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INTRODUCTION TO
PROGNOSTICS



Motivation (1/2)

« Future aircraft systems will rely more on electrical and electronic
components

- UAV’s with all electric powertrain are increasingly being used for long
missions

+ Electrical and Electronic components have increasingly critical role in
on-board, autonomous functions for

Vehicle controls, communications, navigation, radar systems

Power electronic devices such as power MOSFETs and IGBTs are
frequently used in high-power switching circuits

Batteries are the sole energy storage

The integrated navigation (INAV) module combines output of the GPS
model and inertial measurement unit.

« Assumption of new functionality increases number of faults with
perhaps unanticipated fault modes

«  We need understanding of behavior of deteriorated components to
develop capability to anticipate failures/predict remaining RUL

Prognostics Center of Excellence



Motivation (2/2)
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Definitions

So what is “Prognostics” anyway?

* prog-nos-tic
— M-W.com — “Something that foretells”

— PHM Community — “Estimation of the Remaining Useful Life of a
component”

* Remaining Useful Life (RUL) — The amount of time a
component can be expected to continue operating within
its stated specifications.

— Dependent on future operating conditions
— Input commands
— Environment
— Loads



Why Model-Based Prognostics?

* With model-based algorithms,
models are inputs

—This means that, given a new

problem, we use the same general

algorithms
—Only the models should change

* Model-based prognostics
approaches are applicable to a
large class of systems, given a
model

* Approach can be formulated
mathematically, clearly and
precisely

System
Outputs.
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The Basic Idea
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Why Prognostics?

Example: UAV Mission

Visit waypoints to accomplish science objectives. Predict aircraft battery end of discharge to
determine which objectives can be met. Based on prediction, plan optimal route. Replan if
prediction changes.
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Why Prognostics?

* Prognostics can enable:

— Adopting condition-based maintenance strategies, instead of time-
based maintenance

— Optimally scheduling maintenance
— Optimally planning for spare components

— Reconfiguring the system to avoid using the component before it
fails

— Prolonging component life by modifying how the component is used
(e.g., load shedding)

— Optimally plan or replan a mission
« System operations can be optimized in a variety of ways

Prognostics Center of Excellence



The Basic ldea Revisited

Threshold as a Function of System State
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The Basic Idea : Batteries Example

E = End of Discharge (EOD)
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Prognostic Algorithm Categories

. Type |- Reliability Data-based

Use population based statistical model

— These methods consider historical time to failure data which are used to model
the failure distribution. They estimate the life of a typical component under
nominal usage conditions.

— Ex: Weibull Analysis

. Type lI: Stress-based
Use population based fault growth model — learned from accumulated knowledge

— These methods also consider the environmental stresses (temperature, load,
vibration, etc.) on the component. They estimate the life of an average

component under specific usage conditions.
— Ex: Proportional Hazards Model

. Type llI: Condition-based
Individual component based data-driven model

— These methods also consider the measured or inferred component degradation.
They estimate the life of a specific component under specific usage and
degradation conditions.

— Ex: Cumulative Damage Model, Filtering and State Estimation



Data-Driven Methods

« Model is based solely on data collected from the system

« Some system knowledge may still be handy:
— What the system fis’
— What the failure modes are
— What sensor information is available
— Which sensors may contain indicators of fault progression (and how those
signals may ‘grow’)
» General steps:
— Gather what information you can (if any)
— Determine which sensors give good trends
— Process the data to “clean it up” — try to get nice, monotonic trends
— Determine threshold(s) either from experience (data) or requirements
— Use the model to predict RUL
* Regression / trending
« Mapping (e.g., using a neural network)
- Statistics



Data-Driven Methods

* Pros
— Easy and Fast to implement
« Several off-the-shelf packages are available for data mining
— May identify relationships that were not previously considered
« Can consider all relationships without prejudice

« Cons

— Requires lots of data and a “balanced” approach
* Most of the time, lots of run-to-failure data are not available

 High risk of “over-learning” the data
» Conversely, there’s also a risk of “over-generalizing”
— Results may be counter- (or even un-)intuitive
« Correlation does not always imply causality!
— Can be computationally intensive, both for analysis and implementation

« Example techniques
— Regression analysis
— Neural Networks (NN)
— Bayesian updates
— Relevance vector machines (RVM)



Physics-Based Methods

« Description of a system’s underlying physics using suitable
representation

« Some examples:
— Model derived from “First Principles”
- Encapsulate fundamental laws of physics
= PDEs
= Euler-Lagrange Equations

— Empirical model chosen based on an understanding of the dynamics of a
system

* Lumped Parameter Model

» Classical 13t (or higher) order response curves
— Mappings of stressors onto damage accumulation

 Finite Element Model

 High-fidelity Simulation Model

« Something in the model correlates to the failure mode(s) of interest



Physics-Based Models

 Pros
— Results tend to be intuitive
« Based on modeled phenomenon

« And when they’re not, they’re still instructive (e.g., identifying needs for more
fidelity or unmodeled effects)

— Models can be reused
» Tuning of parameters can be used to account for differences in design

— If incorporated early enough in the design process, can drive sensor
requirements (adding or removing)

— Computationally efficient to implement

« Cons
— Model development requires a thorough understanding of the system
— High-fidelity models can be computationally intensive

« Examples
— Paris-Erdogan Crack Growth Model
— Taylor tool wear model
— Corrosion model
— Abrasion model



INTRODUCTION TO MODEL-
BASED PROGNOSTICS



Model-based prognostics (1/2)

x(t) = f(x(t),u(t)) + w(t)
y(t) = h(x(t)),u(t)) + v(k)

