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Science Goals & Objectives
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WFIRST science objectives related to the Wide Field Instrument:
• Study Dark Energy using three techniques

• Weak gravitational lensing: Requires high quality imaging, to measure subtle 
correlations in galaxy shapes

• Baryon Acoustic Oscillations: Requires wide-area grism spectroscopy, to 
measure galaxy redshifts and study large scale galaxy distribution

• Supernova cosmology: Requires accurate photometry, redshift measurements, 
and sensitive prism spectroscopy to classify supernovae and use them to 
measure the geometry of the universe.

• Find exoplanets using gravitational microlensing
• Requires high cadence, accurate photometry in crowded fields.

• Conduct general observer science
• Primarily levies requirements on operations.
• Will likely make use of all instrument capabilities.

Wide, medium & deep imaging
+

Prism spectroscopy
____________________________

2700 type IA supernovae
Z = TBD
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Location of Grism & Prism
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Element Wheel (filters, Grism, Prism, dark)

Prism Assembly

Wide Field Instrument

Grism Assembly

Pupil 
Mask

Prism Assembly



Prototype 
(all AR coated):

Pupil mask.

Element 1: S1 is sphere, and S2 is a 
diffractive on a flat.

Element 2: Both S1 and S2 are spheres.

Element 3: S1 is sphere, and S2 is a 
diffractive on a flat (adhesive-free-bonded).

EDU 
(all AR coated):

Element 1: Plane- parallel -plane, S2 is 
a diffractive on a flat.

Pupil mask.

Element 2: Both S1 and S2 are spheres.

Element 3: Both S1 and S2 are spheres. 

Element 4: Plane- parallel -plane, S2 is 
a diffractive on a flat.

ETU 
(E1, E3, E4 are AR coated, 
E2 is band-pass and out of 
band blockage coated):

Element 1: same as EDU.

Pupil mask.

Element 2: same as EDU.

Element 3: same as EDU. 

Element 4: same as EDU

Flight 
(E1, E3 are AR coated, E2 is band-pass and out 
of band blockage coated):

Pupil mask.

Element 1: Plane- parallel -plane, S1 and S2 
have a diffractive on each surface.

Element 2: Both S1 and S2 are spheres.

Element 3: Both S1 and S2 are spheres.

2014-2019
Prototype (PT) 

2018-2020
EDU and ETU

(SRR Design)

2020-2021

Flight (FM) 

Diffractive surfaces

Pupil mask

Pupil mask

Diffractive surfaces

Pupil mask

Diffractive surfaces

Grism Design Evolution

Completed EDU build
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GRISM Raytrace & Wavefront Map

E1 E2 E3Mask

Light 
Dispersion

Light
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• All fused silica elements
• E1 is a plane parallel plate with diffraction patterns etched on both 

the front and back surfaces

• E2 is a wedged, meniscus lens with Bandpass and Out of Band 
Blocking coatings on both sides

• E3 is an AR coated wedged, meniscus lens
• Obscured mask to block thermal emissions from telescope

WSM Grism Design Residual (nm RMS) at 1.55um



Element 4 in cell
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4 Element EDU Grism Assembly 

Grism Deck and 
Element 1 Mount

Element 3 Cell

Element 2 Cell

Alignment Cubes

Spherical washers and 
shims for post assembly 
alignment (3 each)

Laser Tracker/Radar 
SMR or Balls 

Cell to Element
Bond Flexures

Alignment Pins
Bushings (3 eache)



• Grism Element Characterization
– Grism Elements were optically characterized using a Computer 

Generated Hologram (CGH) null 
– Each Element and CGH has integral references to allow deterministic 

alignment and assembly alignment
• E1 and E4 are flats which allow direct viewing of normal; each have center 

and clocking fiducials to enable both CGH and Assembly alignment
• E2 and E3 have integral flats at 90 degrees related to optical axis and center 

and clocking fiducials to aid alignment
– Elements were aligned to nominal position relative to interferometer and 

CGH and then interferograms acquired
• Grism Assembly Alignment  

– Grism assembly coordinate system was established on deck 
– Elements were aligned one by one to deck in 6 DOF using hexapod to 

place them before installing cells over them and bonding them to cells
– Order of assembly was E2, E3, E4 with E1 last as it was bonded to deck
– Theodolites were used to used to set tip/tilt 
– Micro Vu optical CMM was used to set clocking, despace and decenter
– Cells have bushings that allow repeatable placement to deck

9

Grism Element Characterization and 
Assembly Alignment
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Grism EDU E1 CGH Testing Summary

E1 minus background (high frequency) minus CGH, minus flat.

