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If relative motion in the encounter region is linear, the problem can be 
reduced to a two-dimensional integral by integration and projection.

-This “2D” Pc is the primary method currently used in the field of space 
situational awareness.

Background and Motivation
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Primary and Secondary objects in a close encounter are described by:
-Position (Relative Position)
-Velocity
-Covariance matrix (region of uncertainty)
-Hard-body radius (HBR) (circumscribing radii)
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Probability of collision (Pc) computed from integrating 
the combined covariance matrix over the total HBR 
volume swept. 

Ref: Alfano, S., “Collision Avoidance Maneuver Planning Tool”, 15th AAS/AIAA 
Astrodynamics Specialist Conference, Lake Tahoe, California, August 7-11, 2005, AAS 05-
308
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Objective
• Goal: Investigate and construct an architecture using physics-based statistical parameters

via machine learning and deep neural networks for intelligent and reliable rapid satellite 
collision avoidance decision-making.

• Use statistical representation of the random vector (state) and the uncertainties (covariance) to 
construct the parameters

• CA (collision avoidance) decision making involves mostly Pc, however in operations additional constructs 
are considered as well ex. Miss-distance, OD quality etc.

• Sensor tasking is also a key component/contributor to the CA decision making. How can we incorporate 
this qualitatively and quantitatively?

• Key points to consider: 
• In Machine Learning, quality data is imperative.
• Must have a clear goal for the outcome
• Can we explain the outcome?

Ref: https://www.darpa.mil/program/explainable-artificial-intelligence

Explainable AI (XAI) Concept

https://www.darpa.mil/program/explainable-artificial-intelligence
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Approach
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Two spacecraft at Time 
of close approach (TCA)

Statistical Parameters

Probability of Collision

Miss Distance

Mahalanobis Distance

Bhattacharyya Distance

Kullback-Leibler Distance etc.

Partition N
observations 

into K clusters.

K-means

Separation 
into K groups 

with the 
widest gap 

possible

SVM-Support Vector Machines

Unsupervised Machine 
Learning Methods: Clustering 

and Classification

(1) Obtain Data (2) Data Wrangling (3)Train Model
Fuzzy 

Inference 
System (FIS)

Deep Neural 
Network 

(DNN)



Parameter set considerations

• Investigate statistical parameters using the available information that could provide 
additional insight into conjunction events.

• Developed a set of “ statistical information parameters” (and their variations) derived 
from some of the same information used to compute Pc.

Probability of Collision (Pc) 
Mahalanobis Distance (MHD)
Miss Distance (MD)
Bhattacharyya Distance (BD)
Angle between two orbit planes(OA)
Kullback-Leibler Distance (KLD)
Other?

-Position and Velocity 
-Covariance matrix
-Other?

(Both Primary and Secondary)



Data Wrangling: Unsupervised Machine Learning
• Unsupervised learning methods classify data into groups based on features within the dataset 

that may not be immediately obvious to a human operator.
• Clustering algorithms fall into two broad groups:

-Hard Clustering:  each data point belongs to only one cluster ex. K-means and Support Vector Machines
-Soft Clustering: each data point belongs to more than one cluster ex. Fuzzy C-means and Gaussian Mixture 
Models

• Two clusters/classifications were defined: 
“safe” or “not safe”

• The performance metric was compared to a 
Monte Carlo computation for the ground truth 
based on Pc 

• 1 – ensemble’s correct assignment
• 0 – ensemble’s incorrect assignment

• These performance values were used as input 
weights for the decision making tools

Parameter K-means SVM

Probability of Collision (Pc) 0.7742 0.9995

Miss Distance (MD) 0.6389 0.8314

Mahalanobis Distance (MHD) 0.6983 0.8810

Bhattacharyya Distance (BD) 0.7611 0.8864

Kullback-Leibler Distance (KLD) 0.7736 0.8459

Orbit Angle (OA) 0.5387 0.8711

Clustering Performance Methods for K-means and SVM using 
the Performance Metric



Fuzzy Inference Systems
• Fuzzy inference systems map input to output using fuzzy logic, which is able to express 

partial membership of variables or parameters to certain sets using Fuzzy Membership 
functions (FMF).

• Using the Mamdani FMF, we investigated the decision making tool’s output using three 
informational parameters: Miss-Distance, Probability of Collision and the Kullback-Leiebler 
Divergence

Fuzzy Logic Designer GUI using 
MATLAB® defining the FMFs MD, 
Pc and KLD.

Define FMF in the Membership Editor 
and the decisions rules in the Rule 
Editor ex. {0,1} = (unsafe, safe}

High – MD
Low – Pc

Mid – KLD
Output : 0.837

Low – MD
High – Pc
Mid – KLD

Output : 0.195



Deep Neural Networks
• For comparison we designed and implemented a Deep Neural Network (DNN) model for 

decision making augmentation with Pc.
• In this context of using DNN for decision making, we considered a few informational 

parameters: Pc, KLD, MHD, BD, MD and the OA. We grouped the informational parameter 
into arbitrary assignments of 4 groups:

-Group 1 = {KLD, MD, BD, Pc, MHD}
-Group 2 = {KL, MD, MHD, Pc}
-Group 3 = {Pc, MHD, OA}
-Group 4 = {Pc}

• DNN model design considerations:
• Three sets for number of hidden layers: {10, 20 and 40}
• Backpropagation training functions: Scaled-conjugate gradient (SCG) and Levenberg-Marquardt (LM)
• Training, Validation and Testing ratios: 0.7, 0.15 and 0.15 respectively

• Used a sample data set of 1000 samples of simulated data containing both safe and unsafe 
encounter classifications.

