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Motivation (1/2)

• Future aircraft systems will rely more on electrical and electronic 
components

• UAV’s with all electric powertrain are increasingly being used for long 
missions

• Electrical and Electronic components have increasingly critical role in 
on-board, autonomous functions for 

– Vehicle controls, communications, navigation, radar systems 
– Power electronic devices such as power MOSFETs and IGBTs are 

frequently used in high-power switching circuits
– Batteries are the sole energy storage 
– The integrated navigation (INAV) module combines output of the GPS 

model and inertial measurement unit. 
• Assumption of new functionality increases number of faults with 

perhaps unanticipated fault modes
• We need understanding of behavior of deteriorated components to 

develop capability to anticipate failures/predict remaining RUL



Motivation (2/2)

Images courtesy : Boeing

Component:
Power Transistor

Line Replaceable Unit: 
Power Controller

Ref: www.nasa.gov



Definitions

• prog-nos-tic 
– M-W.com – “Something that foretells”
– PHM Community – “Estimation of the Remaining Useful Life of a 

component”

• Remaining Useful Life (RUL) – The amount of time a 
component can be expected to continue operating within 
its stated specifications.
– Dependent on future operating conditions

– Input commands
– Environment
– Loads

So what is “Prognostics” anyway?



Why Model-Based Prognostics?

• With model-based algorithms, 
models are inputs
–This means that, given a new 

problem, we use the same general 
algorithms
–Only the models should change

• Model-based prognostics 
approaches are applicable to a 
large class of systems, given a 
model
• Approach can be formulated 

mathematically, clearly and 
precisely

Prognostics

System 
Inputs

System 
Outputs

System 
Models

Predictions
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The Basic Idea
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Why Prognostics?

Home 
Base

Objective #1

Objective #2

Objective #3

Objective #4

Electric Aircraft

Example: UAV Mission
Visit waypoints to accomplish science objectives. Predict aircraft battery end of discharge to 
determine which objectives can be met. Based on prediction, plan optimal route. Replan if 
prediction changes.

Prognostics: 
Full discharge 
before mission 

completion
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Why Prognostics?

• Prognostics can enable:
– Adopting condition-based maintenance strategies, instead of time-

based maintenance
– Optimally scheduling maintenance
– Optimally planning for spare components
– Reconfiguring the system to avoid using the component before it 

fails
– Prolonging component life by modifying how the component is used 

(e.g., load shedding)
– Optimally plan or replan a mission

• System operations can be optimized in a variety of ways
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The Basic Idea Revisited

Time

System 
State

Threshold as a Function of System State

tE

ΔtE

t

Not necessarily a one-dimensional problem!
… This schematic is oversimplified!
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The Basic Idea : Batteries Example

Time

Cell 
Voltage

Voltage Threshold

tEOD

ΔtEOD

t

E = End of Discharge (EOD)



Prognostic Algorithm Categories

• Type I: Reliability Data-based
– Use population based statistical model
– These methods consider historical time to failure data which are used to model 

the failure distribution.  They estimate the life of a typical component under 
nominal usage conditions.

– Ex: Weibull Analysis

• Type II: Stress-based
– Use population based fault growth model – learned from accumulated knowledge
– These methods also consider the environmental stresses (temperature, load, 

vibration, etc.) on the component.  They estimate the life of an average 
component under specific usage conditions.

– Ex: Proportional Hazards Model

• Type III: Condition-based
– Individual component based data-driven model
– These methods also consider the measured or inferred component degradation.  

They estimate the life of a specific component under specific usage and 
degradation conditions.

– Ex: Cumulative Damage Model, Filtering and State Estimation



Data-Driven Methods

• Model is based solely on data collected from the system
• Some system knowledge may still be handy:

– What the system ‘is’
– What the failure modes are
– What sensor information is available
– Which sensors may contain indicators of fault progression (and how those 

signals may ‘grow’)
• General steps:

– Gather what information you can (if any)
– Determine which sensors give good trends
– Process the data to “clean it up” – try to get nice, monotonic trends
– Determine threshold(s) either from experience (data) or requirements
– Use the model to predict RUL

• Regression / trending
• Mapping (e.g., using a neural network)
• Statistics



Data-Driven Methods

• Pros
– Easy and Fast to implement

• Several off-the-shelf packages are available for data mining
– May identify relationships that were not previously considered

• Can consider all relationships without prejudice
• Cons

– Requires lots of data and a “balanced” approach
• Most of the time, lots of run-to-failure data are not available
• High risk of “over-learning” the data
• Conversely, there’s also a risk of “over-generalizing”

– Results may be counter- (or even un-)intuitive
• Correlation does not always imply causality!