E1 Zernike Fit (RMS normalized)
WFE RMS 41nm

ZFR 4 (power) 26nm
ZFR 5 (ast X) -17nm
ZFR 6 (ast Y) -21nm

ZFR 7 (coma X) -9nm
ZFR 8 (Coma Y) 2nm

ZFR 9 (spherical) -3nm

The center of the CGH was set as the origin and the spacing between the origin and the center
fiducial of E1 was 300mm. E1 was tilted wrt the grism optical axis. The E1 surface was measured
directly to set the designed tilt angle.

Z

Y



Grism EDU E2 Inspection and 
Characterization

Upon receipt of E2 from the manufacturer (Optimax), it was:

1) Inspected under a microscope to verify requirements. It was found that
the center crosshair was not properly placed and the offset had to be
measured to account for during alignment.

2) Placed in its GSE Lollipop mount (LPM) and characterized under the
micro-vu (establish a relationship between fiducials 12’oclock, 6o’clock,
9 o’clock and center fiducials) and hemispherical targets (on LPM). E2
CGH was also measured with micro-vu. The center fiducial of E2
represented the origin itself.

3) E2 was measured with CGH following the CGH testing procedure.

4) Once E2 was fully characterized it would proceed with mechanical
bonding. E2 was bonded so that it would have a specific angle wrt the
normal of E1.

E2micro-vu characterization

E2-CGH test setup, E2 tilted forward wrt CGH.

1111
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Grism EDU E2 CGH Testing Summary

E2 SN1 Zernike Fringe Fit (RMS normalized)
WFE RMS 1111nm

ZFR 4 (power) -1114nm
ZFR 5 (ast X) -21nm
ZFR 6 (ast Y) -11nm

ZFR 7 (coma X) 6nm
ZFR 8 (Coma Y) -1nm

ZFR 9 (spherical) -2nm

The center of the CGH was set as the origin and the spacing between the origin and the center
fiducial of E2 was 300mm. E2 was tilted wrt the grism optical axis. The E2 integral flats were used to
measure the designed tilt angle for the CGH test.

E2 minus background (high frequency) minus CGH, minus flat.

Z

Y



• Power was much higher than expected

– All elements were manufactured from Suprasil 3001 (flight material) 

which is different than Fused Silica 7979, for which the CGH was 

designed and fabricated for.

– E2 and E3 had opposite power which allowed successful nulling at the

grism assembly level.

– E1 and E4 also had smaller but opposite power which also nulled.

– Flight CGHs will be designed to null Suprasil 3001 elements.

13

Grism EDU E2 CGH Testing Results 
Discussion



1) The deck cube was used as the base reference for alignment. Therefore the deck cube was measured wrt
the large mount cube and the offset was added to all additional cell cubes pointing.

2) Once each element was on the hexapod they were measured with the micro-vu (for xyz and clocking) and
theodolite for tip/tilt.

a) For E1 and E4 the optical surface was measured directly (using a relay) wrt the deck cube.

b) For E2 and E3 the side integral flats were measured wrt the deck cube. Since these had been measured since they were
mounted on their LPM the pointing between the side flat and the grism optical axis was already known.

3) Each step taken for aligning the individual grism elements was listed in the “Grism Assembly and Alignment
Procedure”.

Building the Grism EDU
Grism EDU Alignment Steps

1
1a

1b
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1. Place E2 on hexapod without deck on the grappler.
2. Using the micro-vu, look for the center (adjust for measured offset) and edge fiducials to set XYZ 

placement and clocking.
3. Using the side integral flats measure tip/tilt (using theodolites). Relative to the grism deck cube. 
4. Slide E2 cell over E2 and verify E2 did not move with Micro-vu.
5. Bolt E2 cell onto deck.
6. Inject epoxy and let cure for five days.