R(tp,) =troL — tp

Kalman (tp) Health State {Z(tp+1), - 2(tp+n)}

Filter Forecasting
X4 1

i i RUL < Failure
5 3 Computation Threshold
DQ {Oé, ﬁ}

l

RUL(t,)

State vector includes
dynamics of the degradation
process

It might include nominal
operation dynamics

EOL defined at time in which
performance variable cross
failure threshold

Failure threshold could be
crisp or also a random
variable

20



Model-based prognostics (2/2)

« Tracking of health 207
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Methodology

Accelerated
Aging
Training
Trajectories
Degradation
Modeling
D
v v
State-space Parameter
Representation Estimation
Dynamic S 3.
System {alﬂﬂl}
Realization
> Prognostics
Health State RUL
Estimation Estimation

Yk

Test
Trajectory

{y(tO)v s 7y(tp)}

l

Kalman

Filter

3

| |
DZ {&7 B}

Health State
Forecasting

= Azrp_1 + Bug_1 + wi—1
Haxi + vg

{j(tp#-l)a o 7:%(tp+N)}

Prognostics Center of Excellence

o

RUL
Computation

l

RUL(t,)

Failure
< Threshold

22



RESEARCH APPROACH



High level research efforts

Prognostics models and algorithms

— ldentification of precursors of failure for MOSFETs under different failure
mechanism conditions

— ldentification of precursors of failure for different IGBT technologies
— Modeling of degradation process MOSFETSs
— Development of prognostics algorithms
Prognostics for output capacitor in power supplies (ARC)
— Electrical overstress and thermal overstress
— Development of prognostics algorithms
Accelerated Life Testing
— Thermal overstress aging of MOSFETs and IGBTs
— Electrical overstress aging testbed MOSFETs
— Electrical overstress aging testbed for Capacitors

Effects of lightning events of MOSFETS (LaRC)
Battery Degradation and ageing ( ARC — LaRC)
Ageing Effecting on ESC’s ( ARC — LaRC)

Prognostics Center of Excellence
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Research Approach

|dentification of failure modes and their relationship to their particular failure
mechanisms

Identification of precursors of failure which play an essential role in the prediction of remaining life

Development of accelerated aging testbeds that facilitate the exploration of different failure
mechanisms and aid the understanding of damage progression

Development of degradation models based on the physics of the device and the failure
mechanisms

Development of remaining life prediction algorithms that take into account the different sources of
uncertainty while leveraging physics-based degradation models that considers future operational
and environmental conditions

Prognostics Center of Excellence



Prognostics Algorithm Maturation through Validation
Experiments

Degradation Model
Development

Prognostics Algorithm
Update

Validation experiments

Formulation of model and

algorithms improvements Validation under observed

and degradation process experiments
hypothesis

26



Prognostics Algorithm Maturation through Validation
Experiments

Aging under thermal
and electric stresses

Aging under thermal stresses

TRL 4
Aging under electric stresses

o= (23=) (542)
- ESR(t) = 5 (pr dc Pp) (%)
First Principles

TRL 2 1 Jeo t We Model for multiple failure
y ESR(t) = 2 (pp dc Pp) (Veo—Ve(t)) modes
~

First Principles
Model
Cy(t) = e + 3
Physics inspired
empirical
Model
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Model-Based Architecture
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Problem Requirements

# System model
— System state space
— Partition into nonfailure and failure states
— System inputs
— State update equation
* Prediction inputs
— Initial time k,
— Prediction horizon kj,

— System inputs from k, to kj,



System Model

* Assume system can be modeled using
-x(k+1) = f(x(k),u(k),v(k))
— k is the discrete time variable
— X is the state vector
— uis the input vector
— V is the process noise vector
— fis the state update equation

* Define a function that partitions state-space into nonfailure and failure
states

— T¢: R™ - {true, false}

— That is, Ty (x(k)) returns true when it is a failure state, false otherwise



Initial Problem Formulation

* Assume we know

— Initial state, x(k,)

— Future input trajectory, Uy, = [u(k,), u(k, + 1), ..., u(kp)]

— Process noise trajectory, Vi, . = [v(k,), v(k, + 1), ..., v(kp)]
* Problem definition

— Given k, kp, x(ko), Uk, k. Vie, ke,

— Compute EOL

* EOL(k) = inf{k : k" > k and Tf(x(k))}



Concept: ComputeEOL

Nonfailure States X,,
Return oo
S x'(kp)
/ —
I_ - - ~ S

State space X



Computational Algorithm

COH]DUtGEOL(kO, kh.! X(ko), Uko:kh' Vkaﬂkh)
1. Xko.kh(ko) — X(ko)

2. fork=k,tok,—1do

3 if Tr (X, i, ) ()

4. return k

5. end if

6. Xipiy U+ 1) F(Xie, 1, (), Upe sy, (), Vi e, () )

7. end for

8. if Tp(Xy,x,) (k)

9. return k

10. else

11. return co
12. end if

// Set initial state

// Check if failure state
// Return current time as EOL

// Update state

// Check if failure state
// Return current time (k;) as EOL

// Return infinity



Integrated Prognostics Architecture

- System (battery) gets inputs (current) and produces outputs (voltage)
- State estimation computes estimate of state given estimates of age

parameters

- EOD prediction computes prediction of time of EOD, given state and

age parameter estimates

- Age parameter estimation computes estimates of age parameters
- Age rate parameter estimation computes parameters defining aging

rate progression

- EOL prediction computes prediction of time of EOL, given age
parameter and age rate parameter estimates

u(k)

System

y(k)

State
Estimation

p(xop|Y)

R

-
L

EOD

p(keop|Yi?)