– Can be computationally intensive, both for analysis and implementation

• Example techniques
– Regression analysis
– Neural Networks (NN)
– Bayesian updates
– Relevance vector machines (RVM)



Physics-Based Methods

• Description of a system’s underlying physics using suitable 
representation

• Some examples:
– Model derived from “First Principles”

• Encapsulate fundamental laws of physics
§ PDEs
§ Euler-Lagrange Equations

– Empirical model chosen based on an understanding of the dynamics of a 
system
• Lumped Parameter Model
• Classical 1st (or higher) order response curves

– Mappings of stressors onto damage accumulation
• Finite Element Model
• High-fidelity Simulation Model

• Something in the model correlates to the failure mode(s) of interest



Physics-Based Models
• Pros

– Results tend to be intuitive
• Based on modeled phenomenon
• And when they’re not, they’re still instructive (e.g., identifying needs for more 

fidelity or unmodeled effects)
– Models can be reused

• Tuning of parameters can be used to account for differences in design
– If incorporated early enough in the design process, can drive sensor 

requirements (adding or removing)
– Computationally efficient to implement

• Cons
– Model development requires a thorough understanding of the system
– High-fidelity models can be computationally intensive

• Examples
– Paris-Erdogan Crack Growth Model
– Taylor tool wear model
– Corrosion model
– Abrasion model



INTRODUCTION TO MODEL-
BASED PROGNOSTICS



Model-based prognostics (1/2)

Kalman
Filter

Health State 
Forecasting

RUL
Computation

RUL(tp)

{�̃, ⇥̃}D2

x̂(tp)

{y(t0), . . . , y(tp)}

{x̂(tp+1), . . . , x̂(tp+N )}

Failure
Threshold

• State vector includes 
dynamics of the degradation 
process

• It might include nominal 
operation dynamics

• EOL defined at time in which 
performance variable cross 
failure threshold

• Failure threshold could be 
crisp or also a random 
variable
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ẋ(t) = f(x(t), u(t)) + w(t)

y(t) = h(x(t)), u(t)) + v(k)

R(tp) = tEOL � tp



Model-based prognostics (2/2)

• Tracking of health 
state based on 
measurements

• Forecasting of health 
state until failure 
threshold is crossed

• Compute RUL as 
function of EOL 
defined at time failure 
threshold is crossed

21
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Methodology

xk = Axk�1 +Buk�1 + wk�1

yk = Hxk + vk
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RESEARCH APPROACH
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High level research efforts

• Prognostics models and algorithms
– Identification of precursors of failure for MOSFETs under different failure 

mechanism conditions
– Identification of precursors of failure for different IGBT technologies
– Modeling of degradation process MOSFETs
– Development of prognostics algorithms

• Prognostics for output capacitor in power supplies (ARC)
– Electrical overstress and thermal overstress
– Development of prognostics algorithms

• Accelerated Life Testing
– Thermal overstress aging of MOSFETs and IGBTs
– Electrical overstress aging testbed MOSFETs
– Electrical overstress aging testbed for Capacitors

• Effects of lightning events of MOSFETS (LaRC)
• Battery Degradation and ageing ( ARC – LaRC)
• Ageing Effecting on ESC’s ( ARC – LaRC)

24
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Research Approach

Development of remaining life prediction algorithms that take into account the different sources of 
uncertainty while leveraging physics-based degradation models that considers future operational 

and environmental conditions

Development of degradation models based on the physics of the device and the failure 
mechanisms

Development of accelerated aging testbeds that facilitate the exploration of different failure 
mechanisms and aid the understanding of damage progression 

Identification of precursors of failure which play an essential role in the prediction of remaining life 

Identification of failure modes and their relationship to their particular failure 
mechanisms



Prognostics Algorithm Maturation through Validation 
Experiments
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Prognostics Algorithm Maturation through Validation 
Experiments
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ARCHITECTURE
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Fault Detection 
Isolation & 

Identification

Damage 
Estimation Prediction

uk p(EOLk|y0:k)
System

yk p(xk,θk|y0:k)

p(RULk|y0:k)