15

Grism EDU E2 Alignment and Bonding

1

2
4

3

6

5



1. Place E1 on hexapod without deck on the grappler.
2. Using the micro-vu, look for the center and edge fiducials to set XYZ placement and clocking.
3. Add a relay mirror over E1 to measure tip/tilt (using theodolites). Relative to the grism optical axis. 
4. Slide cell over it and verify E1 did not move with Micro-vu.
5. Inject epoxy and let cure for five days.
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Grism EDU E1 Alignment and Bonding

1
2

3

3

4
5



Grism EDU E3 and E4

Grism elements E3 and E4 were inspected, mounted, aligned and bonded following the
same process as E2 and E1 followed respectively.

For E4 its surface was measured with the relay to set that angle wrt the deck cube.

For E3 the tilt angle was set by measuring the side integral flats wrt the deck cube.

E4 Mounted in LPM

E3 micro-vu characterization

E3

17



Building the Grism EDU
Grism EDU Assembly Stack-up

E1 in deck E1 + E2 in deck E1 + E2 + E3  in deck

E1 + E2 + E3 + E4 in deck

Using: 
1) Theodolites: shooting cell cubes
2) Micro-Vu non-contact multisensor 

measurement system: center and edge 
crosshair fiducials 

18



Grism Test Configuration is Not the 
Same as WSM Design Configuration

Grism Test Configuration
Rotates about a point and traces out a 
curved focal surface.  Interferometer 

modeled as 1090mm EFL transmission 
sphere, 150mm diameter, F/7.27

This brings into question whether alignment in the Test Configuration 
will adequately ensure performance at the Payload level 

Monte Carlo analysis will provide answers

Grism

Interferometer

19

WSM Design Configuration
(Telescope + Grism) 

M3
Grism

Tilted Focal Plane
Flight ConfigurationTelescope Tertiary



Test Field 
Angles

Field 1
(On-Axis)

Field 2
(Back)

Field 3
(Forward

)

Field 4
(CCW)

Field 5
(CW) Field 6 Field 7 Field 8 Field 9

ThX (deg) 0 +3 -3 0 0 +5 +5 -7 -7

ThY (deg) 0 0 0 +10 -10 +7 -7 +3 -3

Grism EDU WFE and Confocality Sensitivity 
Analysis

2020



Zernike
Term

Residual
(nmRMS)

E2 Field F1 (0, 0) 
(nm-RMS per MM or nm-RMS per DEG)

dX dY dZ dThX dThY dThZ

Focus 0.0 0 -4 385 28 -4 0

X-Astig 11.8 0 -2 6 138 -4 0

Y-Astig 0.0 -1 0 0 0 -136 -4

X-Coma 0.0 0 0 0 0 58 2

Y-Coma 2.6 0 1 5 54 0 0

Spherical -2.4 0 -1 -1 2 0 0

First, align On-Axis using the 6DOF 
sensitivities for F1 (above)

Then, balance Astigmatism terms  
for the edge fields F4 & F5 (right)

Finally, correct Focus over the full 
Focal Plane (dZ above)

Zernike
Term

E2 Field F4 (0, +10, CCW)
(nm-RMS per DEG)

E2 Field F5 (0, -10, CW)
(nm-RMS per DEG)

Residual dThX dThY Residual dThX dThY

Focus 0.0 32 -983 0.0 32 972

X-Astig -11.2 141 -833 -11.2 141 823

Y-Astig -9.7 -809 -134 9.7 809 -133

X-Coma -34.9 0 62 34.9 0 62

Y-Coma 7.8 55 1 7.8 55 -1

Spherical -2.3 2 1 -2.3 2 -1

E2 Selected as 
compensator

X astigmatism corrected 
with rotations about y
Y astigmatism corrected 
with rotations about x

Grism EDU WFE and Confocality 
Sensitivity Analysis

2121
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Grism EDU Alignment Tolerances

Alignment was achieved for each element  with the following caveats:
1. E2 fiducial was found not to be at geometrical center of optic
2. Tip/tilt capability of shimming was close to tolerance
Improvements for Flight:
1. Better knowledge of fiducials at vendor
2. Better tip/tilt capability with upgraded interface

resolution resolution



Ambient Grism EDU layout in lab 6 on hexapod

Zygo
Concave 

retro sphere

Grism on hexapod
Focus (SMR, Caliball)

Hardware used:
Zygo, hexapod, SMR on XYZ stage, concave retro on tip/tilt stage, theodolite to measure grism, laser tracker to measure SMR.

