customizations 
are contained, and while PSPs existed for Linux and VxWorks, we occasionally found that we needed to customize 
to the specific versions or configurations that we used. A Core Flight Executive (cFE) package contains the basic 
cFS functionality, including the Software Bus, Time Services, Executive Services, Event Services and Table 
Services. The core cFE software generally did not require customization of functionality, but some basic 
configuration settings are contained in the cFE Core software, such as Processor IDs, Processor Names, and settings 
for items such as clock controls, time stamp size and other global configurations. Some of these customizations 
applied to all cFS use across the project, but others, such as Processor ID settings, were based on a particular 
configuration needed by an individual developer for test and debug, or for various project configurations. 

Unlike a typical flight program in which a specific architecture is selected early in design and all further 
development works toward that architecture, our work required flexible configurations. In development and test of 
an application, a developer can select the subset of interfacing applications, and execute them on a single processor 
to verify or debug an application’s functionality. Later on the develop will add additional applications, and distribute 
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them among different processors. For example, a developer might test the ACAWS Fault Detector application with 
AMPS playback data running on a single Linux Virtual Machine. When successful, the developer could run the 
ACAWS Fault Detector on one Linux VM and play back data from a different Linux VM. Then the ACAWS Fault 
Detector could be moved to a Power PC running VxWorks while the AMPS playback is run from a Linux machine. 
Once ACAWS FD was successfully executed, the ACAWS Diagnostic Engine is added to the test configuration, and 
other applications as well. Each of these configurations is built from the same source repositories but requires build 
customizations. 

Our solution was to use a set of build scripts that customizes the cFE core headers with the processor IDs and 
configurations, selected the applications needed for the build, managed the message and command IDs to assure that 
every application used unique IDs, and set definitions for byte order. Most of the configurations were customized 
with C source code header files. A configuration file, in a JSON format, specified the set of applications, processor 
IDs, processor type and other configuration information. The build scripts customized the message and processor 
IDs based on the build configuration to assure unique IDs. 

When using multiple processors, the Software Bus is logically extended between processors with the SBN 
application, configured with a data table that defined the processor IP address and data ports to be used. Each 
execution using SBN required that each processor have the same SBN configuration, which required that the 
configuration be modified for the set of processors used for the run. Configurations ranged from single node runs, 
that did not require SBN, up to four processors, and several processors were available from which to select a 
configuration. We also had multiple networks that could be used. When using playback data, we could use a normal 
NASA site network, but when using the AMPS hardware rig, an isolated lab network was required. Because of the 
rather wide range of possible configurations, it was necessary to manually customize the SBN configuration to the 
specific configuration in use. The process was somewhat sub-optimal and potentially error-prone, but was workable 
for our integration setting. Scaling up to more processors will require improved management, but with maturity a 
program could be expected to lock down a set of test configurations that could simplify management of test 
configurations. 

Managing Data and Models. Several data and model elements required configuration control and customization. 
The ACAWS application set is model-based using multiple data sets for each of the applications. Several data files 
were needed that were read at initialization. Using the same approach for a flight software environment as has been 
used on engineering workstations results in some difficulties. A flight system often does not contain a file system or 
disk drive, or provides a limited capability file system. When executing on a PPC with VxWorks, we used a RAM 
disk, which is an allocated block of memory with a file system implemented in memory. At bootup, the data files 
must be copied into the RAM disk which is completely erased when the processor is powered down. While we could 
generally manage to work with the limited file system, it was clear that scaling up to large-scale systems will require 
different approaches. For example, when completing the EFT-1 work in the coming months, there is a text file that 
is parsed at initialization time and loaded into data structures. An improved method may be to convert the data to its 
binary form off-line, and load the data directly into memory at initialization time.  This is not presently a problem 
with the small size of the AMPS system model, but will be needed to scale to larger spacecraft system applications 
in the future. 

Some of the applications use a set of data tables, using a Table Services feature provided by cFS. The cFS Limit 
Checker, Data Store and Application Scheduler all use Table Services for initialization and configuration data. As 
long as there is a single instance of the application, the approach works well. However, there were cases in which we 
needed to configure an application with different tables for different instances, such as the Application Scheduler. In 
these cases, the software CM system that we developed could be problematic because it was set up to host a single 
table in the repository. Modifications to allow per-instance data tables would improve the configurability and ease of 
use for these cases. 

VI. Current Status 
Several notable milestones were achieved by the project. The first major milestone was a demonstration of 

integrated applications running in the cFS environment under Linux. The degree of integration varied from data 
exchange between applications, to simply running in the same environment, on the same networks, without data 
collisions, corruption or system overflow. The ACAWS application with AMPS data was among the most tightly 
integrated group of applications. The AMPS system generated power system sensor data that was put onto the cFS 
Software Bus and transported via SBN and Ethernet to a second platform running the ACAWS Fault Detector 
application. The test results were put into another cFS message to transmit to the Diagnostic Engine, running either 
on the same platform or another machine.  Several configurations were executed to confirm the flexibility and 
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architecture neutrality that was one of the objectives. The FD application was executed on the same platform as the 
Diagnostic Engine, exchanging messages on the Software Bus on a single processor, and was also executed on a 
separate Linux platform from the Diagnostic Engine, exchanging messages between processors of the same byte 
order, using SBN. 