F

Prognostics

Model-Based Architecture

System receives 
inputs, produces 

outputs
Identify active 

damage 
mechanisms

Estimate current 
state and 

parameter values

Predict EOL and 
RUL as probability 

distributions

1 2

3 4

Estimation Prediction



Problem Requirements

•
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System Model



Initial Problem Formulation



Concept: ComputeEOL



Computational Algorithm



Integrated Prognostics Architecture

• System (battery) gets inputs (current) and produces outputs (voltage)
• State estimation computes estimate of state given estimates of age 

parameters
• EOD prediction computes prediction of time of EOD, given state and 

age parameter estimates
• Age parameter estimation computes estimates of age parameters
• Age rate parameter estimation computes parameters defining aging 

rate progression
• EOL prediction computes prediction of time of EOL, given age 

parameter and age rate parameter estimates



State Estimation

• What is the current system state and its associated 
uncertainty?
– Input: system outputs y from k0 to k, y(k0:k)
– Output: p(x(k),θ(k)|y(k0:k))

• Battery models are nonlinear, so require nonlinear state 
estimator (e.g., extended Kalman filter, particle filter, 
unscented Kalman filter)

• Use unscented Kalman filter (UKF)
– Straight forward to implement and tune performance
– Computationally efficient (number of samples linear in size of state 

space)



Prediction

• Most algorithms operate by simulating samples forward in 
time until E

• Algorithms must account for several sources of uncertainty 
besides that in the initial state
– A representation of that uncertainty is required for the selected 

prediction algorithm
– A specific description of that uncertainty is required (e.g., mean, 

variance)



DISCUSSION AND QUESTIONS?
End of Introduction Section 
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ELECTRIC VEHICLE 
POWERTRAIN



Electric Propulsion System
40

• LiPo Batteries 
§ Lithium corrosion, plating, electrolyte layer formation, and contact losses 

• Permanent Magnet Brushless DC Motors
§ Bearing wear, and electrical faults in the form of poor contacts and insulation 

deterioration 
• Electronics Speed Controllers 

§ MOSFETs are not synchronized while operating, or when the switching circuit is 
malfunctioning 

• Study Cascading faults 
• Effects of component level aging/degradation on system performance



Hardware in Test Loop



ACCELERATED AGING TOOL 
FOR PROGNOSTICS 
RESEARCH
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Accelerated Aging

• Traditionally used to assess the reliability of products with 
expected lifetimes in the order of thousands of hours
– in a considerably shorter amount of time

• Provides opportunities for the development and validation of 
prognostic algorithms 

• Such experiments are invaluable since run-to-failure data for 
prognostics is rarely or never available

• Unlike reliability studies, prognostics is concerned not only with 
time to failure of devices but with the degradation process 
leading to an irreversible failure
– This requires in-situ measurements of key output variables and 

observable parameters in the accelerated aging process with the 
associated time information

• Thermal, electrical and mechanical overstresses are commonly 
used for accelerated aging tests of electronics



Example: Electrical overstress 
aging of Power Transistors
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Accelerate aging strategy (1/2)

• Main strategy 
– application of electrical overstress 
– fixed junction temperature in order to avoid 

thermal cycles
– avoid package related failures

• Accelerated test conditions are achieved by 
electrical operation regime of the devices at 
temperatures within the range below 
maximum ratings and above the room 
temperatures.

45



Accelerate aging strategy (2/2)

• The highest acceleration 
factor for aging can be 
achieved in the proximity of 
the Safe Operation Area 
(SOA) boundary

• Instability points represent 
the critical voltages and 
currents limiting the SOA

• An electrical regime close to 
the SOA boundary serves as 
the accelerator factor 
(stressor) and it is expected 
to reduce the life of the 
device

• The SOA boundary shifts 
closer to the origin as the 
temperature increases

46
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Aging system description (1/3)

• Three main components in terms of hardware
– Electrical operation unit of the device 

• custom made printed circuit boards for the 
instrumentation circuitry and gate drivers

• commercially available power supplies and function 
generator to control the operation of the DUT

– An in-situ measurement unit of key electrical and thermal 
parameters 

• commercially available measurement and data 
acquisition for slow and high speed measurements

– Thermal block section for monitoring and control of the 
temperature

47



Aging system description (2/3)
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H
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Modules

Thermal block for measurement and control of device 
temperature



Aging system description (3/3)
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Experiment on power MOSFET (1/2)

• IRF520Npbf power MOSFET
– TO220 package,100V/9A.