Prediction

Age Parameter
Estimation

L

p(xEor |Yif; )

Age Rate Parameter EOL

Estimation

P(GE('}L|YE§) Prediction P[f’*EoﬂYiﬁf)




State Estimation

What is the current system state and its associated
uncertainty?

— Input: system outputs y from k, to &, y(k,:k)

— Output: p(x(k),0(k)|y(ky:k))

Battery models are nonlinear, so require nonlinear state

estimator (e.g., extended Kalman filter, particle filter,
unscented Kalman filter)

Use unscented Kalman filter (UKF)
— Straight forward to implement and tune performance

— Computationally efficient (number of samples linear in size of state
space)



Prediction

» Most algorithms operate by simulating samples forward in
time until £

- Algorithms must account for several sources of uncertainty
besides that in the initial state

— A representation of that uncertainty is required for the selected
prediction algorithm

— A specific description of that uncertainty is required (e.g., mean,
variance)



End of Introduction Section

DISCUSSION AND QUESTIONS?
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Electric Propulsion System
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Electronics Speed Controllers
= MOSFETs are not synchronized while operating, or when the switching circuit is
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Study Cascading faults
Effects of component level aging/degradation on system performance



Hardware in Test Loop
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ACCELERATED AGING TOOL
FOR PROGNOSTICS
RESEARCH



Accelerated Aging

- Traditionally used to assess the reliability of products with
expected lifetimes in the order of thousands of hours

— in a considerably shorter amount of time

- Provides opportunities for the development and validation of
prognostic algorithms

- Such experiments are invaluable since run-to-failure data for
prognostics is rarely or never available

« Unlike reliability studies, prognostics is concerned not only with
time to failure of devices but with the degradation process
leading to an irreversible failure

— This requires in-situ measurements of key output variables and

observable parameters in the accelerated aging process with the
associated time information

« Thermal, electrical and mechanical overstresses are commonly
used for accelerated aging tests of electronics

Prognostics Center of Excellence



Example: Electrical overstress
aging of Power Transistors



Accelerate aging strategy (1/2)

- Main strategy

— application of electrical overstress

— fixed junction temperature in order to avoid
thermal cycles

— avoid package related failures

* Accelerated test conditions are achieved by
electrical operation regime of the devices at
temperatures within the range below
maximum ratings and above the room
temperatures.

Prognostics Center of Excellence
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Accelerate aging strategy (2/2)

« The h|ghes’[ acceleration Simulated |-V characteristics and instability boundary

. at 300° K for power MOSFET.
factor for aging can be
achieved in the proximity of
the Safe Operation Area
(SOA) boundary

&)

 Instability points represent adimo N
the critical voltages and
currents limiting the SOA 3 dda N

« An electrical regime close to
the SOA boundary serves as
the accelerator factor
(stressor) and it is expected
to reduce the life of the
device

100

. : 0O 20 40 60 80
The SOA boundary shifts DRAIN-SOURCE VOLTAGE (V)
closer to the origin as the
temperature increases

‘‘‘‘
K

—

o

DRAIN CURRENT x100000 (A/um)
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Aging system description (1/3)

- Three main components in terms of hardware

— Electrical operation unit of the device

- custom made printed circuit boards for the
instrumentation circuitry and gate drivers

- commercially available power supplies and function
generator to control the operation of the DUT

— An in-situ measurement unit of key electrical and thermal
parameters

- commercially available measurement and data
acquisition for slow and high speed measurements

— Thermal block section for monitoring and control of the
temperature

Prognostics Center of Excellence
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Aging system description (2/3)

Thermal block for measurement and control of device
temperature
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Aging system description (3/3)
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Experiment on power MOSFET (1/2)

- IRF520Npbf power MOSFET
— TO220 package,100V/9A.

- Electrical overstress used as acceleration factor.
High potential at the gate
— Vgs= 50V, Vgs rating is 20V max.
— Vds= 2.4V with a 0.2 ohm load.

- Temperatures kept below maximum rating
Tmax=175" C

« Obijective is to induce failure mechanism on the gate
structure

Prognostics Center of Excellence
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Experiment on power MOSFET (2/2)

» Degradation process as observed on
threshold voltage (Vy,)

x 10 Threshold Voltage Measurements

35 L [ L [

—t— Pristine
—o— Aging1
—+— Aging2
—e— Aging3
—=— Aging4
—&— Aging5
—<— Aging6
—<— Aging7
—4— Aging8
—— Aging9
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Example: Electrical overstress
aging of Electrolytic Capacitors



Accelerated aging system

 Allows for the understanding of the effects of
failure mechanisms, and the identification of
leading indicators of failure essential for the

development of physics-based degradation
models and RUL prediction

 Electrolytic capacitor 2200uF, 10V and 1A
 Electrical overstress >200 hrs

— Square signal at 200 mHz with 12V amplitude and
100 ohm load

Prognostics Center of Excellence 53



Electrical Overstress Aging System

Square wave amplified
signal

Power Supply R
I L

e | o

Agilent Signal
Generator

JL

Input Square wave




Degradation observed on EIS measurements
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CASE STUDY I:
PROGNOSTICS OF
ELECTROLYTIC CAPACITORS

MODEL-BASED APPROACH EXAMPLE



Case Study: Avionics System

* Integrated Avionics systems consists of:
— Global Positioning System (GPS) module

— Integrated navigation (INAV) module combines output of the
GPS model and Inertial measurement unit

— Power Supply module

Fault Insertion Points

ATV
T

— AN‘II Position _
—=" 1 GPs // .y INAV | Moo >

Yy

+ / ‘ { BuiltIn YoLt >
/ A 1
[ 1
GPS: Global Positioning System
W INAV: Integrated Navigation
V PSM PSM: Power Supply Module
- IMU: Inertial Measurement Unit

