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PREDICTING SATELLITE CLOSE APPROACHES USING 
STATISTICAL PARAMETERS IN THE CONTEXT OF ARTIFICIAL 
INTELLIGENCE  

A. Mashiku*, C. Fruehᵼ, N. Memarsadeghi¥, E. Gizzi‡, M. 
Zielinski£ and A. Burton£ 

In order to ensure a sustainable use of low earth orbit in particular and near Earth 

space in general, reliable and effective close approach prediction between space 

objects is key. Only this allows for efficient and timely collision avoidance. Space 

Situational Awareness (SSA) for commercial and government missions will be 

facing the rapidly growing amount of small and potentially less agile satellites as 

well as debris in the near earth realm, such as the increase in CubeSat launches 

and upcoming large constellations. At the same time, space object detection ca-

pabilities are expected to increase significantly, allowing for the reliable detection 

of smaller objects, e.g. when the Air Force Space Fence radar becomes opera-

tional. In combination, the space object catalog is expected to increase tremen-

dously in size. In this paper, we introduce an investigative approach based on the 

latest capabilities in artificial intelligence in fostering the potential for fast and 

accurate close approach predictions. We consider the study of statistical and in-

formation theory parameters in contrast and complementary to the classical prob-

ability of collision computation alone, in order to determine the feasibility of re-

liably predicting close approaches. 

INTRODUCTION 

As the number of objects in near-Earth space increases, so does the importance of developing 

techniques for the rapid and accurate assessment of space object conjunction events. Collision 

avoidance decisions currently hinge on the probability of collision (Pc) as a key component in risk 

assessment, but common methods for computing Pc make significant assumptions about the geom-

etry of the encounter that may not always hold in certain situations1,2,3. Additionally, Pc is strongly 

influenced by the state uncertainty present in the system, which is time-varying as the space objects 

are propagated and observed1. The most accurate way for performing conjunction analysis between 

two spacecraft is through a Monte Carlo (MC) simulation of the state space of both the primary and 

secondary objects2,3.   
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However, even when employing parallel computing and simplified prediction models, MC sim-

ulations may not always be feasible for routine scans of the catalog for close approaches due to the 

long run times and the number of samples required. As a result, Pc computations are employed 

instead that use a projection of the uncertainty volume into relative space. Those computations can 

be performed reasonably fast, however the associated 2-dimensional assumptions are often not ap-

plicable to the realm of low relative velocity encounters, in which the objects do not pass through 

each other’s uncertainty volume in a timely manner27.  This situation may pose challenges for cur-

rent methods of collision prediction with the expected increase in space objects. 

In this paper, we introduce an investigative approach based on the latest capabilities in artificial 

intelligence, or more specifically machine learning, in fostering the potential for fast and improved 

close approach predictions. We consider the study of statistical and information theory parameters 

in contrast with and complementary to the classical Pc computation alone, in order to determine 

the feasibility of reliably predicting close approaches. We consider the development of a set of 

“information parameters” that would serve as a supplement to the Pc in the conjunction assessment 

process, a tool that can be used to examine the evolution of Pc and other parameters during the 

conjunction events, and a set of conjunction event data to be used for training machine learning 

algorithms. Preliminary work on reducing state uncertainty by scheduling observations so as to 

maximize information gain is also described and presented in this paper as an approach to capture 

the information content as a scalar value or an informational parameter. 

The initial approach considered the construction of a neuro-fuzzy-logic-based decision making 

system that is based on intelligently selecting parameters beyond the Pc values to take the compre-

hensive knowledge of data information gain from measurement processing, orbit generation and 

object dynamics into account.  Fuzzy logic is a form of decision-making logic that uses functions 

that produce partial truth membership values that range between the standard Boolean truth values 

of 1 and 0. These values are used to construct a Fuzzy Inference System (FIS), an approach to logic 

designed to mimic human intelligence. We compare the inference for an impending close approach 

with weighted assignments of the parameters using several models of the FIS. The values for these 

weights were incorporated using unsupervised-machine learning clustering techniques to aid in in-

ferring a close approach conjunction analysis. We investigated using the information parameters in 

a machine learning construct to help assess the close conjunctions and in turn infer the collision 

avoidance decision-making process. Specifically, we investigated how a FIS could process those 

parameters to provide a conjunction assessment output, in either a standalone approach or in a way 

that could enhance the Pc-based decision construct.  

FIS are able to capture partial memberships of variables into different sets, and generate 

outputs that exists in a continuous space, versus discrete classifications, which is characteristic of 

classical logical systems and of many traditional machine learning constructs. The hypothesis 

herein lies with the expected benefit in resolving the collision avoidance decision ambiguities that 

exist in the parameter set level that are within the close neighborhood of one another. A similar 

construct was investigated that introduced a single risk index, known as the F-value that aggregated 

all considered risk figures of merit4. The parameters considered for the F-value construct were risk 

and quality assessment parameters but leveraged the fuzzy-logic approach. In our approach, we 

implemented unsupervised machine learning clustering algorithms using K-means and Support 

Vector Machines (SVM) methods to determine whether the parameters correlated to ground truth 

classifications as well as use their performances to obtain the correct weights for the FIS. 