• Electrical overstress used as acceleration factor. 
High potential at the gate
– Vgs= 50V, Vgs rating is 20V max.
– Vds= 2.4V with a 0.2 ohm load.

• Temperatures kept below maximum rating 
Tjmax=175�C

• Objective is to induce failure mechanism on the gate 
structure

50
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Experiment on power MOSFET (2/2)

51

• Degradation process as observed on 
threshold voltage (Vth)
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Example: Electrical overstress 
aging of Electrolytic Capacitors
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Accelerated aging system

• Allows for the understanding of the effects of 
failure mechanisms, and the identification of 
leading indicators of failure essential for the 
development of physics-based degradation 
models and RUL prediction

• Electrolytic capacitor 2200uF, 10V and 1A
• Electrical overstress >200 hrs

– Square signal at 200 mHz with 12V amplitude and 
100 ohm load

53



Electrical Overstress Aging System

54

!

!



Degradation observed on EIS measurements 
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CASE STUDY I: 
PROGNOSTICS OF 
ELECTROLYTIC CAPACITORS
MODEL-BASED APPROACH EXAMPLE
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• Integrated Avionics systems consists of:
– Global Positioning System (GPS) module
– Integrated navigation (INAV) module combines output of the 

GPS model and Inertial measurement unit
– Power Supply module

Case Study: Avionics System
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Methodology
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Accelerated Aging and Precursors 
of Failure Features
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Degradation on lumped parameter model
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C and ESR are estimated from 
EIS measurements

ESR

C
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Methodology
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!

Ck = e
αtk +β
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• Based on observed degradation from 
capacitance parameter

• Using training capacitor data to estimate 
degradation model parameters

• Assumed exponential model based on 
capacitance loss

• Parameter estimation with least-squared 
regression

62

Empirical degradation model

Ck = e
αtk +β



Degradation model results
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• The optimal parameter presented along the 95% confidence 
interval. 

• The residuals are modelled as a normally distributed random 
variable with zero mean and variance 

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Validation Test Training � ⇥
⇤2
vtest capacitor capacitor (95% CI) (95% CI)

T2 #2 #1, #3–#6 0.0162 -0.8398 1.8778(0.0160, 0.0164) (-1.1373, -0.5423)

T3 #3 #1, #2, #4–#6 0.0162 -0.8287 1.9654(0.0160, 0.0164) (-1.1211, -0.5363)

T4 #4 #1–#3, #5, #6 0.0161 -0.8217 1.8860(0.0159, 0.0162) (-1.1125, -0.5308)

T5 #5 #1–#4, #6 0.0162 -0.7847 2.1041(0.0161, 0.0164) (-1.1134, -0.4560)

T6 #6 #1–#5 0.0169 -1.0049 2.9812(0.0167, 0.0170) (-1.2646, -0.7453)

Table 1. Degradation model parameter estimation results.

Figure 9 shows the estimation results for test case T6. The ex-
perimental data are presented together with results from the
exponential fit function. It can be observed from the residuals
that the estimation error increases with time. This is to be ex-
pected since the last data point measured for all the capacitors
fall slightly off the concave exponential model.
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Figure 9. Estimation results for the empirical degradation
model.

It should be noted that this degradation model with static pa-
rameters will be used in a Bayesian tracking framework. This
will help to overcome the degradation model limitation to rep-
resent the behavior close to the failure threshold given the
tracking framework ability to compensate the estimation as
measurements become available.

4.3. State-space realization for tracking

The estimated degradation model is used as part of a Bayesian
tracking framework to be implemented using the Kalman fil-
ter technique. This method requires a state-space dynamic
model relating the degradation level at time tk to the degrada-

tion level at time tk�1. The procedure to obtain a state-space
model for D1 is as follows. The non-linear exponential be-
havior described in the model is represented as a first order
differential equation which can represent the time evolution
of Cl(t). Then, the model is discretized in time in order to
obtain a discrete-time state-space model D2.

From equation (3) we have that Cl(t) = e�t + ⇥, taking the
first derivative with respect to time and substituting e�t =
Cl(t)� ⇥ from eq. (3) we have

Ċl =
dCl(t)

dt
= �Cl(t)� �⇥. (4)

Taking the finite difference approximation for Ċl with time
interval �t we have

Cl(t)� Cl(t��t)

�t
= �Cl(t��t)� �⇥, and

Cl(t) = (1 + ��t)Cl(t��t)� �⇥�t.