Prognostics Center of Excellence



Methodology
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Accelerated Aging and Precursors
of Failure Features



Degradation on lumped parameter model
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Methodology

Real
Capacitor

>

=
-

-l -
e o

4 . Cpn
-

x
gy -

: ot
Degradation — k
model (time) Ck ¢ + /3

- I e |
state ———
estimation v as B

RUL
R prediction

Prognostics Center of Excellence

Reduced . 0 ESR — ,/-’{;
order mode! [an|mmmtieen | e

61



Empirical degradation model

- Based on observed degradation from
capacitance parameter

 Using training capacitor data to estimate
degradation model parameters

- Assumed exponential model based on
capacitance loss

- Parameter estimation with Ieast squared
regression *

at
C.,=e “+p

Prognostics Center of Exce . . _ . _ _



Degradation model results

Validation Test Training o o] 5
test capacitor capacitor (95% CI) (95% CI) v
1 #2 #1, #3406 (0.0l%(()),lg.%)164) (-1.1 3-3.3%3—?)?5423) 1.8778
15 #3 #1, #2, #4H0 (0.0l%(()),lg.%)l64) (-1. 12-(1).1?2-2(;)’.75363) 1.9654
1a 4 FIH3, #5, #6 (0.01203,13.1)162) (-1.1 1-(2).58,2-3).75308) 1.8860
15 #5 #l—#4, #6 (0.01%.?,1(?.%)164) (-1.1 1-2217,?‘(‘).74560) 2.1041
1o #o IS (0.01%.;),18.?)170) (—1.26-411.6(?({?)?7453) 29812

« The optimal parameter presented along the 95% confidence

interval.

« The residuals are modelled as a normally distributed random
variable with zero mean and variance
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Prognostics algorithm

Implementation of prognostics algorithm with
Kalman filter

Capacitance loss considered as state variable

EIS measurements and lumped parameter
model used to obtained measured capacitance
loss values

Empirical degradation model used to generate
the state transition equation

Use one Capacitor for testing and the rest for
model parameter estimation (leave on out test)

Failure threshold of 20% drop on capacitance
based on MIL-C- 62F

Progn cs Center of Excellence
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Kalman filter implementation

- State transition equation - State-space model for filter
derived from degradation implementation
model
04}
C,=e *“+p
C Ci=ACr -1+ Bau+v
a9 at -af —>| yk =hCr+w,where
Ct_Ct_At=O{Ct—At—O!/J) Ak=(1+At),
At Br=—-ofA ,
C:- (1+aAt)Ct—At—a/))At el |
Ci = (1+ aA)Ci -1 — 0/ — L #=7




Prediction mode

 Assumed measurements are not available at
some point in time

» Filter used in forecasting mode to predict
future states

- Predictions done at 1 hr. intervals

- State transition equation used to propagate
state (n: number of prediction steps, /. last
measurement at t)
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Tracking and forecasting (Cap. #6)

N
o
1

-
(¢}
T

3 Measured
O Filtered
Predicted

-
o
T

-
(¢)]
T

—
o
T

130

140 150 160 170 180 190

N
o
1

N
¢,
T

120

130

140 150 160 170 180 190

N
o
1

—
o
T

—
o
T

120

130

140 150 160 170 180 190

120

130

140 150 160 170 180 190
Aging time (hr)

RUL

0

20

(alpha = 0.3, lambda =0.5)

60

80

100
Time

120

67



Relative Accuracy

RUL* — RUL
RA=100[1—
(1- P )
t, | RAro | RArs | RApy | RAps | RApg | RA
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End of Case Study I:

DISCUSSION AND QUESTIONS?



CASE STUDY II:
PROGNOSTICS OF POWER
TRANSISTORS

PRECURSORS OF FAILURE EXAMPLE



Modeling for Power MOSFET under electrical overstress

 Two-transistor model is shown to be a

good candidate for a degradation model
for model-based prognostics

* The model parameters K and W1 could be
varied as the device degrades as a
function of usage time, loading and

Gat8ource
environmental conditions -

« Parameter W1 defines the area of the e
healthy transistors, the lower this area, the
larger the degradation in the two-transistor

model. In addition, parameter K serves as Wm0 e &
27\ T1

a scaling factor for the thermal resistance

of the degraded transistors, the larger this vevs / .
factor, the larger the degradation in the @ — 63
model. . -
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Precursor of Failure

« As case temperature increases, ON-
resistance increases

« This relationship shifts as the 1 , ! .r | |
degradation of the device increases CRnT }

091 « Run2
« For a degraded state, ON-resistance
will be higher at any given case
temperature n

* This is consistent with the die-attach
damage since it results on increased
junction temperature operation

« This plot can be used directly for
fault detection and diagnostics of the ;
die-attach failure mechanism s W

R vs. Temperature: Device 9

DS(ON)

..............................................................

Prognostics Center of Excellence



Degradation process data

on

ARDS

01F

Normalized ON-state resistance (ARpgon))
and filtered trajectory for device #36

Device 36 Data

—RD5_ T

A RDS

Filtered
0.08F -
0.06 -
0.04 -
0.02F d

ok 4

-0.02 F -
EII SID 1L'IID 15|D EDIIII 25|EI
time (minutes)

 (Cases #08, #09, #11, #12 and #14
are used for algorithm development
purposes.

« (Case #36 is used to test the
algorithms.