We also investigated constructing a Deep Neural Network (DNN) model, and trained the 

model using parameter combination sets based on their performance from the unsupervised clus-

tering methods. The performance of the DNN was assessed to determine the correct assessment of 

risk assignment of the test cases that were considered. The goal was to assess whether the resulting 
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outputs could be understood, applied, and implemented as a conjunction assessment decision-mak-

ing tool for close approaches. For the ground truth, MC simulations were used for both simulated 

and real cases from the NASA Conjunction Assessment Risk Analysis (CARA) program data used 

for this study. 

APPROACH 

Machine Learning algorithms require large, diverse sets of quality data in order to come to 

meaningful conclusions. The preliminary approach leveraged the use of 11 of the 12 baselined 

cases of simulated data from Alfano et al3 (excluded case 9, due to its geometric similarity to case 

10 apart from the integration duration as presented in Reference 3). These cases were considered 

due to their appeal with respect to their diverse orbital and close approach characteristics as well 

as how they affect the reliability of the 2D Pc in various paradigms5. The ground truth was estab-

lished using MC samples generated for each case based on a Gaussian random sampling of the 

variances.  

Additionally, we obtained around 450,000 cases of historical conjunction data from the CARA 

program. One of the main challenges of using historical data was the availability of a significant 

number of cases that could be categorized as close approaches. A significant portion of the histor-

ical data contained conjunctions that did not require any Risk Mitigation Maneuvers (RMM) and 

were thus deemed to be non-close approaches, or safe encounters, based on the Pc risk threshold.  

For this preliminary approach, we selected 20,000 cases and applied various scaling factors that 

altered the Pc output in order to have a broader spectrum of resulting Pc outputs to work with to 

compare the categorization of safe and unsafe close approaches. A wide array of cases were gen-

erated that captured Low Earth Orbits (LEO), Geosynchronous Earth Orbits (GEO), Medium Earth 

Orbits (MEO), and High Earth Orbits (HEO). The distribution of these 20,000 cases were observed 

not only in the Pc values but also the resulting miss distances, relative velocities, approach angles, 

as well as the variability in the Primary and Secondary orbit eccentricities. For the 20,000 cases 

considered, we implemented a simulated measurement update using the Kalman Filter for the LEO 

and MEO orbits and the Unscented Kalman Filter for the GEO and MEO orbits to obtain 3-sets of 

information at the time of closest approach (TCA). The information of interest for our preliminary 

analysis that provides the bedrock for the information parameters are the state and covariance in-

formation at TCA. The goal was to have a varied set of data that contains simulated measurements 

updated at varied instances prior to TCA to observe how much the information content varies when 

propagated and investigate how sensor tasking knowledge can be used to infer the decision making 

process at TCA6, as shown in Figure 1.  

 

Figure 1:  Schematic illustrating the observation and propagation scheme used in 

the forward propagation (measurement update) script 
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In order to evaluate the information gain compared to the knowledge of the state resulting from 

the simulated measurement updates, we leveraged the Kullback-Leibler information gain7 method. 

The Kullback-Leibler information gain (GKL) is related to the Kullback-Leibler divergence (KLD) 

and quantifies the information gain resulting from an observation by comparing the pre- and post-

update covariance matrices. The formula for the measure is given in Equation (1), where 𝑷− is the 

pre-update covariance matrix and 𝑷+ is the post-update covariance matrix. The Kullback-Leibler 

information gain is negative for an observation that increases the uncertainty of the state estimate 

and positive for an observation that decreases the uncertainty of the state estimate. 

𝐺𝐾𝐿 =
1

2
log
|𝑷−|

|𝑷+|
 (1) 

 

Figure 2, displays the GKL values associated with a series of observations along with the largest 

eigenvalues of the post-update covariance matrices, to illustrate the relationship between positive 

information gain and shrinking uncertainty. 

 

 

Figure 2: The relationship between positive information gain and 

shrinking uncertainty based on comparing the largest eigenvalue of 

post-update covariance matrices to the Kullback-Leibler information 

gain associated with the corresponding observations 

These instances of simulated updated information, provided unique sets of information quality 

at TCA for information parameter set generation. Expectedly, those with the largest overall GKL 

will provide more accurate information content at TCA compared to those with a smaller overall 

GKL. The goal for this implementation was to determine how available sensor tasking information 

can ultimately be used as an input parameter when leveraging machine learning techniques in con-

junction assessment of close approaches for decision making. Future work in this area will inves-

tigate the incorporation of sensor tasking in the overall machine learning paradigm.  