Letting tk = t and tk�1 = t � �t we get the state-space
model

Cl(tk) = (1 + ��k)Cl(tk�1)� �⇥�k. (5)

This model can be used in a Bayesian tracking framework in
order to continuously estimate the value of the loss in capac-
itance through time as measurement become available.

5. MODEL-BASED PROGNOSTICS FRAMEWORK

A model-based prognostics algorithm based on Kalman filter
and a physics inspired empirical degradation model is pre-
sented. The methodology consists of the following three main
steps and it is depicted in fig. 10.

1. State tracking (Kalman Filter): The capacitance loss Cl

is defined as the state variable to be estimated and the
degradation model is expressed as a discrete time dy-
namic model in order to estimate capacitance loss as new
measurements become available. Direct measurements
of the capacitance are assumed for the filter.

7
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• Implementation of prognostics algorithm with 
Kalman filter

• Capacitance loss considered as state variable
• EIS measurements and lumped parameter 

model used to obtained measured capacitance 
loss values

• Empirical degradation model used to generate 
the state transition equation

• Use one Capacitor for testing and the rest for 
model parameter estimation (leave on out test)

• Failure threshold of 20% drop on capacitance 
based on MIL-C-62F
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Prognostics algorithm



Kalman filter implementation

• State transition equation 
derived from degradation 
model

• State-space model for filter 
implementation
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∂C
∂t

=αC −αβ

Ct −Ct − Δt

Δt
=αCt − Δt −αβ

Ct = (1+αΔt)Ct − Δt −αβΔt

Ck = (1+αΔk)Ck − 1−αβΔk

Ck = AkCk − 1+Bku+ v 
yk = hCk +w,where

Ak = (1+Δt),
Bk = −αβΔk,
h =1, u =1.

Ck = e
αtk +β
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• Assumed measurements are not available at 
some point in time

• Filter used in forecasting mode to predict 
future states

• Predictions done at 1 hr. intervals
• State transition equation used to propagate 

state (n: number of prediction steps, l: last 
measurement at tl)
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Prediction mode

Ĉl+n = A
nCl + AiB

i=0

n−1

∑



Tracking and forecasting (Cap. #6)
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Relative Accuracy 
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tp RUL� RUL
0

T2 RUL
0

T3 RUL
0

T4 RUL
0

T5 RUL
0

T6

24 151.04 158.84 164.88 158.76 167.76 159.89
47 128.04 131.32 134.08 128.35 135.32 125.91
71 104.04 117.01 119.88 115.37 122.63 116.41
94 81.04 92.69 96.64 93.09 97.6 95.42

116 59.04 67.28 65.39 67.77 69.5 65.71
139 36.04 44.01 44.72 46.88 49.4 53.75
149 26.04 30.67 32.41 33.55 35.92 39.95
161 14.04 17.23 18.28 18.2 22.64 25.6
171 4.04 1.07 2.89 N/A 5.52 8.45

Table 2. Summary of RUL forecasting results.

Kalman filter or particle filter.

RA = 100

�
1� RUL� �RUL

0

RUL�

⇥
(9)

tp RAT2 RAT3 RAT4 RAT5 RAT6
⇤RA

24 94.8 95.5 91.9 96.9 99.7 95.5
47 97.4 99.3 96.4 96.7 91.7 96.7
71 87.5 91.9 84.5 94.1 97.1 91.9
94 85.6 90 78.9 94.8 94.2 90

116 86 99.1 76.5 98 96.2 96.2
139 77.8 95.8 53.1 96.7 81.1 81.1
149 82.1 98.4 46.9 94.8 86.6 86.6
161 77.2 87.3 16.6 87.5 89.8 87.3
171 26.6 26.4 N/A 34.8 63.7 30.7

Table 3. Validation based on relative accuracy metric.

7. CONCLUSION

This paper presents a RUL prediction algorithm based on ac-
celerated life test data and an empirical degradation model.
The main contributions of this work are: a) the identification
of the lumped-parameter model (Figure 4) for a real capaci-
tor as a viable reduced-order model for prognostics-algorithm
development; b) the identification of the ESR and C model
parameters as precursor of failure features; c) the develop-
ment of an empirical degradation model based on accelerated
life test data which accounts for shifts in capacitance as a
function of time; d) the implementation of a Bayesian based
health state tracking and remaining useful life prediction al-
gorithm based on the Kalman filtering framework. One major
contribution of this work is the prediction of remaining useful
life for capacitors as new measurements become available.