Normalized ON-state resistance (ARpgon))
and filtered trajectory for device #36

0.06

200 7 #
005H 4 444 :'y 3?’/

—— #12 P
004+ —E—#14 { ij
0.03+ ﬁ' \J _x"/

e #

002+ [ of P,

0 50 100 150 200
Aging time (m)
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Empirical Degradation Model

ARDS__

« An empirical degradation model was selected for the model-
based algorithms

- Exponential based function to capture degradation process
- Two parameters in the model which will be estimated on-line

0.06
o— #08 = :
|| —— #09 [ ,}T*r
005} 811 i .{}/
— #12 | &
004 —8—#14 ] ?"‘/

< i,"' I
L #36 ) ﬂ) 0 _,"&' b
003} \ §
y o,

0.02F

001}

001}

0.02' ‘
0 50 100 150 200 250

Aging time (m)
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Prediction of Remaining Life



RUL Prediction Methodology Considerations

- A single feature is used to assess the health state of the device
(ARDS(ON))

- Itis assumed that the die-attached failure mechanism is the only
active degradation during the accelerated aging experiment

- Furthermore, ARpson) accounts for the degradation progression
from nominal condition through failure

- Periodic measurements with fixed sampling rate are available

- Acrisp failure threshold of 0.05 increase in ARpgon is used

- The prognostics algorithm will make a prediction of the
remaining useful life at time t,, using all the measurements up to
this point either to estimate the health state at time ¢, in a
regression framework or in a Bayesian state tracking framework

- Itis also assumed that the future load conditions do not vary
significantly from past load conditions

. 76
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RUL Prediction Algorithms

- Gaussian Process Regression
— Algorithm development cases used to select covariance matrix
structure and values
- Extended Kalman filter
— Empirical degradation model

— State variable: Normalized ON-resistance and degradation model
parameters

— Arbitrary values for measurement and process noise variance

- Particle filter
— Empirical degradation model

— State variable: Normalized ON-resistance, degradation model
parameters

— Exponential growth model used for degradation model parameters
— Arbitrary values for measurement and process noise variance

. 77
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RUL estimation results

120 o L L L L L L L L F
—a -GPR
— @ —EKF
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End of Case Study II:

DISCUSSION AND QUESTIONS?



CASE STUDY Ill: PHYSICS-
BASED PROGNOSTICS OF
CAPACITORS

DEGRADATION MODELING EXAMPLE



Capacitor Structure

- An aluminum electrolytic capacitor, consists of
— Cathode aluminum foil,
— Electrolytic paper, electrolyte

— Aluminum oxide layer on the anode foil surface, which acts as
the dielectric.

— Equivalent series resistance (ESR) and capacitance(C) are
electrical parameters that define capacitor health

cathode
. elegtrolyte latched aluminum
Connecting Lead X X .
dielectric Layer foil

Aluminum Tab

\t Anode Foil

Cathpde Foil
\/ T separator Paper

Physical Structure

d—"/ i

highly etched
aluminum foil

leakage current

AlL,O3 —
electrochemical

oxide 7777

layer(forming) = | =
electrolyte paper
(spacer)

Al,O3 — oxide
layer(natural)

Internal Structure

Ref :http://en.wikipedia.org/wiki/File:ElectrolyticCapacitorDisassembled.jpg

Open Structure

Prognostics Center of Excellence &1



Degradation Mechanisms

Electrolyte Evaporation

) Aglng n the, Over Voltage Stress —
dielectric material _ Degradation in
Excess Ripple Current Anode foil
Charging\Discharging Cycles
ang ang=y Over Voltage Stress

High Ambient Temperature )
Excess Ripple Current

Prolonged Use .
Increase in internal Temperature Charging\Discharging Cycles

Electrical Stress High Ambient Temperature

Prolonged Use -Nominal Degradation

Decrease in capacitance

O\{er Voltage Stress Over Voltage Stress Increase in ESR
Excess Ripple Current
Charging\Discharging Cycles Excess Ripple Current
High Ambient Temperature -

. Charging\Discharging Cycles
Increase in internal Temperature ang ey

Degradation in

Prolonged Use -Nominal Degradation Cathode foil

Degradation of Oxide Film

Degradation Causes\ Mechanisms Failure Modes

. 82
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Capacitor Degradation Model

Pristine Capacitor cathode
electrolyte tched aluminum
dielectric Layer foil
anode
ESR u highly m leakage current
._| | o ._| I_/\/\/\,_. Deg radatl aluminum foil
Al,O3 —
C C _,."\/[ 1 electrochemical |
oxide
Ideal Non- Ideal erfemng sectopepmer o
(3p2eel) Ia)zlers(natural)
Electrolyte volume V., maximum
Capacitance Value maximum Thermal Stress Electrical Stress

Electrolyte degradation + Decrease

Avg. surface area decreases (A.) +
g (As) in (A) + crystallization +oxide layel

oxide layer breakdown

breakdown
0.9 12
& - —— 95 hr
0.8 & 236 hr |1
14
ES R 0.7 232 :: [ Coxide_layer
0.6 —=— 1220 hr 0.8
B 05 2 mQ T 06
I~3 N
R Re = oa Ri Re C E o4
C 1
0.2
M 2 0.1 M 3
0 0
015 0.1 0.1
Re@ (ohm) 02
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Empirical Model with static parameters

This empirical model represents an approximation of lumped
parameter model M
E1:C(t) = e + 3,
a and 3 are degradation model parameters estimated from the experimental
data.

The following system structure is used in the implementation of the
filtering and the prediction using the Kalman filter.

rp = Apxr_1 + Bru + v, By = —afBA,.,
Y = hay + w, h=1

The state variable (x,) at aging time (t, ) is the percentagie loss in
Capacitance.

