

A Scroll Filter System for In-Situ Resource Utilization CO₂ acquisition of the Martian Atmosphere

Juan H. Agui NASA Glenn Research Center

Space Resources Roundtable, Golden, CO, June 11-14, 2019

Resource Utilization and Atmospheric Acquisition

- Surface missions to Deep-Space destinations will have to rely on In-Situ Resource Utilization (ISRU) technologies
- Dramatically reduce launch mass of human exploration missions, and create a self-sustaining infrastructure.

Resource Utilization and Atmospheric Acquisition

- Technology Roadmap Area 7.1
 - Resource Acquisition to collect and pre-process the 'raw' resources, both naturally occurring and discarded, or un-needed components brought from Earth;
 - Processing and Production to convert the raw resources into consumables for propulsion, power, and life support

Martian Dust Properties

- Limited particle size data, in particular little known of fine particles
- Mission data: Interferometric spectroscopy, spectrometers, spectroscopic cameras, video observations, infrared imaging, solar path obscuration (Pathfinder, Mariner 9, Viking, Phobos, MER)
 - Indirect measurement
 - Do not resolve fine particles well

Size Distribution and Concentration

Figure 3-9. Relative Size Distribution of Airborne Dust Particles. Radius of dust particle is in micrometers.³⁻¹² 3-13 3-14</sup> Note the large disagreement for the smallest particles.

Alexander, Mars Transportation Environment Definition Document, 2001.

TOMASKO ET AL.: DUST IN THE MARTIAN ATMOSPHERE

Filter Efficiency

Slip effects:

Knudsen number *kn*, given by mean free path, λ , and characteristic length, *L*_{char}

7

$$kn = rac{\lambda}{L_{char.}}$$
 ($\lambda \sim 3 \ \mu m @ 7 \ Torr$)

Kn < 0.001 (no slip boundary) 0.001<kn<0.1 (slip boundary)

Drag force

$$F_D = \frac{3\pi\eta d_p v_p}{C_C}$$

 $C_C \sim 2 \text{ to } 3 @ 7 \text{ Torr}$

Scroll Filter

- Uses any grade of filter media (from high efficiency – i.e. HEPA – to medium efficiency – pre-filtration)
- Built-in pleated structure
- Scrolling mechanism allows handsfree (automated) media changes.
- Modular facilitates added pre-filter components such as baffles, impactors and pre-filter media

Test methods

- HE media (supplied by H&V)
 - ➢ 61% collection efficiency
 - Δp: 44 Pa @ 5 cm/s, 1 atm.
- · Differential pressure transduce: pressure drop across filter
- Challenge aerosol
 - Internal aerosol generator
 - JSC-Mars 1 Martian simulant
- Light sheet imaging
- Particle penetration, P
 - LDA (counts, velocity) upstream and downstream of the filter.
 - Filter samplers upstream and downstream of the filter

Particle Flow loop

Laser Doppler Anemometry

Particle Sampling

Results (preliminary)

Velocity Histograms at upstream station (7 Torr, 121 particle counts)

Filter samplers

Sampler	sampling time	original mass	new mass	Δm	Conc
	(min)	(mg)	(mg)	(mg)	µg/cm²/min
Upstream	30	38.4	47	8.6	56.5
Downstream	30	38.3	38.3	-0.1	0

±0.1 mg

Conclusions

- Test methods in simulated Martian conditions using light sheet imaging, Laser Doppler Anemometry, particle sampling are being developed to establish methods of determining filter performance under these conditions.
- Pressure drop data indicated a increase in pressure drop with loaded filter, and a recovery of original pressure drop when media was changed out.
- LDA was used effectively to quantify particle counts upstream and downstream of the filter to measure particle penetration and filter collection efficiency
- Particle sampling provided estimates of particle concentrations upstream and downstream indicated nearly complete collection efficiency of the scroll filter.