This capability increases the technology readiness level of
prognostics applied to electrolytic capacitors. The results pre-
sented here are based on accelerated life test data and on the
accelerated life timescale. Further research will focus on de-

velopment of functional mappings that will translate the ac-
celerated life timescale into real usage conditions time-scale,
where the degradation process dynamics will be slower, and
subject to several types of stresses. The performance of the
proposed exponential-based degradation model is satisfactory
for this study based on the quality of the model fit to the ex-
perimental data and the RUL prediction performance as com-
pared to ground truth. As part of future work we will also
focus on the exploration of additional models based on the
physics of the degradation process and larger sample size for
aged devices. Additional experiments are currently underway
to increase the number of test samples. This will greatly en-
hance the quality of the model, and guide the exploration of
additional degradation-models, where the loading conditions
and the environmental conditions are also accounted for to-
wards degradation dynamics.
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NOMENCLATURE
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CR Real capacitor value for a non-ideal capacitor
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RL Load resistance on electrical overstress system
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Z Capacitor impedance for non-ideal capacitor

model M1
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gorithm based on the Kalman filtering framework. One major
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velopment of functional mappings that will translate the ac-
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CASE STUDY II: 
PROGNOSTICS OF POWER 
TRANSISTORS
PRECURSORS OF FAILURE EXAMPLE
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!71

!

Modeling for Power MOSFET under electrical overstress

• Two-transistor model is shown to be a 
good candidate for a degradation model 
for model-based prognostics

• The model parameters K and W1 could be 
varied as the device degrades as a 
function of usage time, loading and 
environmental conditions

• Parameter W1 defines the area of the 
healthy transistors, the lower this area, the 
larger the degradation in the two-transistor 
model. In addition, parameter K serves as 
a scaling factor for the thermal resistance 
of the degraded transistors, the larger this 
factor, the larger the degradation in the 
model.
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Precursor of Failure

• As case temperature increases, ON-
resistance increases

• This relationship shifts as the 
degradation of the device increases

• For a degraded state, ON-resistance 
will be higher at any given case 
temperature

• This is consistent with the die-attach 
damage since it results on increased 
junction temperature operation

• This plot can be used directly for 
fault detection and diagnostics of the 
die-attach failure mechanism



Degradation process data
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Normalized ON-state resistance (ΔRDS(ON)) 
and filtered trajectory for device #36 

Normalized ON-state resistance (ΔRDS(ON)) 
and filtered trajectory for device #36 

• Cases #08, #09, #11, #12 and #14 
are used for algorithm development 
purposes. 

• Case #36 is used to test the 
algorithms. 
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Empirical Degradation Model

• An empirical degradation model was selected for the model-
based algorithms

• Exponential based function to capture degradation process
• Two parameters in the model which will be estimated on-line
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Prediction of Remaining Life
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RUL Prediction Methodology Considerations

• A single feature is used to assess the health state of the device 
(ΔRDS(ON))

• It is assumed that the die-attached failure mechanism is the only 
active degradation during the accelerated aging experiment

• Furthermore, ΔRDS(ON) accounts for the degradation progression 
from nominal condition through failure

• Periodic measurements with fixed sampling rate are available 
for ΔRDS(ON)

• A crisp failure threshold of 0.05 increase in ΔRDS(ON) is used
• The prognostics algorithm will make a prediction of the 

remaining useful life at time tp, using all the measurements up to 
this point either to estimate the health state at time tp in a 
regression framework or in a Bayesian state tracking framework

• It is also assumed that the future load conditions do not vary 
significantly from past load conditions
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RUL Prediction Algorithms