Process noise was estimated from the model regression for the
empirical model
Measurement noise was estimated from the EIS measurements

Prognostics Center of Excellence
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Degradation Model:

Rlug

Granularity of
Degradation
Models

Electrical Circuit Equivalent

cathode
electrolyte tched aluminum
dielectric Layer foil
anode - :Wi.i
highly etched
aluminum foil leakage current
Al,O3 —
electrochemical |
oxide HEERR:
layer(forming) ‘

electrolyte paper

(spacer) Al,O3 — oxide

layer(natural)

Roso 2 10K Ce Rpo2 10K M

||
I I
Rao Cao RE Cco Rco

Coxide_layer \A
/ Vo

meF’ e

Cq4 R1 RE
M,
ESR

s

C

Prognostics Center of Excellence
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Capacitance Degradation Model

- Decrease in electrolyte volume :

(1)
"r((t) = ‘:r() - ("LL-‘,»; ;*4..,-]‘(301‘-)
where:
V: dispersed volume at time t, V_.: initial electrolyte volume
Ag: surface area of evaporation, j., : evaporation rate
t : time in minutes, w, = volume of ethyl glycol molecule
- Capacitance (C) ): Physics-Based Model:
(2)

C' — (26 RG()J{.—,-)/(ZC'

- Electrolyte evaporation dominant degradation phenomenon
— First principles: Capacitance degradation as a function of electrolyte loss

QCRC() "'r—.() — ‘/fr(t)

. 3
where: Dl . Cv(t) = ( (_, R ©)
C : capacitance of the capacitor, dC Jeo L we

e : relative dielectric constant,

€o : permittivity of free space,
de ¢ oxide thickness.

Prognostics Center of Excellence



Capacitance Degradation Model

+ Oxide breakdown observed - experimental data

- The breakdown factor is exp. function of electrolyte
evaporation

Cokty = €Xp f(Vgo — Vo)

- Updated in capacitance degradation model :

C = (26[{5()‘-‘43(_'],;\.)/(](",

Y 2€ r€g Veo — Ve(t)
D“:(m:("”"“’( do >( oo T .

Prognostics Center of Excellence
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Dynamic Model of Capacitance

From the structure of capacitor we have the electrolyte volume(V,) expressed
in the form of oxide surface area (A;) as :

Ve = As.de,

-

(4)

C

\J

A, =Ye T

As

:d_c_

\dc da s\ds

The first order discrete approximation for change in electrolyte volume can be

expressed as:

dVe
dt

_ — (’UJC_A,Sjc())?

dV,

dt
Ve(k+1) = V;(k) - (lUEASjeO)At‘

‘/e(k:—}—l) — ‘/.;_(A) + At,

Prognostics Center of Excellence
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Dynamic Model of Capacitance

C

Voip) = dz.,
F) ™ 2epeocpr ©
Ve = (Ck)a
(6)
Similarly Capacitace can be expressed as :
dV,
Ck+1le =Cra+ 7 At,
Crir1a = Cra — (weAgjeo) AL, hence
?UFA.ef.eo
Cry1 =C) — (weds] )At.
! (7)

The complete discrete time dynamic model for capacitance degradation can be
summarized as :

2€ REQWe AsJeoChk ) N

Dy : Cry1=Ck — ( 7
2,

. 89
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Dynamic Model of ESR

« Decrease in electrolyte volume :

Ve(t) = Voo — (weAsjeot)
- ESR

— Based on mechanical structure and electrochemistry.
— With changes in Rg (electrolyte resistance )

pEdC' Pg Cbk(t)
As

Jeo t We €bk(t) 8)
Ic P 20
(pE dc Pg) ( V.. (1) )

ESR =

D, : ESR(t) =

1
2
1
2

Dynamic ESR degradation Model :

D 1 1 2WeAgJeo A/
where: v ESR;‘._+_1 ESR;‘, PE PE d r Ebk(t) ,
pE : electrolyte resistivity,

Ppg : correlation factor related to electrolyte spacer porosity and average liquid
pathway,

epk(t) : resistance dependence oxide breakdown factor
Prognostics Center of Excellence
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Process Flow

OFF-LINE——»

L

<«+—ON-LINE

Experiments

Monitor degradation
behavior

v

Physics-based /
Empirical
Degradation models

(v, 9)
Offline Parameter
Estllmatlon (C)
7

Health State

l

Tracking Health
State /Parameter
Estimation

y

Ve(t)

) 2€ REQChHE Vi .
'Dll('(f:]:( flfnfu)( 1.D
d(' Jeo t Wwe

Dy : Cry1 = C — (

‘ ( 'f 3 _jr‘r)( i) Chk(i) )

2( /\'(H”ln -'1.5,/1 n(lhi.'

iz,

)Af‘

Forecasting

l

Compute
RUL

tp = EOL

()

v

Performance
Assesment

RA = 100 (I

RUL* — RUL
RUL*
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Unscented Kalman Filter for State Estimation

| 2€ R€0WeAsTeoChl
Dy : Cpyy = Cp — ( REOWeAs]e bA) At

2
d¢,

» Derived physics-based degradation model

- The following system structure is implemented for
state estimation

A=1,
2epenWeAcTn,Chi
X = A;‘.x;‘._l -+ Bk"l.l. —+ Vv, B — —( R*0 ('];) sJeo bk)
d=.
C
Yi = HpXp +w. |
H =1,
u = jr-:ua Chk -

- The state variable (x,) is the current health state at
aging time (t,)

Process noise was estimated from the model regression for the empirical model
Measurement noise was estimated from the EIS measurements

Prognostics Center of Excellence
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Electrolyte Volume Estimation for TOS Experiment