INFORMATION PARAMETERS 

The project set out to identify additional “information parameters” derived from the primary 

and secondary objects’ state estimates that may be able to provide insight into conjunction events 

that cannot be obtained from Pc alone. It is hoped that parameters might be identified that can help 

distinguish between different trends in Pc evolution or supplement Pc in situations in which the 

assumptions behind 2D Pc are not supported. 
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An initial set of six information parameters and their variants were considered here. These pa-

rameters were based on statistical measures that were used to describe relationships between prob-

ability distributions and their random vectors or state, as well as parameters that provide infor-

mation about the geometry of the conjunction. 

Mahalanobis distance (MHD) 

The Mahalanobis distance can be interpreted as either the number of standard deviations between 

a point (or a state) and the mean of a probability distribution or the dissimilarity of two random 

vectors that are described by the same distribution9. Both interpretations are equivalent for the con-

junction assessment scenario (distance of the relative state from the mean of the combined uncer-

tainty distribution, dissimilarity of the two state vectors that are both described by the combined 

uncertainty distribution). The Mahalanobis distance was calculated as shown in Equation (2), where 

μp and μs are the state vectors of the primary and secondary objects, respectively, and Pcomb
-1is the 

combined covariance matrix. 

𝐷𝑀 = √(𝜇𝑝 − 𝜇𝑠)
𝑇𝑃𝑐𝑜𝑚𝑏

−1 (𝜇𝑝 − 𝜇𝑠) (2) 

 

Kullback-Leibler divergence (KLD) 

Kullback-Leibler divergence is an asymmetric measure of the divergence between two probability 

distributions7. The standard form is shown in Equation (3), where p(x) and q(x) are probability 

density functions. 

𝐷𝐾𝐿(𝑃||𝑄) = ∫𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 (3) 

A closed-form expression of the KLD for Gaussian distributions is shown in Equation (4), where 

Pp and Ps are the covariance matrices for the primary and secondary objects, respectively, and Δμ 

is the relative state of the two objects8. 

𝐷𝐾𝐿 =
1

2
(log

|𝑃𝑠|

|𝑃𝑝|
− 𝑛 + 𝑡𝑟𝑎𝑐𝑒(𝑃𝑠

−1𝑃𝑝) + Δ𝜇
𝑇𝑃𝑠

−1Δ𝜇) (4) 

 

Bhattacharyya distance (BD) 

The Bhattacharyya distance is a symmetric measure of the divergence between two probability 

distributions10. The standard form is shown in Equation (5). 

𝐷𝐵 = − ln (∫√𝑝(𝑥)𝑞(𝑥) 𝑑𝑥) (5) 

 

The Mahalanobis distance is a specific case of the Bhattacharyya distance that arises when the two 

distributions have the same standard deviation. The Mahalanobis distance is clearly visible in the 

first term of the closed-form expression of the Bhattacharyya distance for Gaussian distributions 

shown in Equation (6). 

𝐷𝐵 =
1

8
 Δ𝜇𝑇𝑃𝑐𝑜𝑚𝑏

−1 Δ𝜇 +
1

2
ln (

|𝑃𝑐𝑜𝑚𝑏|

√|𝑃𝑠||𝑃𝑝|
) (6) 

 



 6 

L2 norm 

Commonly known as the Euclidian norm, the L2 norm gives the distance between the two objects' 

state vectors11. If only the position portion of the state vectors are used to calculate the L2 norm it 

describes the geometric distance between the two objects' means, otherwise known as the miss 

distance. The L2 norm is calculated according to Equation (7), where n is the number of states 

being considered.  

|Δ𝜇| = √∑ |Δ𝜇𝑘|

𝑛

𝑘=1

 (7) 

 

Orbit angle (OA) 

The angle between orbital planes is calculated as the angle between the cross track portions of 

the objects' radial-in track and cross track (RIC) position vectors. 

Miss distance (MD) 

The miss distance is the Euclidean distance between the primary and secondary space objects. 

This is similar to the evaluation on Equation (7) when considering the positions of the state. 

UNSUPERVISED MACHINE LEARNING: CLASSIFICATION AND CLUSTERING 

METHODS 

Unsupervised learning methods classify data into groups based on features within the dataset 

that may not be immediately obvious. The data fed into unsupervised learning algorithms are not 

initially labeled with their classifications, but rather the algorithm imposes its own functionality 

onto the data to generate those classifications. The intention of this initial approach of using unsu-

pervised machine learning on the information parameter set, was to explore the data and determine 

if an internal representation existed that would cluster the parameter sets into two categories: safe 

or close encounter(not safe).   

There were two reasons for performing clustering methods on our data. The first was to see if 

the features used to separate the data from such methods would give way to natural separation that 

correlated with our ground truth. We did this by comparing the output of the processes with the 

discretized ground truth output set, to see how well the methods performed. That is, to see if there 

was promise in the ability to separate the data based on features related to unsafe close approaches 

as evidenced in the quantification of statistical information parameters. The second reason was to 

find naturally characterizing metrics on the data and use the performance metrics as weights to 

inform the actual construction of our Fuzzy Inference Systems. 