The second major milestone was the porting of applications from Linux to VxWorks, on an embedded platform.  
All applications have been executed on a Power PC 750 (PPC 750) processor with VxWorks. Both single-platform 
tests, with a set of applications on the PPC, and inter-processor configurations, with some applications on PPC and 
others on i686 with Linux, have been executed. The inter-processor tests confirm that the applications could 
communicate across different byte order.  The ACAWS Diagnostic Engine application uses a commercial software 
library, TEAMS-RT, that required porting to VxWorks and PPC by the vendor, QSI. The initial port was a moderate 
complexity task that proceeded without major difficulty. The most complex aspect was in setting up a suitable 
environment that could support QSI as well as our application team and assure that QSI’s development and testing 
results would transition to our project’s use upon completion. We are continuing to integrate and test the integrated 
Diagnostic Engine in the PPC environment. Initial testing revealed some differences in outputs between correctly 
functioning applications on Linux and i686, and the VxWorks and PPC platform. 

The HyDE and IMS applications executed successfully in the cFS environment on both Linux and VxWorks. 
Both applications ran with sample data provided by a recorded data playback application that was transmitted over 
the Software Bus to the diagnostic application. Results on both Linux and VxWorks were compatible indicating a 
successful transition. 

The ACAWS applications were exercised with the AMPS system to confirm the correctness of the diagnostics 
and failure impact determination and interfaces to another automation application, the AMPS Power Controller 
(APC) developed at NASA Glenn Research Center. Faults are injected into the AMPS testbed at JSC, and the 
ACAWS application receives the sensor data. The Fault Detector application produces a set of Pass, Fail or 
Unknown test results and sends them to the Diagnostic Engine. The Diagnostic Engine makes a diagnosis of the 
failure modes or faulted components indicated by the test results vector from FD, and sends the results to the APC. 
The APC then uses the diagnoses to make decisions about reconfiguration to assure power to critical components, 
sending commands back to the AMPS testbed to turn off lower criticality equipment. An environment simulation 
controls a solar array simulator that requires the APC to account for the environment and configuration of the 
available power when determining the appropriate action when system faults occur. We demonstrate a scenario in 
which the spacecraft is in eclipse (no sunlight on the solar arrays) and a failure of the switch controlling battery 
inputs fails open. The only power remaining is one battery, so to assure power to the most critical loads until the 
spacecraft is in sunlight, the APC turns off lower criticality loads. The scenario demonstrates a fully integrated 
closed loop system in which the subsystems and their processors, a control system and a system-level diagnostic 
system collaborate to make critical autonomous decisions that would normally require crew and flight control teams. 

While the effort to convert applications to cFS from applications in Java, Python and other languages was 
considerable, the transition from technology research to executing in a flight-like environment proceeded smoothly. 
Most of the development team had little or no experience with the cFS environment or embedded real-time software 
systems, and several had not programmed in C or C++ recently, so considerable work went into learning the 
environment while porting the software. Fortunately the team had several experienced cFS developers available for 
periodic consultation that eased the effort. The cFS API is not overly complex, and working with several good 
examples or templates made the effort of converting to cFS fairly straightforward. 

Integrating applications developed by different groups, using different Software Configuration Management 
repositories, proved to be somewhat of a challenge. Each application group needed to use the same version of the 
cFS software and the applications that needed to interface together, particularly applications such as the SBN that 
was needed for inter-processor communications. Development groups at different NASA centers, while all using the 
git software CM system, had different legacy repository and build systems, and frequently it was difficult to assure 
or even determine if the software versions were compatible. Even though there was extensive planning, discussion 
and collaboration between groups about CM repositories, the desire to continue use of legacy systems continues to 
cause occasional issues. In retrospect, it probably would have been more efficient to decide on a common CM and 
software build system across all participants. 

VII. Conclusions, Benefits and Future Use 
The conversion of autonomy applications to cFS, VxWorks and PPC has clearly shown the feasibility of 

executing intelligent autonomy software in flight environments. We have shown that the software transitions to 
routinely used programming languages, C or C++, with relative ease and without any major dependence on features 
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not available in standard C language constructs. The ability to develop in Linux, and conduct initial testing, and then 
move to the target environment, was largely validated; as one of the primary benefits of cFS, we expected to validate 
the ease of transition between operating systems, and were not disappointed. But perhaps the most important 
accomplishment that we have achieved is the creation of a test and evaluation environment in which to examine in 
depth some important questions about spacecraft autonomy applications. 