Volume estimation for all capacitors

Parameter | X X S.D C.1
0, (mm?) 023.6112 523.6113 0.0026 [")23 6098, 523.6127
O2(mm?/t) | 0.0161 0.0161 1.8748 x 107" | [0.01614, 0.01611]
Os(mm/t?) | 3.8077 x 1077 | 3.8072 x 1077 | 6.9373 x 1077 | [0.3769 x 107°, 0.3846 x 107
RMSE 26.2232 26.2277 0.0483 (26.1965, 26.2500
RMSPE 0.8589 0.8591 0.0016 [0.8580, 0.8598|
Summary for Linear Regression Electrolyte Degradation Model
DJU T T T T T T 2 T T T T T T °
+ Volume Decrease ( Cap. #1 -15) ,o° :
520" —— Estimated volume (fit) ] el
ol Lppasgiierine dlatiigiEeten
£ R L R H T ITTE N
o 500 - .g @@88 Oooggggggaooo 0088000
E — 8890 Oooooo@egoo ° %o
= (] OogooO 00008000000
.3 q’_-lﬁ oOoooo 5 ° oggooog °
> 490 o 000 g0 ", .
) ¢ o ) : °° O ° 8 o o
480 | 20 oy, “88
470 { o Residuals { °
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
ging Time ( Hours ) .
Time ( Hours)

Volume estimation Error
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EOS Experiment RA Results — Discussion

Capacitance - Over RA summary for model ¢,

Aging | RA,
Time

24 95.5
47 96.7
71 91.9
94 90
116 96.2
139 81,1
149 86.6
161 87.3
171 30.7

81 . C[(IL)

= €

at 4 B,

>

Capacitance - Over RA summary for model D,

Aging | RA,
Time

24 | 98.06
47 97.76
71 97.34
94 96.73
116 95.84
139 94.16
149 92.92
161 90.49
171 86.67

D.| :C‘g._H = C‘;,- - (

Prognostics Center of Excel
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RUL and Validation — EOS -Experiment —
Capacitance Degradation Model

Tracking

Alpha Lambda

x 10" Cap #2
25~
= ——e— measured data
ES .
T 2 L& * ¥ ¥ £ + filter data
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g 15n *
=%
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l r r r r r r r r r
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RUL and Validation — EOS -Experiment — ESR
Degradation Model

Ds
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RUL and Validation — TOS -Experiment -

Capacitance

Prognostics Center of Excellence
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End of Case Study llI:

DISCUSSION AND QUESTIONS?



CASE STUDY IV:

PROGNOSTICS OF LI-ION
BATTERIES

DEGRADATION MODELING EXAMPLE



Battery Modeling

— Equivalent Circuit Empirical Models

» Most common approach
= Various model complexities used

. Difficulty(ziﬂrf incorporating aging effe c
R ohmic |-batt R_ohmic |_batt
—W\———
OCV(SoC)<f> l U OCV(SoC)
 — <]
(c) C.8 C:l (d) Cs

\""/
IW
w

-+

|<¢> OCV(SoC)<_

R_sdsch
AN
| batt

SoC(SoH)
P

SEACEE

OCV(SOC)<_

R_ohmic I I I‘_batt R_ohmic I
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Battery Model — Tuned using Lab Data

An equivalent circuit battery model is used
to represent the battery terminal voltage
as a function of current and the charge
stored in 3 capacitive elements

T
X = [(,F'b Yep (.-'Cs]

0 0 0 -1
i=|0 —m 0 .r+[ 1 |i+€
1
0 0 _Rng 1

y=V = [L ] —L] X
- Cb Ccp Cs '

Two laboratory loading experiments are
used to fit the following parameterization

coefficien’ q | _ dmaz — b

( maxr

(-'b = (u'cvbo -— (.'(fbl -SOC -— (-'(fb'z . SOC')' e (-'(‘_'53 . SOC3

('Cp — ('cpo L ('cpl - exp (("cp?. (1— S()C))
RCP = RC})O T chl - exXp (ch'.? (1 —-S0C))

Prognostics Center of Exd&jjgnce 3,9,
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Battery Modeling

— Electrochemical Models vs. Empirical Models

= Battery physics models enable more direct representation of age-related
changes in battery dynamics than empirical models
= Typically have a higher computational cost and more unknown parameters

i) Load

\ Li,Co0, Scparator Li,C
+ Current Collector DiSCharge— Current Collector
Reduction at pos. electrode:
Li;.,CoO, + nLi* + ne- > LiCoO,
Oxidation at neg. electrode:
Li,C = nLi* + ne + C
Current flows + to —
Electrons flow —to +

Lithium ions flow — to +

i(t) Current Source
< 3
S =

@ 0I®
°QOQC
O%%Q o

ool

e.00

L1,Co0, Separator Li

+ Current Collector Charge - Current Collector
Oxidation at pos. electrode:

LiCoO, - Li,.,CoO, + nLi* + ne-
Reduction at neg. electrode:
nLi++ne-+C 2> Li,C
Current flows —to +
Electrons flow + to —
Lithium ions flow + to —
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Electrochemical Li-ion Model

- Lumped-parameter, ordinary differential equations

- Capture voltage contributions from different sources

— Equilibrium potential > Nernst equation with Redlich-Kister
expansion

— Concentration overpotential - split electrodes into surface
and bulk control volumes

— Surface overpotential > 4.2
Butler-Volmer equation 4
applied at surface layers

— Ohmic overpotential 2
Constant lumped resistanc
accounting for current
collector resistances,
electrolyte resistance, Y 100 2000 3000 4000 5000 6000 7000
solid-phase ohmic resistances Time (s)

e \[casured

= = = Predicted

|
)
)
\

3.8+

ltage (V)

e
c 3.6
)