Clustering algorithms fall into two broad groups12: 

 -Hard Clustering, where each data point belongs to only one cluster ex. K-means and Sup-

port Vector Machines 

 -Soft Clustering, where each data point belongs to more than one cluster ex. Fuzzy C-

means and Gaussian Mixture Models 

For CA applications, decision making mostly tends to be a binary-decision; to maneuver in 

order to mitigate a dangerous close encounter or not, with the understanding that the close encoun-

ter is deemed safe. This can be construed as a hard clustering approach, however other factors are 

always taken into consideration such as the missions capability to perform such a maneuver, the 

orbit determination quality, the sensor tasking applied on the secondary object and so on. Therefore, 

if we can augment the binary decision output by finding a way to incorporate additional information 
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by intelligently weighing in the parameters based on their performance with respect to a Monte 

Carlo run Pc value, we could investigate the contribution and effectiveness of these parameters for 

decision making.  

We implemented a hard clustering approach for this preliminary investigation and used the K-

means clustering methods and the Support Vector Machines classification methods, described be-

low. 

K-means clustering 

K-means clustering partitions data into clusters based on the closest mean of a chosen number of 

centroid points, which are representative of classes. For our K-means clustering, we chose 2 cen-

troids (𝐾 = 2) for each parameter, representing a “close encounter/not safe” and a “safe” catego-

rization. Execution of K-means clustering resulted in the following values: 

1. K-means Centroid Values corresponding to the classes 

2. K-means Standard Deviations around the centroids 

3. K-means Performance Metric generated by calculating the percentage of the dataset that 

was correctly assigned to the ground truth (see Table 1) 

Support Vector Machines (SVM) classification 

SVM-classification techniques separates data by using kernel methods to extended its dimension-

ality in order to find separations in the data that are not existent in its distribution in lower dimen-

sionality spaces. Execution of SVM classification methods resulted in the following values: 

1. SVM Standard Deviations around the centroids 

2. SVM Performance Metric generated by calculating the percentage of the dataset that 

was correctly assigned to the ground truth (see Table 1) 
 

Table 1. Clustering Performance Methods for K-means and SVM using the Performance Metric 

Parameter k-means  SVM  

Probability of Collision (Pc) 0.7742 0.9995 

Miss Distance (MD) 0.6389 0.8314 

Mahalanobis Distance (MHD) 0.6983 0.8810 

Bhattacharyya Distance (BD) 0.7611 0.8864 

Kullback-Leibler Distance (KLD) 0.7736 0.8459 

Orbit Angle (OA) 0.5387 0.8711 

 

 The output data from the SVM-classification had an overall higher correlation with the 

discretized ground truth value set than the K-means clustering method as shown in Table 1. Because 

of this, we chose to use SVM standard deviation and performance values to inform the construction 

of our Fuzzy Inference System. This will be discussed in further detail in the next section of this 

paper. 

Supervised learning methods use data with ground truth classifications to train a "classifier" 

construct. These methods require a "training" dataset of input-output pairs and will be demonstrated 

in our DNN models constructs. 
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FUZZY INFERENCE SYSTEMS CONTEXT 

 Fuzzy inference systems map input to output using fuzzy logic functions, which express 

partial membership of variables or parameters to certain sets. FIS’s are used mostly in decision 

making problems, where there is not a concise certainty on whether an input belongs to a discretized 

set13,14. These systems can be trained or untrained, and manually constructed or constructed through 

learning on a dataset. In our work, we focused mostly on manually constructed systems which were 

trained after classification for model fitting purposes. Figure 3 below shows a snapshot of the 

graphical user interfaces (GUI) of the FIS using MATLAB’s Fuzzy Logic Toolbox15. 

 

 

Figure 3. Fuzzy Inference System User Interface using MATLAB®    

 

 MATLAB Fuzzy Inference System’s GUIs has tools that allow you to build, edit and view 

the FIS. The Fuzzy Logic Designer is where all the Fuzzy Membership Functions (FMF) are 

defined and each information parameter input can be defined as a FMF. The Rule editor is where 

the performance metrics from the SVM are used to construct the decision making process to 

produce an output decision. More details can be found in Reference 15.  

There are three types of FIS: Mamdani FIS model, Sugeno type FIS model and the Adaptive 

Neuro-Fuzzy Inference Systems.  