With the set of applications, processor and software environments, and the system testbeds available to us, we 
are fully configured to conduct extensive performance testing and analysis. The performance analysis of autonomy 
applications is needed before flight programs can be expected to build autonomy into future spacecraft. First, they 
need clear autonomy requirements for the classes of missions to be flown. Second, flight programs must be able to 
accurately estimate the processor performance required of a full-scale autonomy system in order to correctly 
establish the number of processors, their memory and data storage needs, network bandwidth and the resultant mass, 
power and thermal impacts of the processors required for the autonomy applications. And third, information about 
the development effort required for new classes of autonomy applications is needed to mitigate the cost and schedule 
risk of including autonomy applications that have not been previously built and flown at scale. 

The initial focus will be on determining the processor, memory and communications bandwidth of the 
applications. The data models exercised to date are relatively small compared to the expected needs of a Mars or 
Lunar environment spacecraft, but serve as a good starting point that will help establish a minimal baseline. There is 
always some “idling” resource consumption that must be characterized, which will be among the first performance 
measure taken. 

The ACAWS application has previously been executed with the Orion spacecraft, most notably conducting a 
flight following exercise during the EFT-1 flight test in December 201415. The model is substantially scaled up from 
the AMPS model; AMPS contains about 70 failure modes, while the EFT-1 model contains nearly 3500 failure 
modes and 2400 tests. We are working to execute the EFT-1 model in the cFS system on a PPC 750 that will 
provide the ability to measure performance in a scaled up execution environment. We will be able to compare the 
idle performance, the AMPS model and the EFT-1 model to gather substantial information about the resource needs 
of each model, which will enable an extrapolation of the scaling factors. Using the number of failure modes as a size 
determinant, we want to be able to accurately estimate the performance requirements of larger models so that a 
future program can estimate the number of failure modes that a spacecraft will have and know how much resources 
must be allocated in order to support the diagnostic system. The ACAWS application will be the first application for 
which scaling metrics will be determined. Other applications for state estimation, planning, procedure automation 
and other autonomy applications will follow, based on procedure counts, the number of decisions to be automated or 
other suitable measures. The objective will be to determine a set of parametric values from which the autonomous 
application sizing estimates can be made, and the program will have a good estimate of the processor performance 
requirements for the system. 

Future work will also expand the HyDE model and use the MSFC capabilities to connect to live data from the 
PPA test rig, monitor system performance and fine tune the PPA fault models.  We will extend monitoring and fault 
diagnosis to the Sabatier reactor, which produces CH4 as input to the PPA.  Finally, we will integrate fault 
management across the power and air-side ECLSS system.  This final task poses a variety of challenges; not only 
will the complete spacecraft system model be significantly larger than any individual model, but the interaction of 
faults across disparate subsystems will push both the processor load and also the knowledge and modeling effort 
needed to ensure that all fault conditions are correctly identified. 

Once the performance parametrics are determined, our work will help to guide programs in the determination of 
autonomy requirements. Autonomy requirements will need to specify an autonomy duration, that is, how long the 
spacecraft and crew must operate entirely without ground assistance. When light-time constraints come into play for 
long-distance solar system missions, an absolute minimum will be the round trip light time. Of course, a reaction 
time will also be needed, so for a Mars mission, with one way light times over 20 minutes when Mars is at 
opposition, the spacecraft can’t possibly get support from Earth in less than 40 minutes. Conceivably, a program 
could identify all faults that require decisions in less than 40 minutes and build autonomy for just those failure cases, 
and in all other cases put the spacecraft into some type of “safe mode” and use a large ground support workforce to 
determine actions for other failures. However, if autonomy requirements are that the spacecraft must be able to 
return from any point in the mission entirely without support from Earth, the autonomy system will need to look 
substantially different. The autonomy performance measures that will be taken with the systems we have developed 
should be able to provide valuable information about both the need for and the achievability of a range of possible 
autonomy requirements. 

In addition to system performance and requirements, programs will need information about the development 
effort and cost of building unfamiliar new technology and the data models that execute on the applications. This is a 
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more difficult estimation activity, but one in which at least some preliminary information is available. Since our 
project has not had to follow rigorous design, development and test processes, we are not able to provide accurate 
data about the complete effort involved in building a model-based decision-making system. We do have at least 
general information about how much effort has been expended on the models that we have built, and with the 
framework that we have put in place, future maturation projects can use the system to better refine development cost 
estimation methods. 

While the path from developing intelligent automation technology to deployment in spacecraft is a long one, our 
work has made significant strides toward adapting technology concepts to execute in full scale flight avionics 
environments and the creation of an environment in which to continue to develop, analyze and evaluate both the 
technology needs and performance environments for full scale autonomy needed as human operations into the solar 
system are planned and developed. 
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