(Note the binary outputs assignments for the DNN are not the same assignments 
as for the FIS, but bear similar theoretical meaning and representation). 

Group 3 and Group 4 will be presented.



Deep Neural Networks: Group 3
• This was the best performing Group of all 4 considered here.
• The best performing DNN model used the LM algorithm with 10 hidden layers

10 layers 20 layers 40 layers
Regression 0.93 0.93 0.94

RMSE: Perf 0.0293 0.0284 0.0245
Regression 0.96 0.96 0.96

RMSE: Perf 0.0177 0.0179 0.0179

Group 3

Scaled Conjugate Gradient

Levenberg-Marquardt

Performance Metrics for Group 3.

 

SCG 10 Hidden Layers 

 

SCG 20 Hidden Layers 

 

SCG 40 Hidden Layers 

 

LM 10 Hidden Layers  

 

LM 20 Hidden Layers  

 

LM 40 Hidden Layers  
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Error histograms for SCG (top) and LM (below). 
The vertical red line is the zero error mark.

DNN Performance analysis 
after training and testing. 



10 layers 20 layers 40 layers
Regression 0.93 0.92 0.93

RMSE: Perf 0.0313 0.0342 0.032
Regression 0.93 0.93 0.93

RMSE: Perf 0.0309 0.0303 0.0303
Levenberg-Marquardt

Group 4

Scaled Conjugate Gradient

 

SCG 10 Hidden Layers 

 

SCG 20 Hidden Layers 

 

SCG 40 Hidden Layers 

 

LM 10 Hidden Layers  

 

LM 20 Hidden Layers  

 

LM 40 Hidden Layers  
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Deep Neural Networks: Group 4
• This was the least performing Group of all 4 considered here.
• The best performing DNN model used the LM algorithm with 10 hidden layers

Performance Metrics for Group 4.

Error histograms for SCG (top) and LM (below). 
The vertical red line is the zero error mark.Training state output and function fit (target vs output) with 

an error subplot

Training State 
Output and Target Function Fit 

                 
              

 

10 0

gr
ad

ie
nt

Gradient = 0.0011092, at epoch 9

10
-5

m
u

Mu = 1e-06, at epoch 9

0 1 2 3 4 5 6 7 8 9

9 Epochs

0

2

4

6

va
l f

ai
l

Validation Checks = 6, at epoch 9 0.005 0.01 0.015 0.02 0.025

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

O
ut

pu
t a

nd
 T

ar
ge

t

Function Fit for Output Element 1

Training Targets

Training Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

Errors

Fit

Input
-1

-0.5

0

0.5

1

Er
ro

r

Targets - Outputs



AGENDA
• Background and Motivation
• Objective
• Approach and Results

• Parameter set considerations 
• Data Wrangling : Unsupervised Machine Learning
• Fuzzy Inference Systems
• Deep Neural Networks

• Summary
• Future Work



Summary

• Fuzzy Inference Systems generated a decision space that may not be able 
to successfully capture the classifications made by unsupervised or 
supervised techniques for this application.

• It provided an aggregated output based on the weights of the Fuzzy-membership 
functions.

• Deep Neural Networks presented more promising results compared to 
the Fuzzy Inference System for a collision avoidance decision-making 
tool.

• An augmented or exclusive satellite collision avoidance decision-making 
construct based on preliminary machine learning performance, and 
ongoing research suggests a favorable architecture with modeled binary 
or tertiary decisional outputs.



Ongoing & Future Work

• Ongoing research is being implemented to determine an optimal and 
representative physics-derived adaptive set of parameters for each 
conjunction case.

• Consider parameters beyond state and covariance such as information 
available in a Conjunction Data Message (CDM) or space weather data, 
example:

• Number of Observations used
• Energy Dissipation Rate (EDR)
• Radio Flux and Geomagnetic Indices etc.

• Incorporate Recurring Neural Network (RNNs) model to ingest time-series 
based information sequentially incorporated to provide predictions at TCA.

• Potential for these models to be extended to perform collision avoidance for 
large-constellations semi-autonomously.



18(1) https://media.defense.gov/2017/Oct/04/2001822339/-1/-1/0/171004-F-O3755-1003.JPG
(2) https://www.isdi.education/es/isdigital-now/blog/actualidad-digital/dealing-big-data-and-analytics

Artificial Intelligence for Space Situational Awareness and Collision Avoidance 
Decision Making

Intelligent data analytics can help 
us understand and augment 
problem-solving techniques 

beyond our current capabilities.
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Machine Learning for State Uncertainty Characterization
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Monte Carlo samples for a spacecraft’s 
position uncertainty characterization

(Generated using a Particle Filter (PF))
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