Z

X

Y

Grism EDU WFE and Confocality Test 
Configuration

2323



• Goals of Optimization
– Characterize wavefront error of Grism at select fields
– Calculate the tip/tilt adjustments of the E2 element which is our

selected compensator to minimize wavefront error
– Adjust the E2 tip/tilt by shimming the element
– Verify that the non-power wavefront error is minimized
– Map the focal surface across the Grism field and determine the best

global back focal distance
– Calculate the despace adjustment to E2 required to optimize the back

focal distance
– Shim the E2 element, preserving its tip/tilt to correct the back focal

distance
• Initially we worked to a relaxed requirement of 100 microns because we did

not know how much the back focal distance would change after cooldown

24

Grism EDU Alignment Optimization Overview



• Grism Alignment to ZYGO interferometer
– Install transmission sphere and internally align to interferometer
– Place caliball at focus of transmission sphere
– Install transmission flat in interferometer and internally align
– Align Grism E1 to transmission flat (this aligns grism to on-axis field in

tilt)
– Scan Grism reference tooling balls with laser radar (this defines the 6

DOF alignment of the grism and the test coordinate system in tilt)
– Project a line from the caliball parallel to the Z axis
– Adjust the Grism in decenter and despace to be on the Z axis and set

the E1 S1 center 731.39 mm from the caliball. This is defines the Grism
On-Axis coordinate system.

– Replace transmission flat with transmission sphere and internally align
(alignment has been shown to repeat very well)

25

Grism EDU Alignment to ZYGO



• The Grism test configuration is dictated by its large field of view and
difficulty in moving the interferometer. Therefore, the grism is adjusted
relative to the interferometer using a hexapod.

• Grism wavefront error mapping is done in a double pass configuration
with the interferometer beam retro reflecting off of a high quality sphere

• Grism focal surface mapping and is done using a Caliball as the retro
reflector

• Alignment to each field
– The Grism alignment for off-axis fields is set relative to its on-axis alignment

to the interferometer (this relationship is transferred to table tie points)
– For off-axis fields the Grism is adjusted in tip/tilt to the desired field angle and

then translated to center the E1 S1 back to where it was on-axis.
– Once the focus position is determined we remove the Caliball and adjust the

high quality convex retro sphere to null power and tilt and acquire
interferograms

26

Grism EDU WFE and Focal Surface Mapping 



• The Grism opto-mechanical alignment places each element to the
allocated 6 degree of freedom tolerances to allow a reasonable
starting wavefront error

• Optimization is performed by measuring the initial wavefront error
over 5 selected field fields
– (0 degrees off-axis in elevation, 0 degrees off-axis azimuth) or

(0,0), (+3,0), (-3,0), (0,+10), (0,-10)
– Misalignment manifests itself as wavefront error and is greatest off-

axis; therefore we use the (0,+10), (0,-10) field points for initial
optimization of non-focus terms

– Based on sensitivity analyses the most sensitive decoupled motion to
perform optimization using the E2 element as compensator is:

• Elevation (rotation about X) for y astigmatism
• Azimuth (rotation about Y) for x astigmatism

– We need only measure at the (0,+10), (0,-10) fields during optimization

27

Grism EDU WFE Optimization
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• Adjustments were initially the the wrong direction due to sign flips in the Grism optical model
• Balancing the x and y astigmatism across the (0,+10), (0,-10) also reduced the other

aberrations and demonstrated that E2 was an effective global compensator
• The WFE includes a non-real contribution from spherical aberration that is fit due to the central

obscuration. We later determined that using 6th instead of 12th order zernikes reduced this error
• The second stage of optimization required adjustment of E2 in despace to set the grism back

focal length across the field

Grism EDU WFE Optimization



• As described previously, we have to tip/tilt the grism relative to the interferometer to 
measure wavefront error and back focal distance across the field of view.

• Modeling of the test configuration was performed to determine the nominal back focal 
length BLF for specific field points relative to the E1 Surface 2 center.