• Gaussian Process Regression
– Algorithm development cases used to select covariance matrix 

structure and values
• Extended Kalman filter

– Empirical degradation model
– State variable: Normalized ON-resistance and degradation model 

parameters
– Arbitrary values for measurement and process noise variance

• Particle filter
– Empirical degradation model
– State variable: Normalized ON-resistance, degradation model 

parameters
– Exponential growth model used for degradation model parameters
– Arbitrary values for measurement and process noise variance
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RUL estimation results
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CASE STUDY III: PHYSICS-
BASED PROGNOSTICS OF 
CAPACITORS
DEGRADATION MODELING EXAMPLE
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highly etched 
aluminum foil

anode

dielectric Layer

Al2O3 – 
electrochemical 

oxide 
layer(forming)

electrolyte paper 
(spacer) Al2O3 – oxide 

layer(natural)

etched aluminum 
foil

electrolyte

Te
xt

cathode

Text
leakage current

• An aluminum electrolytic capacitor, consists of 
– Cathode aluminum foil, 
– Electrolytic paper, electrolyte
– Aluminum oxide layer on the anode foil surface, which acts as 

the dielectric.
– Equivalent series resistance (ESR) and capacitance(C) are 

electrical parameters that define capacitor health
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Capacitor Structure

Physical Structure Internal Structure

Anode Foil

Cathode Foil

Connecting Lead 

Aluminum Tab

Separator Paper

Ref :http://en.wikipedia.org/wiki/File:ElectrolyticCapacitorDisassembled.jpg

Open Structure
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Degradation Mechanisms

Decrease in capacitance
Increase in ESR

Electrolyte Evaporation

Degradation of Oxide Film

Degradation in 
Anode foil

Degradation in  
Cathode foil

Increase in internal Temperature

Over Voltage Stress

Excess Ripple Current

Charging\Discharging Cycles
Over Voltage Stress

Excess Ripple Current

Charging\Discharging Cycles

Increase in internal Temperature

Over Voltage Stress
Excess Ripple Current

Charging\Discharging Cycles

Degradation Causes\ Mechanisms Failure Modes

Over Voltage Stress

Excess Ripple Current

Charging\Discharging Cycles

High Ambient Temperature

High Ambient Temperature

High Ambient Temperature

Prolonged Use -Nominal Degradation

Prolonged Use -Nominal Degradation

Aging in the 
dielectric material

Prolonged Use 

Electrical Stress
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Capacitor Degradation Model
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Pristine Capacitor 
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• This empirical model represents an approximation of lumped 
parameter  model  

• α and β are degradation model parameters estimated from the experimental 
data.

• The following system structure is used in the implementation of the 
filtering and the prediction using the Kalman filter.

• The state variable (xk) at aging time (tp ) is the percentage loss in 
Capacitance.
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Empirical Model with static parameters

• Process noise was estimated from the model regression for the 
empirical model

• Measurement noise was estimated from the EIS measurements 
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Degradation Model: Electrical Circuit Equivalent
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• Decrease in electrolyte volume :

• Capacitance (C) ): Physics-Based Model:

• Electrolyte evaporation dominant degradation phenomenon
– First principles: Capacitance degradation as a function of electrolyte loss 

Capacitance Degradation Model

(1)

(2)

(3)
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• Oxide breakdown observed - experimental data 
• The breakdown factor is exp. function of electrolyte 

evaporation 

Cbk(t) = exp f(Veo – Ve(t))

• Updated in capacitance degradation model :
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Capacitance Degradation Model
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Dynamic Model of Capacitance
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Dynamic Model of Capacitance

(6)

(7)
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• Decrease in electrolyte volume :

• ESR
– Based on mechanical structure and electrochemistry.
– With changes in RE (electrolyte resistance )

90

Dynamic Model of ESR

(8)
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Process Flow
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• Derived physics-based degradation model 

• The following system structure is implemented for 
state estimation 

• The state variable (xk) is the current health state at 
aging time (tp)
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Unscented Kalman Filter for State Estimation

Process noise was estimated from the model regression for the empirical model
Measurement noise was estimated from the EIS measurements 



Electrolyte Volume Estimation for TOS Experiment 
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EOS Experiment RA Results – Discussion

Capacitance - Over RA summary for  model 

Capacitance  - Over RA summary for  model 
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RUL and Validation – EOS -Experiment – ESR 
Degradation Model  
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CASE STUDY IV: 
PROGNOSTICS OF LI-ION 
BATTERIES
DEGRADATION MODELING EXAMPLE
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Battery Modeling
− Equivalent Circuit Empirical Models

§ Most common approach
§ Various model complexities used 
§ Difficulty in incorporating aging effects
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§ An equivalent circuit battery model is used 
to represent the battery terminal voltage 
as a function of current and the charge 
stored in 3 capacitive elements

§ Two laboratory loading experiments are 
used to fit the following parameterization 
coefficients
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Discharge
Reduction at pos. electrode:
Li1-nCoO2 + nLi+ + ne- à LiCoO2
Oxidation at neg. electrode:

LinC à nLi+ + ne- + C
Current flows + to –
Electrons flow – to +

Lithium ions flow – to +

Charge
Oxidation at pos. electrode:
LiCoO2 à Li1-nCoO2 + nLi+ + ne-

Reduction at neg. electrode:
nLi+ + ne- + C à LinC

Current flows – to +
Electrons flow + to –

Lithium ions flow + to –

− Electrochemical Models vs. Empirical Models
§ Battery physics models enable more direct representation of age-related 

changes in battery dynamics than empirical models
§ Typically have a higher computational cost and more unknown parameters

Battery Modeling
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Electrochemical Li-ion Model

• Lumped-parameter, ordinary differential equations
• Capture voltage contributions from different sources

– Equilibrium potential àNernst equation with Redlich-Kister
expansion

– Concentration overpotential à split electrodes into surface 
and bulk control volumes

– Surface overpotential à
Butler-Volmer equation 
applied at surface layers

– Ohmic overpotential à
Constant lumped resistance 
accounting for current 
collector resistances, 
electrolyte resistance, 
solid-phase ohmic resistances
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Battery Aging
• Contributions from both decrease in mobile Li 

ions (lost due to side reactions related to 
aging) and increase in internal resistance
– Modeled with decrease in “qmax” parameter, 

used to compute mole fraction
– Modeled with increase in “Ro” parameter 

capturing lumped resistances

Simulated
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Edge 540-T

• Subscale electric 
aircraft operated at 
NASA Langley 
Research Center

• Powered by four sets 
of Li-polymer 
batteries

• Estimate SOC online 
and provide EOD 
and remaining flight 
time predictions for 
ground-based pilots

M 1 M 2 Propeller

ESC 
1

ESC 
2

5S2P 
LiPo

+
-

5S2P 
LiPo

+
-

+

-
+

-

VB1

VB2

i1,2

i3,4

5S2P 
LiPo

+
-

5S2P 
LiPo

+
-

+

-
+

-

VB3

VB4

Throttle

Powertrain



P r o g n o s t i c s  C e n t e r  o f  E x c e l l e n c e

Edge UAV Use Case

• Piloted and autonomous 
missions, visiting waypoints

• Require 2-minute warning for 
EOD so pilot/autopilot has 
sufficient time to land safely
– This answer depends on battery age
– Need to track both current level of 

charge and current battery age
– Based on current battery state, 

current battery age, and expected 
future usage, can predict EOD and 
correctly issue 2-minute warning

Runway

Objective #1

Objective #2

Objective #3

Objective #4

Electric Aircraft
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Predication over Flight Plan

• Measured and predicted 
battery current, voltage 
and SOC different time 
steps
• The min, max and median 

predictions are plotted 
from each sample time 
until the predicated SOC 
reaches 30%

• Predictions for remaining flight time for entire 
flight plan
• Overestimate till parasitic load is injected
• Once the parasitic load is detected the 

remaining flying time time prediction shifts down.

Ref : E. Hogge et al, “Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft”, PHM 2015
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Performance Requirements

• Accuracy requirements for the two minute warning were specified as:
– The prognostic algorithm shall raise an alarm no later than two minutes 

before the lowest battery SOC estimate falls below 30% for at least 90% of 
verification trial runs.

– The prognostic algorithm shall raise an alarm no earlier than three minutes 
before the lowest battery SOC estimate falls below 30% for at least 90% of 
verification trial runs.

– Verification trial statistics must be computed using at least 20 experimental 
runs
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Data Sets Available for Download

• https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

11
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CLOSING REMARKS
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Remarks (1/2)

• Electrical and Electronics PHM Maturity - scientific 
and engineering challenges

• Research approach challenges
– How to balance lack of knowledge of the system vs own 

expertise on particular PHM tools
– Data-driven or model-based?

• Data is always needed but more important, 
information about degradation/aging processes 
is key

• Experiments and field data

11
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Remarks (2/2)

• Aging systems as a research tool
– Value in terms of exploration of precursors of failure and 

their measurements is evident
– Still an open question on how degradation models and 

algorithms are translated to the real usage timescale
• In the use of physics

– It should be embraced
• Validate models and algorithms with data from lab 

experiments and fielded systems
• A success in developing PHM methodologies in an 

real usage application will require the right team

11
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