Mamdani FIS model15 

Mamdani-Type (Mamdani) fuzzy inference systems are fully constructed by the user. These sys-

tems have a set of basic components, including a set of input variables and output variables. Each 

variable has a set of associated FMF that define a specific input’s degree of membership to each 



 9 

of the set defined in terms of that variable. Mamdani systems also have a set of “if-then rules”, 

similar to classical, non-fuzzy logical systems. However, they differ in that the inputs of FIS’s are 

values between 0 and 1, whereas those of classical logical systems take on discretized Boolean 

values. Therefore in FIS’s, there can be partial truth to holding and defined rules. Once the output 

spaces of the rules are generated, these spaces are aggregated together and "de-fuzzified" with a 

method that can take the aggregated space, and flatten it into a single quantifying value output. 

Sugeno FIS model 

The Sugeno FIS model method is similar to the Mamdani method’s fuzzy inference process in the 

fuzzifying of the inputs and applying the fuzzy operator.16,17 The main difference between Mamdani 

and Sugeno is that the Sugeno output membership functions are either linear or constant.16,17  

Adaptive Neuro-Fuzzy Inference System (ANFIS) Model 

Adaptive Neuro-Fuzzy Inference Systems are very similar to Mamdani FIS’s, except that they do 

not rely on a predetermined structure. The mechanisms that underly this system use modeling tech-

niques to infer structure in a way that is similar to the training that happens with neural networks. 

ANFIS systems will result in tweaked membership functions and parameters on those functions. 

Sample Mamdani FIS model implementation 

In constructing the Mamdani FIS prototype model, it was important and imperative that we use 

the informational parameters that provided us with a physics-based explanation in order to validate 

and verify the outputs of the FIS model. 

We used the simulated data set by Alfano3, and used three information parameters: miss dis-

tance, Pc, and Kullback-Leibler Divergence. We constructed the FMF for each parameter based on 

the clustering outputs of the values. For example, a small miss distance will infer a close encounter 

and thus we labeled the output as 0 for unsafe and a large miss distance will be the contrary with 

an output label of 1 for safe. A similar approach was implemented for both the Pc and the KLD. 

 

Figure 4. Fuzzy Logic Designer GUI using MATLAB®  defining the FMFs Missed Distance, Probability 

of Collision, and the Kullback-Leibler Divergence. 

In Figure 4, the Mamdani Fuzzy Logic Designer’s rules are created to map the values of the 

parameters to the FMF and designate an output with respect to the weights from the unsupervised 
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machine learning models. This provides a prototype for a multi-parameter based decision-making 

tool constructed using fuzzy-logic rules. The FIS Rule Viewer is shown in Figure 5, where each 

information parameter has a FMF whose information contributes to the multi-parameter decision 

output. The vertical red lines show the sliding values of the parameters and how they each affect 

the final decision of {0,1} = {unsafe, safe}. An interesting observation here is that the KLD param-

eter range value inputs did not affect the final decision. This was because the KLD parameter was 

a measure that compared the probability density function (PDF) or uncertainties of the primary 

object to the secondary object, not a specific measure that assesses a close approach situation. This 

shows that it is imperative that each contributing parameter considered must provide added infor-

mation value. It was eventually clear that the inherent comparisons of the primary and secondary 

uncertainties did not directly provide information with respect to conjunction assessment rules de-

spite a larger weight value from the SVM outputs. 

  

Figure 5. FIS Rule Viewer providing the decision output. Figure on the left with a large miss distance 

and low Pc provides a decision output of 0.837 (~ 1 for safe) Figure on the right with a small miss 

distance and high Pc provides a decision output of 0.195 (~0 for unsafe)    

 

More investigation is needed to determine the correct combination of information parameters to 

construct a FIS decision making system. In our work, we discovered that not all combinations of 

informational parameters provided intuitive or expected outputs. This study will be revisited with 

a follow-on investigation on the applicability of considering the use of FIS for CA decision making.  

DEEP-NEURAL NETWORK MODEL CONTEXT 

We also took the approach to design and implement a Deep Neural Network (DNN) model for 

decision making augmentation with Pc. A DNN is based on Deep Learning, which is a type of 

machine learning that is usually implemented using a neural network architecture. The term “deep” 

refers to the number of hidden layers implemented in the network that can have from 2 or 3 to 

hundreds of hidden layers19,20. The DNN model is trained with a subset of our dataset that uses the 

known outputs given the input information parameters to construct the DNN model. One of the 

benefits of using a DNN is that it learns the features and classifiers automatically with unlimited 

accuracy19. However, this automatically implies the availability of large sets of data with good 

quality data. 
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Figure 6. A simple neural network compared to a deep learning neural network based on the numbers 

of hidden layers.20 

Figure 6 shows a schematic of a simple neural network and a deep neural network architecture, 

showing the key difference in the number of hidden layers. As most experts in the field have men-

tioned, there is no exact science or formula in the approach for selecting the number of hidden 

layers. The best and recommended approach has been to try a few, observe how they perform19, 

and extrapolate from there with more testing and validation. 