• After non-power wavefront optimization we measured the BFL for each field point and 
adjusted E2 spacing to correct for the error

• At the time of EDU initial despace adjustments we were still optimizing our alignment 
process and had not yet discovered that using 12th order Zernike fits was biasing our 
power measurement.  Therefore we have a limited baseline for comparison. (we 
elected to use 6th order Zernikes instead of annular Zernikes)

• In total E2 was moved 323 microns towards E3; this slightly perturbed tip/tilt as well.  
The modelled and measured BFL for each field is shown below

29

Grism EDU Confocality and Back Focal 
Length Adjustment



• In summary the Grism offset between the no-Grism focus of the
interferometer and the Grism in focus position of the Caliball is 89 microns
shorter than the ideal predicted by the model

• The standard deviation of the focus across the field is 17 microns, within
the error of the measurement

• We elected to defer further adjustment to remove the residual -89 microns
of back focal length error for the following reasons

– We wanted to test the EDU grism cold to determine if there was a focus shift
offset for cold

– The E2 element was going to be changed out after the cold test and replaced
with the ETU E2 element with the flight-like band pass coating; this requires re-
optimization of the grism

30

Grism EDU Confocality and Back Focal 
Length Adjustment



Using Concave retro

Grism EDU WFE Improvement
Initial (before aligning) Final (after aligning)

31

47nm

30nm

25nm

55nm

116nm

71nm

60nm

212nm 150nm 69nm

66nm 56nm

48nm 37nm
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• The Grism minimal operating temperature is 160 Kelvins
• The Grism was mounted on a translation stage in the Cryogenic

Distortion Measurement Facility (CDMF) \and configured for testing at
cryogenic temperatures.
– The CDMF has pressure windows and sapphire windows which are

thermally sinked to the cold shroud to prevent thermal loading.
– A convex retrosphere was used to allow the optical cavity to fit in the

CDMF; by translating the grism, the WFE of the windows and
retrosphere can be subtracted from the test set.

– The convex retrosphere was mounted onto an x y z translation stage to
allow fine alignment to the grism at temperature

– A caliball was also mounted on the x y z stage to allow realignment to
retro off of the caliball for measurements of the back focal length relative
to the grism at cold temperature

– The position of the grism, caliball and convex retrosphere was monitored
through out testing with a laser radar viewing them through the back
window of the CDMF.

32

EDU Grism Cryogenic Testing



Cryo Grism EDU layout in lab 6 
CDMF chamber using convex 

retro and caliball

Hardware used:
Zygo, SMRs an TBs on motorized XYZ stage and grism deck, caliball, 
convex retro (ROC=126mm), motorized XYZ stage, laser tracker and 
laser radar.

tracker

radar

Zygo

Caliball and convex on XYZ stage

Grism
Zygo

Grism
Retros 

(caliball and convex)

3333
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Grism warm and cold WFE at 3 Fields

• Figure 2. Initial and adjusted wavefront error of grism
•



Correlation between laser radar and laser tracker
– On average the tracker and radar match each other within 23 µm
– There were differences in the tracker and radar (through window)

absolute measurements due to known phase errors due to windows
– We demonstrated that radar could accurately measure changes in

alignment even through the window for displacements larger than seen in
test

35

Grism EDU Cryo: Radar-Tracker Correlation



• The EDU cryogenic test demonstrated that the Grism
wavefront error was stable from ambient to cryogenic
operating temperature at the 3 selected fields that were
measured.
– Change for Zernike fit data was within the measurement noise
– Change for subtracted data for the 10 degree off-axis field

including unfit Zernikes was 38 nm; we consider this to be a very
conservative estimate

• The second parameter measured was Back Focal Length
(BFL) at cryogenic operating temperature
– Only the on-axis field position was configured for this

measurement
– We found that the change in the BFL from ambient to cryogenic

operating temperature was close to the noise of the measurement
– Additional testing of the Cryo BFL will be performed at other field

angles
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Grism EDU Cryo: 
WFE and BFL Measurements
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Grism EDU BFL Cryo Change On-Axis

Grism focus change was 
close to the measurement 
error



• We believe the EDU demonstrates we can deliver a Flight Grism to 
the required specifications

• The elements can be fabricated to the required tolerances
• The elements can be aligned to an initial starting condition within our 

capture range
• The elements can be realigned to meet the WFE and BFL tolerances
• The opto-mechanical design is athermal and can meet requirements 

at cryo operational temperature

38

Conclusions
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