3.4+
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Battery Aging

- Contributions from both decrease in mobile Li Simulated
ions (lost due to side reactions related to
aging) and increase in internal resistance ™

— Modeled with decrease in “g™*” parameter,
used to compute mole fraction

— Modeled with increase in “R,” parameter

capturing lumped resistances e

Cycle 16
Cycle 26
Cycle 36

o

Measured

Cycle 56
Cycle 66
Cycle 76
Cycle 86 0
Cycle 96 (b) n\.\,:_,.,,,; R
Cycle 106
Cycle 116
Cycle 126
Cycle 136
Cycle 146
Cycle 156
Cycle 166

T T T T Cyc le 176
2000 4000 6000 8000 Cycle 186

Current (A) (c) Decreasing @™ and R,

Voltage (V)

2.5

Prognostics Center of Excellence
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Edge 540-T

« Subscale electric
aircraft operated at
NASA Langley
Research Center

* Powered by four sets
of Li-polymer
batteries

+ Estimate SOC online
and provide EOD Ve [
and remaining flight - ,
time predictions for v, [$7° .

LiPo é
Throttle

ground-based pilots N
B4 LiPo - i34

B
»

Powertrain

_|._
Vg1

582p +
LiPo -

L1

|

G
Q—-
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Edge UAV Use Case

- Piloted and autonomous
missions, visiting waypoints

- Require 2-minute warning for
EOD so pilot/autopilot has
sufficient time to land safely
— This answer depends on battery age

— Need to track both current level of
charge and current battery age

— Based on current battery state,

current battery age, and expected Objective #1 ]
future usage, can predict EOD and Objective #3 8
correctly issue 2-minute warning Objective #4 R4

Run y---l-I
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Predication over Flight Plan

» Measured and predicted
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Performance Requirements

SOC Estimation Error (%)

Accuracy requirements for the two minute warning were specified as:
— The prognostic algorithm shall raise an alarm no later than two minutes

before the lowest battery SOC estimate falls below 30% for at least 90% of
verification trial runs.

The prognostic algorithm shall raise an alarm no earlier than three minutes
before the lowest battery SOC estimate falls below 30% for at least 90% of
verification trial runs.

Veerification trial statistics must be computed using at least 20 experimental
runs
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End of Case Study IV:

DISCUSSION AND QUESTIONS?



Data Sets Available for Download

+ https://iti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

Randomized Battery Usage Data Set
Publications using this data set

HIRF Battery Data Set
Publications using this data set

Description |Batteries are continuously cycled with randomly generated current profiles.
Reference charging and discharging cycles are also performed after a fixed - - -
interval of randomized usage in order to provide reference benchmarks for Description Battery Data collected from the Experiments on the Edge 540 Aircraft in HIRF
battery state of health. Chamber. Refernce document can be downloded here
Format Format The set is in .mat format and has been zipped.
Datasets |+ Download Randomized Battery Usage Data Set 1 (1285 downloads) Datasets |+ Download HIRF Battery Data Set 1 (184 downloads)
Wﬁ%ﬁ%ﬁ% gggg ngsg + Download HIRF Battery Data Set 2 (127 downloads)
+ nloa ndomiz ery Usage Data Se downlcads
+ Download Randomized Battery Usage Data Set 4 (4217 downloads) : Down:oag ::EE ga:ery gag geli (:3; gm:ozs)
+ Download Randomized Battery Usage Data Set 5 (825 downloads) Downloa atiery La et4 ownloads)
+ Download Randomized Battery Usage Data Set 6 (890 downloads) + Download HIRF Battery Data Set 5 (149 downloads)
+ Download Randomized Battery Usage Data Set 7 (857 downloads) + Download HIRF Battery Data Set 6 (135 downloads)
Dataset  |B. Bole, C. Kulkarni, and M. Daigle "Randomized Battery Usage Data Set", Dataset C. Kulkarni, E. Hogge, C. Quach and K. Goebel "HIRF Battery Data Set",
Citation  INASA Ames Prognostics Data Repository Citation = |NASA Ames Prognostics Data Repository
Lmjm%:f'ﬁmzmgr‘m‘m‘mmmﬂ NASA Ames (http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames
Publication Ba::e c Kulkar;'ni and MeDa.i le, ‘Adaptation of an Electrochemistry-based Research Center, Moffett Field, CA
Citation  |Li-lon Battery Model to A@um?m'oe,eﬁmw Obasrved Under v Publication Verification of a Remaining Flying Time Prediction System for Small Electric

Randomized Use’, Annual Conference of the Prognostics and Health
Management Society, 2014

Citation Aircraft. Edward F. Hogge, Brian M. Bole, Sixto L. Vazquez, Jose R., Annual

Conference of the Prognostics and Health Management, PHM 2015
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CLOSING REMARKS



Remarks (1/2)

- Electrical and Electronics PHM Maturity - scientific
and engineering challenges

- Research approach challenges

— How to balance lack of knowledge of the system vs own
expertise on particular PHM tools

— Data-driven or model-based?

- Data is always needed but more important,
iInformation about degradation/aging processes

IS key
- Experiments and field data

Prognostics Center of Excellence



Remarks (2/2)

Aging systems as a research tool

— Value in terms of exploration of precursors of failure and
their measurements is evident

— Still an open question on how degradation models and
algorithms are translated to the real usage timescale

 In the use of physics
— It should be embraced

- Validate models and algorithms with data from lab
experiments and fielded systems

« A success in developing PHM methodologies in an
real usage application will require the right team

Prognostics Center of Excellence
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