In this context of using DNN for decision making, we considered a few informational parame-

ters: Pc, KLD, MHD, BD, MD, and the OA. We grouped the informational parameter into arbitrary 

assignments of 4 groups: 

 -Group 1 = {KLD, MD, BD, Pc, MHD} 

 -Group 2 = {KL, MD, MHD, Pc} 

 -Group 3 = {Pc, MHD, OA} 

 -Group 4 = {Pc} 

We designed our DNN in MATLAB by defining the number of hidden layers, setting up the 

training, validation and testing ratios, and choosing the training functions. The typical recom-

mended and considered ratio settings for training, validation, and testing were 0.7, 0.15, and 0.15 

respectively19. We investigated two sets of DNN models that considered 10, 20, and 40 hidden 

layers for the variable sets of informational parameter groupings.  

Backpropagation training functions 

There are numerous backpropagation training functions that one can consider when designing 

a DNN. They can be grouped into 3 categories: (1) Backpropagation training functions that use 

Jacobian derivatives, (2) Backpropagation training functions that use gradient derivatives and (3) 

Supervised and Unsupervised weight/bias training functions19. In order for a specific application to 

use a DNN model for real-time applications, it very quickly becomes obvious that it is imperative 

that one understands the nature and quality of the data and the expected output, in order to deci-

sively choose the right training functions to design the DNN model.  

Jacobian Derivatives. The backpropagation training functions that depend on Jacobian deriva-

tives can be faster but would then require more memory to work with and store the Jacobian ma-
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trices that can grow depending on the number of sources and weights. Examples of training func-

tions in this category are the Levenberg-Marquardt (LM) and the Bayesian Regulation(BR) back-

propagation.   

In our application, we chose the LM backpropagation training function because of its promising 

performance and speed and it has an efficient implementation in MATLAB. The LM algorithm 

was designed to reach second-order training speed without having the need to compute the Hessian, 

which is a second order derivative matrix, or the derivative, of the Jacobian21.  

The LM algorithm uses the following approximation to the Hessian matrix H in a Newton-like 

update as shown in Equation (8) 22: 

𝑤𝑘+1 = 𝑤𝑘 − [𝐽
𝑇𝐽 +  𝜇𝐼]⏟      

𝐻

−1
𝐽𝑇𝑒 (8) 

where J is the Jacobian matrix that contains the first derivatives of the network errors with 

respect to the weights w and biases. e is a vector of the neural network errors, I is the identity matrix 

and μ is known as the combination coefficient22,23.  

Gradient Derivatives. The backpropagation training functions may not be as fast as the Jacobian 

backpropagation methods but they are appealing due to their potential support and implementation 

on a Graphics Processing Unit (GPU)as well as compatibility of running on the Parallel Computing 

Toolbox. There are numerous gradient derivatives algorithms to choose from; as long as the DNN 

model’s weights and transfer functions have derivative functions, the gradient derivatives can be 

implemented19.  

In our application, we chose the scaled conjugate gradient algorithm due to its enhanced perfor-

mance compared to other gradient derivatives methods24. During training, several stopping condi-

tions need to be pre-defined such as the number of epochs (iterations), maximum duration, perfor-

mance goal, minimum performance gradient, and validation performance25. Equations (9)-(13) cap-

ture the scaled conjugate gradient iteration algorithm, in which you are solving for the N weights x 

given the inputs b and A is a non-singular symmetric NxN matrix. The goal is to determine a search 

direction pk over iterations i, where i <k, and αk is the step size such that  𝑥𝑘 + 𝛼𝑘𝑝𝑘 < 𝑥𝑘+1
24,25.  

𝐴𝑥 = 𝑏 (9) 

𝑟𝑘 = 𝑏 − 𝐴𝑥𝑘 (10) 

𝑝𝑘 = 𝑟𝑘 −∑
𝑝𝑖
𝑇𝐴𝑟𝑘

𝑝𝑖
𝑇𝐴𝑝𝑖

𝑝𝑖
𝑖<𝑘

 (11) 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 (12) 

where,   𝛼𝑘 =
𝑝𝑘
𝑇(𝑏−𝐴𝑥𝑘)

𝑝𝑘
𝑇𝐴𝑝𝑘

=
𝑝𝑘
𝑇𝑟𝑘

𝑝𝑘
𝑇𝐴𝑝𝑘

 (13) 

 

Supervised and Unsupervised weight/bias training functions. For the supervised and unsuper-

vised weight and/or bias training, the backpropagation functions are focused on the approach and 

order that the weights and biases are learned, trained, and updated. Examples include batch training, 

cyclical order, random order, and sequential order for supervised weight/bias training functions19. 

The unsupervised training functions include the batch training and random order approaches. These 
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training functions were not implemented for our applications, however we will endeavor to explore 

them in our future work. 

The following subsections will summarize the DNN using the three different enumerations of 

hidden layers {10, 20, and 40) and the two backpropagation training functions for the 4 different 

groups of information parameter sets. We used a sample data set of 1000 samples of simulated data 

containing both safe and close encounter classifications.  

The performance will be measured using the regression R value which is an indication of the 

relationship between the outputs and the targets. If Regression is equal to 1, then there is an exact 

linear relationship between the outputs and targets; if Regression is equal to 0, then there is no 

linear relationship between outputs and targets. Regression=0 is what we will be using for this 

preliminary exploration, however there are other non-linear Regression constructs26 that could be 

explored and may perhaps provide an improved result when the results are not constrained to a 

binary output {0,1} = {unsafe, safe}. Note the binary outputs assignments for the DNN are not the 

same assignments as for the FIS, but bear similar theoretical meaning and representation.  

Results: Group 1 = {KLD, MD, BD, Pc, MHD} 

The SCG and LM training algorithm’s results for Group 1 showed that the LM algorithm on the 

DNN with 40 hidden layers performed the best compared to the other constructs within the group 

as is shown in Table 2. An interesting observation to note is that the increase of the number of 

hidden layers does not necessarily imply an improved performance of the training algorithms for 

this particular grouping of information parameters. In Figure 7, the vertical red line shows the zero 

error location on the histogram plots. The SCG training algorithm’s errors have a larger variance 

compared to the LM training algorithm. The errors are shown in Table 2 as the RMSE: Performance 

metric. Hence, a reasonable DNN model choice for Group 1 would be the LM training algorithm 

using 40 hidden layers. This would serve as an appropriate starting point to refine the DNN model’s 

training requirements to further improve the performance and increase the Regression value.  

Table 2. Performance Metrics for Group 1. 

 

 

SCG 10 Hidden Layers SCG 20 Hidden Layers SCG 40 Hidden Layers 

10 layers 20 layers 40 layers

Regression 0.91 0.89 0.91

RMSE: Perf 0.0366 0.0469 0.0407

Regression 0.95 0.93 0.96

RMSE: Perf 0.0232 0.0319 0.0192

Scaled Conjugate Gradient

Levenberg-Marquardt

Group 1
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LM 10 Hidden Layers  LM 20 Hidden Layers  LM 40 Hidden Layers  

Figure 7. Group 1 Error Histograms for the Scaled-Conjugate Gradient (SCG) Top Row and the Le-

venberg-Marquardt (LM) Bottom Row training algorithms for the 10, 20, and 40 hidden layers. The 

vertical red line is the zero error mark. 

 

 

Results: Group 2 = {KL, MD, MHD, Pc} 

Group 2 has a somewhat similar performance compared to Group 1 but with a slight improve-

ment in the SCG training algorithm as shown in Table 3. The elimination of the BD information 

parameter could be a potential explanation on the improved performance of the SCG training 

method, as it is somewhat related to the MHD information parameter. We also see that the histo-

grams exhibit tighter variances for Group 2 compared to Group 1 in Figure 8. A reasonable DNN 

model choice for Group 2 would be the LM training algorithm for all 3 categories: 10, 20, and 40 

hidden layers. 

Table 3. Performance Metrics for Group 2. 

 

 

10 layers 20 layers 40 layers

Regression 0.93 0.91 0.92

RMSE: Perf 0.0289 0.0369 0.0336

Regression 0.95 0.95 0.95

RMSE: Perf 0.021 0.0209 0.021

Levenberg-Marquardt

Group 2

Scaled Conjugate Gradient
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SCG 10 Hidden Layers 

 

SCG 20 Hidden Layers 

 

SCG 40 Hidden Layers 

 

LM 10 Hidden Layers  

 

LM 20 Hidden Layers  

 

LM 40 Hidden Layers  

Figure 8. Group 2 Error Histograms for the Scaled-Conjugate Gradient (SCG) Top Row and the Le-

venberg-Marquardt (LM) Bottom Row training algorithms for the 10, 20, and 40 Hidden Layers. The 

vertical red line is the zero error mark. 

 

Results: Group 3 = {Pc, MHD, OA} 

This is an interesting grouping that includes a geometrical information parameter (Orbit Angle 

between the Primary and Secondary object at TCA). This is the best performing grouping of all 4 

groups considered with the best DNN model using the LM training algorithm and 10 hidden layers 

as shown in Table 4. Both the SCG and LM training methods have the lowest RMSE performance 

of all the 4 groups as seen in both Table 3 and Figure 9. We analyze the best DNN model in a little 

more detail below in Figure 10, to show how the DNN model can be validated, verified, and im-

proved as a potential model for a decision making tool. 

Table 4. Performance Metrics for Group 3. 

 

 

10 layers 20 layers 40 layers

Regression 0.93 0.93 0.94

RMSE: Perf 0.0293 0.0284 0.0245

Regression 0.96 0.96 0.96

RMSE: Perf 0.0177 0.0179 0.0179

Group 3

Scaled Conjugate Gradient

Levenberg-Marquardt
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SCG 10 Hidden Layers 

 

SCG 20 Hidden Layers 

 

SCG 40 Hidden Layers 

 

LM 10 Hidden Layers  

 

LM 20 Hidden Layers  

 

LM 40 Hidden Layers  

Figure 9. Group 3 Error Histograms for the Scaled-Conjugate Gradient (SCG) Top Row and the Le-

venberg-Marquardt (LM) Bottom Row training algorithms for the 10, 20, and 40 Hidden Layers. The 

vertical red line is the zero error mark. 

 

In Figure 10, the LM training algorithm with 10 hidden layers illustrates the Regression plot 

results as well as the epoch iterations performance plot. In the Regression plot, the data (70 percent 

of the available data) that was used for training the DNN model had a Regression performance of 

0.961in comparing the targeted and output classifications. Fifteen percent of the data was used for 

validation and the other 15 percent was used for testing. Also both sets produced satisfactory Re-

gression values of 0.965 and 0.934 respectively for an overall Regression value of 0.958. 

The performance plot (Figure 10, Right Plot) is one of the visualization tools that can provide 

an insight into how the DNN model’s training can be improved. The best validation training itera-

tion epoch was at epoch 31, even though the DNN model continued to train until epoch 37. For this 

particular performance plot, the test curve did not deviate significantly after epoch 31 and seemed 

to taper-off at 0.0266 compared to the validation’s curve performance of 0.0177.  

Therefore, the DNN model can undergo an improved tuning to halt the epoch iterations at 31 

and re-evaluated to observe the new performance. This proposed effort was beyond the scope of 

this current attempt but will be revisited for future work. 
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Regression Plot 

 

 

Performance Plot 

Figure 10. (Group 3) LM 10 Hidden Layers: Analyzing the DNN model performance after training 

and testing using the Regression and Performance Plots. 

 

Results: Group 4 = {Pc} 

Lastly, we wanted Group 4 to be purely based on Pc alone as the current standard for conjunction 

analysis decision making. An interesting outcome as is shown in Table 54 is the virtually similar 

performance of both SCG and LM training algorithms. This can be expected due to the fact that the 

targets were determined by Pc thresholds alone for a binary result {0,1} = {unsafe, safe}. However, 

what is very interesting is that Group 4 is not the highest performing of all the groups despite Pc 

serving as the target determinant.  

Table 5. Performance Metrics for Group 4. 

 

10 layers 20 layers 40 layers

Regression 0.93 0.92 0.93

RMSE: Perf 0.0313 0.0342 0.032

Regression 0.93 0.93 0.93

RMSE: Perf 0.0309 0.0303 0.0303

Levenberg-Marquardt

Group 4

Scaled Conjugate Gradient
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SCG 10 Hidden Layers 

 

SCG 20 Hidden Layers 

 

SCG 40 Hidden Layers 

 

LM 10 Hidden Layers  

 

LM 20 Hidden Layers  

 

LM 40 Hidden Layers  

Figure 11. Group 4 Error Histograms for the Scaled-Conjugate Gradient (SCG) Top Row and the Le-

venberg-Marquardt (LM) Bottom Row training algorithms for the 10, 20 and 40 Hidden Layers. The 

vertical red line is the zero error mark. 

 

Training State 
Output and Target Function Fit 

Figure 12. (Group 4 LM 40 Hidden Layers) Left Plot Training state outputs from the LM training 

algorithm. Right Plot Function Fit of Output and Target assignments with an error subplot. 
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 In Figure 12 the training state plots provide an insightful indepth surveillance that shows 

the gradient and μ values’ evolution of the LM training algorithm along the epoch iterations. In 

MATLAB, if the validation checks reach a default value of 6, the DNN model stops learning the 

data even if it was learning well from the data to train the DNN. Therefore, we can assume that the 

DNN was over fitted as you can observe the chattering of the gradient, μ and Target-to-Output 

assignment plots.  

 In order to resolve this, a smaller number of hidden layers can be implemented as an in-

vestigation and potential solution to avoid overfitting. 

CONCLUSION 

 In this task, we introduced an investigative approach for a potential fast and accurate close 

approach predictions based on artificial intelligence in areas of supervised, unsupervised machine 

learning and Deep Neural Networks. The goal for this research was to consider the study of 

statistical and information theory parameters in contrast and complementary to the classical 

probability of collision computation alone for conjunction analysis decision making. 

  The Deep Neural Networks presented a more promising path compared to the Fuzzy 

Inference System as a potential conjunction analysis decision making tool. However, ongoing 

research is underway to determine an optimal and representative physics-derived adaptive set of 

parameters for each conjunction case. We continue to retain the possibility of incorporating sensor 

tasking based on geometry for line-of-sight and observability as a constraint as an information 

metric that will be useful and crucial for the conjunction analysis task as a whole that incorporated 

orbit determination information. 
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